Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures

Size: px
Start display at page:

Download "Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures"

Transcription

1 Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures RET Teacher: Michael Wall School: Andover High School Town/District: Andover Public Schools Subject(s) Taught: Physical Science, Environmental Science Subjects Covered in Lesson: Physical Science, Physics Grades Appropriate: 9, 10 Lesson Duration: Two 80-minute class periods Goals/Objectives of Lesson: At the end of this lesson students should be able to: Use measurements of force and length to calculate stress and strain of a material; Calculate Young s modulus of various materials from laboratory data; Qualify a material s elasticity based on laboratory data and given values of Young s modulus. Background Information: Students should have prior knowledge of forces, Newton s laws of motion, displacement, vectors, the SI system, graphing and basic algebra skills. Students should have basic laboratory skills to measure mass, weight and length. Hooke s law allows the elasticity of springs to be calculated. The same concept in Hooke s law can be extended to any material using Young s modulus to calculate elasticity. Using basic principles of forces, displacement, SI system, basic algebra and graphing, students should be able to understand and calculate the elasticity of springs and other solid materials. Essential Questions: Can rigid materials bend or change shape when a force is applied? What makes some materials more elastic than other materials? Links to Frameworks and Standards ational: Physical Science Standards, Levels 9 12, Motion and forces State: Massachusetts Introductory Physics: 1. Motion and Forces, Broad Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast vector quantities (such as, displacement, velocity, acceleration, force, and linear momentum) and scalar quantities (such as, distance, speed, energy, mass, and work). 1.2 Distinguish between displacement, distance, velocity, speed, and acceleration. Solve problems involving displacement, distance, velocity, speed, and constant acceleration. 1.3 Create and interpret graphs of 1- dimensional motion, such as position vs. time, distance vs. time, speed vs. time, velocity vs. time, and acceleration vs. time where acceleration is constant. 1.5 Use a free-body force diagram to show forces acting on a system consisting of a pair of interacting objects. For a diagram with only co-linear forces, determine the net force acting on a system and between the objects. Materials Required: Overhead projector, transparency slides, chalk or dry erase markers, springs, masses, ring stands, graph paper, wooden blocks, marshmallows, plastic from beverage holders, computers with internet access, TBD Lesson Development: On day one the students will be introduced to Hooke s law. The lesson will begin with an inquiry based activity where the students will predict what happens when masses are added to different springs of the same length. This will lead to a discussion about elasticity and notes about Hooke s law. The students will then work on an activity where they will test the elasticity of various springs and graph the force versus displacement to find the spring constants. The first day ends with the students practicing some sample problems about Hooke s law. Day two reviews the material from the previous day

2 as well as the homework problems about Hooke s law. The discussion will move from the elasticity of springs to the elasticity of any solid material. An introduction to some engineering terms like load, shear force, axial force, compression, tension and necessary before the discussion of stress, strain and Young s modulus. The students will then have an opportunity to find Young s modulus for a marshmallow using compression and Young s modulus of the connective plastic connecting a bundle of beverages. Using the data of force, area, initial and final lengths of the material, the students can calculate the elasticity of each sample. Students can then graph their data for another method for obtaining Young s modulus. Students will strengthen their understanding with a homework assignment. On the third day the homework about Young s modulus will be reviewed and hopefully a short video will be shown. There is also an interactive website about Young s modulus that the students will complete so calculate the elasticity of virtual materials. The lesson will end with an assessment that has yet to be determined. Please see attached lesson plan and ancillary materials. References: TBD

3 Lesson - Can All Things Stretch? Day 1 Time Methods otes to Me 10 min. POE We have 2 springs of equal length. If we hang the same mass on each spring, what do you expect to observe? Write down your prediction in your notebook and a diagram of this setup. Give students a minute or two to write the information in their notebooks. Solicit students responses about their predictions. OK, so now we have to test our predictions. Make sure you record any observations you see in your notebooks. Attach the first spring on the stand and hang the mass. Measure how far the spring stretches. Repeat the same procedure with the second spring. Clearly there is something different between the two springs. See if you can come up with an explanation for what you just observed. Solicit students responses about their explanations. What seems to be different for the springs is their elasticity, or their ability to stretch. We can assign a number for each spring to indicate the elasticity, or stretchiness, for all springs. As long as we don t overstretch a spring, this stretchiness number should always hold true. Need springs, masses, ruler, ring stand & clamps Allow sufficient thinking and writing time during each step of the POE. 20 min. 35 min. otes Hooke s Law We can use the concepts of force and distance to find out how stretchy a spring can be. The stretchiness of a spring is determined by Hooke s Law. See Hooke s Law overhead transparency. Activity Hooke s Law Lab Activity ow that we ve discussed Hooke s law, lets see if we can put our knowledge to use. For this activity you will be given some springs and it will be your job to find the constants. Make sure you record all your data in your notebooks. Be sure to include a diagram of your experiment setup. Students will work in groups for this activity. Students will be given 2 or 3 different springs. The springs should be labeled. Begin by attaching your spring to the ring stand so that it hangs freely. Measure the initial length of the spring. Add a mass to the spring and measure the new displacement of the spring. Be sure to make sure that the spring is no bouncing when you take your Need Hooke s Law overhead transparency Need materials for Hooke s law springs, masses, ruler, ring stands & clamps, Hooke s Law lab overhead transparency Group size will depend on class size and amount of materials.

4 measurement. Continue to add masses to the end of the spring and record each new displacement. Use the data from your experiment to make a graph of the force vs. displacement. Find the slope of the graph to calculate the spring coefficient. Finish activity and clean up with 15 minutes remaining in class. 10 min 5 min Wrap Up Discussion of what the data and graphs mean in terms of Hooke s Law. Questions to consider in class discussion: o Which spring is the most elastic and most inelastic? o How does our data help to determine which spring is most or least elastic? o What does the slope of the Force vs. Displacement tell us? o Why is there a y-intercept value? What should it be? o Do you think that the Hooke s Law, or the idea that materials have some amount of elasticity, only applies to springs? What else do you think it would apply to? Homework Hooke s Practice Problems Worksheet Write answers on the board. I ve put the answers on the board so that you can check your work. Make sure you show all of your work and follow all problem-solving steps. Need Hooke s Law Practice Problems Worksheet and answer sheet

5 Day 2 Time Methods otes to Me 10 min RAP Review of Hooke s Law and introduces Young s Modulus. Students work on RAP questions. Review answers with class. Need RAP overhead transparency. Check homework while students work on RAP 10 min Review Homework Hooke s Practice Problems Worksheet Students compare their answers with the person next to them. After comparing your answers with your partner, if you still want to review a problem, come up and write that number on the board. Review any problems that are put on the board. Show all problem-solving steps. Need Hooke s Law Practice Problems worksheet with answers 2 min 25 min. 35 min. Video 2 short video clips Yesterday we talked about Hooke s Law and how we can quantify how much elasticity a spring has. Today we can use the same idea of Hooke s Law to show how other types of materials have different amounts of elasticity. Even if you can t see it with your eyes, all materials exhibit some amount of elasticity. We use a concept called Young s Modulus to quantify the elasticity of materials Sometimes you can see the elasticity of materials and the effects are dramatic. Video clip of tensile steel rebar breaking Video clip of Tacoma Narrows Bridge otes Young s Modulus Yesterday we talked about Hooke s Law and how we can quantify how much elasticity a spring has. Today we can use the same idea of Hooke s Law to show how other types of materials have different amounts of elasticity. Even if you can t see it with your eyes, all materials exhibit some amount of elasticity. We use a concept called Young s Modulus to quantify the elasticity of materials. See Young s Modulus overhead transparency. Activity Young s Modulus Lab Activity Compression of a marshmallow. ow that we have a better understanding of elasticity let s practice using Young s modulus to calculate elasticity of a familiar material. You will be working in groups for this activity. Need 2 short Need Young s Modulus overhead transparency. Need materials wooden blocks, masses, marshmallows, graph paper, rulers.

6 Students collect materials - four wooden blocks, one marshmallow, graph paper, masses. Students set up three wooden blocks and attach graph paper to one of the outermost blocks. All data should be recorded in the students notebooks. Calculate the area of the top of the marshmallow. Place the last wooden block on top of the marshmallow and record the height of the block on the graph paper. Place the first weight on top of that wooden block and record the new height it will be less since the marshmallow is getting compressed. Continue adding additional masses on top of the wooden block to further compress the marshmallow. As each mass is added be sure to record the new block height. Calculate stress, strain and Young s Modulus. Graph stress vs. strain and calculate the slope of the graph. Answer questions. Finish activity and clean up with 15 minutes remaining in class. Homework Finish the Young s Modulus lab graph and questions

7 Hooke s Law Hooke s Law extension (or compression) of a spring is directly proportional to the force applied o Only if the spring is Not overstretched (inside elastic range) returns to original length when force is removed. Molecules return to original position o Spring stretchiness is determined by a constant, k harder to stretch = constant

8 o Equation: F = kd F applied force k spring constant (unique to each spring) d displacement spring is extended or compressed o Force and displacement are linear slope = spring constant, k o Can also be used to find elastic potential energy (E e ) in a spring: E e = ½ kd 2

9 o Sample Problems: 1. What is the spring constant when a 45 N force stretches the spring 15 cm? 2. If it takes 50 N of force to stretch a spring 5 cm, how much will the spring stretch if 125 N are applied to the same spring? 3. What is the amount of elastic potential energy stored in the spring when it is stretched with 50 N and with 125 N?

10 Setup Hooke s Law Activity

11 Procedure Begin by attaching your spring to the ring stand so that it hangs freely. Measure the initial length of the spring. Add a mass to the spring and measure the new displacement of the spring. Be sure to make sure that the spring is no bouncing when you take your measurement. Continue to add masses to the end of the spring and record each new displacement. Use the data from your experiment to make a graph of the force vs. displacement. Find the slope of the graph to calculate the spring coefficient. Data Table Mass (kg) Force (N) Displacement (mm) (m)

12 Graph Force vs. Displacement Force (N) y-axis Displacement (m) x-axis Questions 1. Which spring is the most elastic and most inelastic? 2. How does our data help to determine which spring is most or least elastic? 3. What does the slope of the Force vs. Displacement tell us? 4. Why is there a y-intercept value? What should it be? 5. Do you think that the Hooke s Law, or the idea that materials have some amount of elasticity, only applies to springs? What else do you think it would apply to?

13 Name Physical Science Date Block Hooke s Law Practice Problems Show ALL work and follow ALL problem-solving steps for the following problems. 1. What force is necessary to stretch an ideal spring whose force constant is 120 N/m by an amount of 30 cm? (36 N) 2. A spring with a constant of 600N/m is used on a scale for weighing fish. What is the mass of a fish that would stretch the spring by 7.5 cm from its normal length? (4.6 kg) 3. A spring in a pogo stick is compressed 12 cm when a 40 kg girl stands on the stick. What is the spring constant for the pogo stick spring? (3333 N/m) 4. An elastic cord is 80 cm long when it is supporting a mass of 10 kg hanging from it at rest at rest. When an additional 4 kg is added, the cord is 82.5 cm long. a) What is the spring constant of the cord? (1600 N/m) b) What is the length of cord when no mass is hanging from it? (73.75 cm) 5. A mass of 5 kg is attached to the end of a spring causing it to stretch 0.98 m. a) What is the spring constant? b) How far would it stretch if 2.5 kg were suspended from the spring? c) How far would it stretch if both masses were both hanging from the end of the spring?

14 Young s Modulus Engineering Lingo: o Load (P) same thing as force Units N o Shear force a force, or component of a force, that acts parallel to a plane Can cause bending o Axial force force along the longitudinal (or long) axis of a body Tension pulling away from material, pulling force (load) Compression pushing toward material, pushing force (load)

15 Material Characteristics o Some materials are stronger against tension, others compression o Strain (ɛ) change in length of a material when an axial force is applied (ɛ is Greek epsilon) units none, length units cancel ɛ = L L o stress (σ) force per unit area (like pressure) for solids (σ is Greek sigma) F σ = A units Pascal, Pa ɛ = L f L i L i

16 o Young s Modulus (E) shows the relationship between stress and strain Also known as Elastic Modulus like Hooke s law for solid materials used by engineers to quantify elasticity of a material important for designing and building structures unique property like boiling pt, specific heat capacity, etc. units = Pa or N/m 2, psi, E > 0 always Equations: E = σ ɛ F / A E = L / L FL E = A L FL E = A(Lf L i )

17 Stress vs. Strain Graph Stress y-axis Strain x-axis Slope = E Yield Point when slope stops being linear o material loses strength and is starting to fail

18 Examples of Young s Modulus Material Young s Modulus, E (GPa) Rubber Nylon 2 4 Pine wood 9 Oak wood 11 Aluminum 69 Diamond 1220

19 Young s Modulus Activity Set up the materials like the picture.

20 Data for the marshmallow: Diameter Radius r = d/2 Area A = πr 2 d = r = A = Mass (kg) Force ( ) Area (m 2 ) Stress, σ (Pa) Length (m) Length (m) Strain, ɛ Calculate Young s Modulus, E: Graph stress vs. strain & find the slope of the graph.

21 Questions 1. What does the slope of the graph indicate? 2. Is there a y-intercept for this graph? What does this value mean? Do you think it should be a particular value? 3. How does the marshmallow s Young s modulus compare to some of the other values? What does this tell you about the marshmallow? 4. Where are some sources of error in this experiment?

Conceptual Physics Labs Chapter 5

Conceptual Physics Labs Chapter 5 Name Where appropriate ALWAYS show your formulas and your work! Use the back of your paper if you need to. Vector vs. Scalar Identify each of these as either Vector or Scalar: Is it vector or scalar? Check

More information

Grade Six: Earthquakes/Volcanoes Lesson 6.2: Fault Formations

Grade Six: Earthquakes/Volcanoes Lesson 6.2: Fault Formations Lesson Concept Link Time Grade Six: Earthquakes/Volcanoes Lesson 6.2: Fault Formations Forces in the Earth (tension, compression, shearing) cause stress at plate boundaries. Lesson 6.2 builds on the earthquake

More information

INSPIRE GK12 Lesson Plan. Elastic Deformation of Materials: An Investigation of Hooke s Law Length of Lesson

INSPIRE GK12 Lesson Plan. Elastic Deformation of Materials: An Investigation of Hooke s Law Length of Lesson Lesson Title Elastic Deformation of Materials: An Investigation of Hooke s Law Length of Lesson 1.5 hours Created By Justin Warren Subject Physics Grade Level 11-12 State Standards Physics: 1 c, d, f;

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Lecture Presentation Chapter 8 Equilibrium and Elasticity

Lecture Presentation Chapter 8 Equilibrium and Elasticity Lecture Presentation Chapter 8 Equilibrium and Elasticity Suggested Videos for Chapter 8 Prelecture Videos Static Equilibrium Elasticity Video Tutor Solutions Equilibrium and Elasticity Class Videos Center

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then Linear Elasticity Objectives In this lab you will measure the Young s Modulus of a steel wire. In the process, you will gain an understanding of the concepts of stress and strain. Equipment Young s Modulus

More information

Section 2: Friction, Gravity, and Elastic Forces

Section 2: Friction, Gravity, and Elastic Forces Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect

More information

Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 04 Properties (Mechanical)

Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 04 Properties (Mechanical) Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 04 Properties (Mechanical) Welcome to the course on medical biomaterials. Today we are

More information

Exploration Phase. What can we use to store mechanical energy? Lab Activity

Exploration Phase. What can we use to store mechanical energy? Lab Activity Solids and Elastic potential Energy Exploration Phase What can we use to store mechanical energy? Lab Activity Is there a limit to how much deformation force a solid object can take? Bend a Popsicle stick

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Elastic Properties of Solids (One or two weights)

Elastic Properties of Solids (One or two weights) Elastic properties of solids Page 1 of 8 Elastic Properties of Solids (One or two weights) This is a rare experiment where you will get points for breaking a sample! The recommended textbooks and other

More information

Unit 3P.1: Forces, magnets and springs.

Unit 3P.1: Forces, magnets and springs. Unit 3P.1:. Size and direction of forces Magnets Springs Science skills: Making and using models Classifying Observing By the end of this unit you should be able to: Recognise that a force acts in a particular

More information

Lab 4: Gauss Gun Conservation of Energy

Lab 4: Gauss Gun Conservation of Energy Lab 4: Gauss Gun Conservation of Energy Before coming to Lab Read the lab handout Complete the pre-lab assignment and hand in at the beginning of your lab section. The pre-lab is written into this weeks

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information

Physics lab Hooke s Law and Pendulums

Physics lab Hooke s Law and Pendulums Name: Date: Physics lab Hooke s Law and Pendulums Part A: Hooke s Law Introduction Hooke s Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2]

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2] 1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress strain Fig. 7.1 [2] (b) Circle from the list below a material that is ductile. jelly c amic gl

More information

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

More information

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics.

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. 1 (a) The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. tensile stress tensile strain (b) A long wire is suspended vertically

More information

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1 A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure shows the spring before and after the weight is added. Figure (a) Which distance gives the extension

More information

Page 2. What is the main purpose of the steel core? To force more current into the outer sheath.

Page 2. What is the main purpose of the steel core? To force more current into the outer sheath. Q1.The overhead cables used to transmit electrical power by the National Grid usually consist of a central core of steel cables surrounded by a sheath of cables of low resistivity material, such as aluminium.

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

MACHINES AND MOTION SECTION 1: USING FORCE TO DO WORK

MACHINES AND MOTION SECTION 1: USING FORCE TO DO WORK MACHINES AND MOTION SECTION 1: USING FORCE TO DO WORK STANDARDS: Students will measure length, weight, temperature, and liquid volume with appropriate tools and express those measurements in standard metric

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass PS 12A Lab 3: Forces Names: Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Measure the normal force

More information

Caution! Stick-slip motion should not be confused with strike-slip motions along lateral faults.

Caution! Stick-slip motion should not be confused with strike-slip motions along lateral faults. Lesson 5: Earthquake Machine As concluded in Lesson 4, earthquakes are associated with displacements on faults. Faults lock and a displacement occurs when the stress across the fault builds up to a sufficient

More information

The University of Texas at Austin. Forces and Motion

The University of Texas at Austin. Forces and Motion UTeach Outreach The University of Texas at Austin Forces and Motion Time of Lesson: 50-60 minutes Content Standards Addressed in Lesson: TEKS6.8B identify and describe the changes in position, direction

More information

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r =

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r = Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation Gravity Newton`s Law of Universal Gravitation states: Where: G = = M = m = r = Ex 1: What is the force of gravity exerted on a 70.0 kg

More information

Wrinkling in Buckling and a Thin Sheet

Wrinkling in Buckling and a Thin Sheet University of Massachusetts Amherst ScholarWorks@UMass Amherst Patterns Around Us STEM Education Institute 2014 Wrinkling in Buckling and a Thin Sheet Narayanan Menon University of Massachusetts - Amherst,

More information

PHYSICS 221 SPRING 2013

PHYSICS 221 SPRING 2013 PHYSICS 221 SPRING 2013 EXAM 2: April 4, 2013 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY As previously defined, an object is in equilibrium when it is at rest or moving with constant velocity, i.e., with no net force acting on it. The following

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

THIS IS A NEW SPECIFICATION MODIFIED LANGUAGE

THIS IS A NEW SPECIFICATION MODIFIED LANGUAGE THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE PHYSICS A Mechanics G481 * OCE / 24236* Candidates answer on the Question Paper OCR Supplied Materials: Data, Formulae and Relationships Booklet Other

More information

Lab 16 Forces: Hooke s Law

Lab 16 Forces: Hooke s Law Lab 16 Forces: Hooke s Law Name Partner s Name 1. Introduction/Theory Consider Figure 1a, which shows a spring in its equilibrium position that is, the spring is neither compressed nor stretched. If we

More information

Physics. Assignment-1(UNITS AND MEASUREMENT)

Physics. Assignment-1(UNITS AND MEASUREMENT) Assignment-1(UNITS AND MEASUREMENT) 1. Define physical quantity and write steps for measurement. 2. What are fundamental units and derived units? 3. List the seven basic and two supplementary physical

More information

The Pendulum. Goals and Introduction

The Pendulum. Goals and Introduction The Pendulum Goals and Introduction In this experiment, we will examine the relationships between the period, frequency and length of a simple pendulum. The oscillation of a pendulum swinging back and

More information

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact?

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Does the moon attract the Earth with the same force that the Earth attracts the

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

PreClass Notes: Chapter 4, Sections 4.5,4.6

PreClass Notes: Chapter 4, Sections 4.5,4.6 PreClass Notes: Chapter 4, Sections 4.5,4.6 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

The Spring-Mass Oscillator

The Spring-Mass Oscillator The Spring-Mass Oscillator Goals and Introduction In this experiment, we will examine and quantify the behavior of the spring-mass oscillator. The spring-mass oscillator consists of an object that is free

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

Hooke s Law. Equipment. Introduction and Theory

Hooke s Law. Equipment. Introduction and Theory Hooke s Law Objective to test Hooke s Law by measuring the spring constants of different springs and spring systems to test whether all elastic objects obey Hooke s Law Equipment two nearly identical springs,

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

Blossoms - Elasticity Lesson

Blossoms - Elasticity Lesson Blossoms - Elasticity Lesson [MUSIC PLAYING] Hello, everyone. I'm Sourish. And what you just saw me doing with this slingshot is an application of a very beautiful concept called elasticity. Now, elasticity

More information

Contents. Concept Map

Contents. Concept Map Contents 1. General Notes on Forces 2. Effects of Forces on Motion 3. Effects of Forces on Shape 4. The Turning Effect of Forces 5. The Centre of Gravity and Stability Concept Map April 2000 Forces - 1

More information

, causing the length to increase to l 1 R U M. L Q P l 2 l 1

, causing the length to increase to l 1 R U M. L Q P l 2 l 1 1 1 Which of the following correctly defines the terms stress, strain and oung modulus? stress strain oung modulus (force) x (area) (extension) x (original length) (stress) / (strain) (force) x (area)

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

Centripetal Force Exploring Uniform Circular Motion

Centripetal Force Exploring Uniform Circular Motion 1 Exploring Uniform Circular Motion An object that moves in a circle at constant speed, v, is said to experience uniform circular motion (UCM). The magnitude of the velocity remains constant, but the direction

More information

1. What does the catapult exert on or apply to the plane?

1. What does the catapult exert on or apply to the plane? Unit 1: Forces and Motion Lesson 2.b Newton s Second Law of Motion Newton s laws predict the motion of most objects. As a basis for understanding this concept: Students know how to apply the law F = ma

More information

FORCE & MOTION Instructional Module 6

FORCE & MOTION Instructional Module 6 FORCE & MOTION Instructional Module 6 Dr. Alok K. Verma Lean Institute - ODU 1 Description of Module Study of different types of forces like Friction force, Weight force, Tension force and Gravity. This

More information

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009 Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an

More information

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

Semester I lab quiz Study Guide (Mechanics) Physics 135/163 Semester I lab quiz Study Guide (Mechanics) Physics 135/163 In this guide, lab titles/topics are listed alphabetically, with a page break in between each one. You are allowed to refer to your own handwritten

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

The complete lesson plan for this topic is included below.

The complete lesson plan for this topic is included below. Home Connection Parent Information: Magnets provide a simple way to explore force with children. The power of a magnet is somewhat like magic to them and requires exploration to understand. When forces

More information

Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

More information

Experiment 3 Forces are Vectors

Experiment 3 Forces are Vectors Name Partner(s): Experiment 3 Forces are Vectors Objectives Preparation Pre-Lab Understand that some quantities in physics are vectors, others are scalars. Be able to perform vector addition graphically

More information

Hooke's Law: Stress and Strain Revisited *

Hooke's Law: Stress and Strain Revisited * OpenStax-CNX module: m42240 1 Hooke's Law: Stress and Strain Revisited * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Physics *P44923A0128* Pearson Edexcel P44923A. Advanced Subsidiary Unit 1: Physics on the Go. International Advanced Level

Physics *P44923A0128* Pearson Edexcel P44923A. Advanced Subsidiary Unit 1: Physics on the Go. International Advanced Level Write your name here Surname Other names Pearson Edexcel International Advanced Level Physics Advanced Subsidiary Unit 1: Physics on the Go Centre Number Candidate Number Tuesday 19 May 2015 Morning Time:

More information

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR END-OF-YEAR EXAMINATION SUBJECT: PHYSICS DATE: JUNE 2010 LEVEL: INTERMEDIATE TIME: 09.00h to 12.00h Show ALL working Write units where appropriate

More information

2007 Academic Challenge

2007 Academic Challenge 2007 Academic Challenge PHYSICS TEST - REGIONAL This Test Consists of 35 Questions Physics Test Production Team Len Storm, Eastern Illinois University Author/Team Coordinator Doug Brandt, Eastern Illinois

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Lab Exercise #3: Torsion

Lab Exercise #3: Torsion Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

More information

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics CoreModels Dynamics Newton s First Two Laws of Motion A Core Learning Goals Activity for Science and Mathematics Summary: Students will investigate the first and second laws of motion in laboratory activities.

More information

Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement

Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement 1. Introduction This experiment is the second in a pair of experiments leading

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Grade: EXPERIMENT 4

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Grade: EXPERIMENT 4 Laboratory Section: Last Revised on June 18, 2018 Partners Names: Grade: EXPERIMENT 4 Moment of Inertia & Oscillations 0 Pre-Laboratory Work [20 pts] 1 a) In Section 31, describe briefly the steps you

More information

GRADE 10A: Physics 2. UNIT 10AP.2 8 hours. Mechanics and kinematics. Resources. About this unit. Previous learning. Expectations

GRADE 10A: Physics 2. UNIT 10AP.2 8 hours. Mechanics and kinematics. Resources. About this unit. Previous learning. Expectations GRADE 10A: Physics 2 Mechanics and kinematics UNIT 10AP.2 8 hours About this unit This unit is the second of seven units on physics for Grade 10 advanced. The unit is designed to guide your planning and

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

Newton Car Lab. Newton s 1 st Law - Every object in a state of uniform motion

Newton Car Lab. Newton s 1 st Law - Every object in a state of uniform motion Newton Car Lab Physics Concepts: Newton s 1 st Law - Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it. This we recognize as Galileo

More information

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1 Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1. NT NOTES PACKET SCORE /30 /62 Previous Unit Review Worksheet /32 2. WS MOMENTUM

More information

July 19 - Work and Energy 1. Name Date Partners

July 19 - Work and Energy 1. Name Date Partners July 19 - Work and Energy 1 Name Date Partners WORK AND ENERGY Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES Lab Section M / T / W / Th /24 pts Name: Partners: PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES OBJECTIVES 1. To verify the conditions for static equilibrium. 2. To get practice at finding components

More information

Simple Harmonic Motion *

Simple Harmonic Motion * OpenStax-CNX module: m54154 1 Simple Harmonic Motion * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this section,

More information

Study Sheet for Exam #3

Study Sheet for Exam #3 Physics 121 Spring 2003 Dr. Dragt Study Sheet for Exam #3 14. Physics knowledge, like all subjects having some substance, is cumulative. You are still responsible for all material on the Study Sheets for

More information

Name: Laboratory Investigation

Name: Laboratory Investigation Laboratory Investigation Abstract: Analysis of the circular motion of a swinging stopper will provide insight into the causes of centripetal force and develop relationships between speed, radius and centripetal

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 89 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William Blake

More information

PHYSICS 220 LAB #5: WORK AND ENERGY

PHYSICS 220 LAB #5: WORK AND ENERGY Lab Section / 33 pts Name: Partners: PHYSICS 0 LAB #5: WORK AND ENERGY OBJECTIVES 1. To get practice calculating work.. To understand the concept of kinetic energy and its relationship to the net work

More information

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

More information

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1 Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1. NT OVERHEAD NOTES WITH WORKSHEET GUIDE /30 2. WS MOMENTUM WORKSHEET /17 3.

More information

Sean Carey Tafe No Lab Report: Hounsfield Tension Test

Sean Carey Tafe No Lab Report: Hounsfield Tension Test Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small test-piece. It is mostly used for tensile

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

GRADE 7: Physical processes 4. UNIT 7P.4 9 hours. The effects of forces. Resources. About this unit. Previous learning

GRADE 7: Physical processes 4. UNIT 7P.4 9 hours. The effects of forces. Resources. About this unit. Previous learning GRADE 7: Physical processes 4 The effects of forces UNIT 7P.4 9 hours About this unit This unit is the fourth of five units on physical processes for Grade 7. The unit is designed to guide your planning

More information