Computational Time Series Analysis (IPAM, Part I, stationary methods) Illia Horenko

Size: px
Start display at page:

Download "Computational Time Series Analysis (IPAM, Part I, stationary methods) Illia Horenko"

Transcription

1 Computational Time Series Analysis (IPAM, Part I, stationary methods) Illia Horenko Research Group Computational Time Series Analysis Institute of Mathematics Freie Universität Berlin Germany and Institute of Computational Science Universita della Swizzera Italiana, Lugano Switzerland

2 Motivation (I): Data Inverse problem: data-based identification of model parameters other anticyclonic cyclonic time series of vectors (continous, finite dim.) time series of regimes (discrete, finite dim.) time series of functions (continuous, infin. dim.) Challenges: VERY LARGE (~Tb size), non-markovian (memory), non-stationary (trends), multidimensional, ext. influence

3 Motivation (II): Models Inverse problem: data-based identification of model parameters Dynamical (f.e., deterministic, stochastic,...) Geometrical (f.e, essential manifolds,...) Models Mixed (f.e., MTV, PIP/POP,...) Challenges: existence and uniqueness, robustness, conditioning

4 Plan for Today (stationary case) eagle eye perspective on stochastic processes from the viewpoint of deterministic dynamical systems geometric model inference: EOF/SSA multivariate dynamical model inference: VARX handling the ill-posed problem motivation for tomorrow : examples where stationarity assumption does not work

5 Plan for Today (stationary case) eagle eye perspective on stochastic processes from the viewpoint of deterministic dynamical systems geometric model inference: EOF/SSA multivariate dynamical model inference: VARX handling the ill-posed problem motivation for tomorrow : examples where stationarity assumption does not work

6 Classification of Stochastic Process Discrete State Space, Discrete Time: Markov Chain Discrete State Space, Continuous Time: Markov Process Stochastic Processes Continuous State Space, Discrete Time: Autoregressive Process Continuous State Space, Continuous Time: Stochastic Differential Equation

7 Discrete Markov Process Realizations of the process: Markov-Property: Example:

8 Discrete Markov Process Realizations of the process: Markov-Property: State Probabilities:

9 Discrete Markov Process Realizations of the process: Markov-Property: State Probabilities:

10 Discrete Markov Process Realizations of the process: Markov-Property: State Probabilities: This Equation is Deterministic

11 Continuous Markov Process

12 Continuous Markov Process

13 Continuous Markov Process

14 Continuous Markov Process infenitisimal generator

15 Continuous Markov Process infenitisimal generator This Equation is Deterministic: ODE

16 Continuous State Space Discrete State Space, Discrete Time: Markov Chain Discrete State Space, Continuous Time: Markov Process Stochastic Processes Continuous State Space, Discrete Time: AR(1) Continuous State Space, Continuous Time: Stochastic Differential Equation

17 Deterministic Markov Process in R Realizations of the process: Process: Flow operator: Properties:

18 Deterministic Markov Process in R Realizations of the process: Process: Flow operator: Properties: Example: ODE with

19 Deterministic Markov Process in R Realizations of the process: Process: Flow operator: Properties: Liouville Theorem: let be the flow ( ), given as a solution of If is defined as then the following equation is fulfilled:

20 Deterministic Markov Process in R Realizations of the process: Process: Flow operator: Properties: Liouville Theorem: let be the flow ( ), given as a solution of If Excercise 1: is think defined of the as proof (hint: use the partial integration ), think about the Hilbert space H and appropriate boundary conditions then the following equation is fulfilled:

21 Stochastic Markov Process in R Realizations of the process: Process: (follows from Ito s lemma) This Equation is Deterministic

22 Stochastic Markov Process in R Infenitisimal Generator: Markov Process Dynamics: This Equation is Deterministic: PDE

23 Numerics of Stochastic Processes Discrete State Space, Discrete Time: Markov Chain Discrete State Space, Continuous Time: Markov Process Continuous State Space, Discrete Time: Autoregressive Process Continuous State Space, Continuous Time: Stochastic Differential Equation

24 Numerics of Stochastic Processes Discrete State Space, Discrete Time: Markov Chain Discrete State Space, Continuous Time: Markov Process Deterministic Numerics of ODEs and PDEs! Continuous State Space, Discrete Time: Autoregressive Process Continuous State Space, Continuous Time: Stochastic Differential Equation

25 Conclusions 1) Numerical Methods from ODEs and (multidimensional) PDEs like Runge-Kutta-Methods, FEM and (adaptive) Rothe particle methods are applicable to stochastic processes H./Weiser, JCC 24(15), ) Monte-Carlo-Sampling of resulting p.d.f. s Stochastic Numerics = ODE/PDE numerics + Rand. Numb. Generator 3) Concepts from the Theory of Dynamical Systems are Applicable (Whitney and Takens theorems, model reduction by identification of attractors)

26 Plan for Today (stationary case) eagle eye perspective on stochastic processes from the viewpoint of deterministic dynamical systems geometric model inference: EOF/SSA multivariate dynamical model inference: VARX handling the ill-posed problem motivation for tomorrow : examples where stationarity assumption does not work

27 EOF/PCA/SSA/...: Geometrical methods For a given time series we look for a minimum of the reconstruction error µ T TT (X-µ) t T (X-µ) t x t

28 EOF/PCA/SSA/...: Geometrical methods For a given time series we look for a minimum of the reconstruction error µ T TT (X-µ) t T (X-µ) t x t

29 EOF/PCA/SSA/...: Geometrical methods For a given time series we look for a minimum of the reconstruction error µ T TT (X-µ) t T (X-µ) t x t

30 EOF/PCA/SSA/...: Geometrical methods For a given time series we look for a minimum of the reconstruction error µ T TT (X-µ) t T (X-µ) t x t Excercise 2: think of the proof (hint: use the Lagrange multipliers ), think of the estimate of projection error

31 Plan for Today (stationary case) eagle eye perspective on stochastic processes from the viewpoint of deterministic dynamical systems geometric model inference: EOF/SSA multivariate dynamical model inference: VARX handling the ill-posed problem motivation for tomorrow : examples where stationarity assumption does not work

32 Predicting Stochastic Processes Discrete State Space, Discrete Time: Markov Chain Discrete State Space, Continuous Time: Markov Process Deterministic Numerics of ODEs and PDEs! Continuous State Space, Discrete Time: Autoregressive Process Continuous State Space, Continuous Time: Stochastic Differential Equation

33 Predicting the Dynamics: VAR(p)

34 Estimating VAR(p) : least squares

35 Estimating VAR(p) : least squares

36 Estimating VAR(p) : least squares

37 Estimating VAR(p) : least squares Excercise 3: think of the proof (hint: use the matrix function derivatives from the Matrix Coockbook: www2.imm.dtu.dk/pubdb/views/edoc_download.../imm3274.pdf))

38 Plan for Today (stationary case) eagle eye perspective on stochastic processes from the viewpoint of deterministic dynamical systems geometric model inference: EOF/SSA multivariate dynamical model inference: VARX handling the ill-posed problem motivation for tomorrow : examples where stationarity assumption does not work

39 A. N. Tikhonov ( Estimating VAR(p) : regularization

40 A. N. Tikhonov ( Estimating VAR(p) : regularization

41 Plan for Today (stationary case) eagle eye perspective on stochastic processes from the viewpoint of deterministic dynamical systems geometric model inference: EOF/SSA multivariate dynamical model inference: VARX handling the ill-posed problem motivation for tomorrow : examples where stationarity assumption does not work

42 Lorenz96: order zero atmosph. model fast Wilks, Quart.J.Royal Met.Soc., 2005 slow stationary model (time-independent parameters) VARX (standard stationary stochastic Model) Lorenz, Proc. Of. Sem. On Predict., 1996 Majda/Timoffev/V.-Eijnden, PNAS, 1999 Orell, JAS, 2003 Wilks, Quart.J.Royal Met.Soc., 2005 Crommelin/V.-Eijnden, Journal of Atmos. Sci., 2008

43 Lorenz96: order zero atmosph. model fast Wilks, Quart.J.Royal Met.Soc., 2005 slow + =??? + F(t) non-stationary model (time-dependent parameters) VARX (standard stationary stochastic Model) Lorenz, Proc. Of. Sem. On Predict., 1996 Majda/Timoffev/V.-Eijnden, PNAS, 1999 Orell, JAS, 2003 Wilks, Quart.J.Royal Met.Soc., 2005 Crommelin/V.-Eijnden, Journal of Atmos. Sci., 2008

44 Lorenz96: order zero atmosph. model fast Wilks, Quart.J.Royal Met.Soc., 2005 slow + =??? + F(t) non-stationary model (time-dependent parameters) Predictors of Lorenz 96-Model VARX (standard stationary stochastic Model) Lorenz, Proc. Of. Sem. On Predict., 1996 Orell, JAS, 2003 Wilks, Quart.J.Royal Met.Soc., 2005 Crommelin/V.-Eijnden, Journal of Atmos. Sci., 2008

45 Tomorrow: Non-stationarity in TSA Direct problem: Inverse problem: Example:

Numerics of Stochastic Processes II ( ) Illia Horenko

Numerics of Stochastic Processes II ( ) Illia Horenko Numerics of Stochastic Processes II (14.11.2008) Illia Horenko Research Group Computational Time Series Analysis Institute of Mathematics Freie Universität Berlin (FU) DFG Research Center MATHEON Mathematics

More information

Analysis of non-stationary Data. Illia Horenko

Analysis of non-stationary Data. Illia Horenko Analysis of non-stationary Data Illia Horenko Scientific Computing Institute of Mathematics Freie Universität Berlin (FU) DFG Research Center MATHEON Mathematics in key technologies Motivation global stationarity,

More information

Persistent Regime Modes Of Mid Latitude

Persistent Regime Modes Of Mid Latitude Persistent Regime Modes Of Mid Latitude Variability And Scale Interactions Christian Franzke Meteorological Institute & Center for Earth System Research and Sustainability University of Hamburg Terry O'Kane,

More information

On simultaneous data based dimension reduction and hidden phase identification

On simultaneous data based dimension reduction and hidden phase identification On simultaneous data based dimension reduction and hidden phase identification Illia Horenko Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany E-mail: horenko@math.fu-berlin.de

More information

On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns

On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns JULY 2009 H O R E N K O 2059 On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns ILLIA HORENKO Institute of Mathematics, Free University

More information

Lesson 4: Stationary stochastic processes

Lesson 4: Stationary stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Stationary stochastic processes Stationarity is a rather intuitive concept, it means

More information

On robust estimation of low-frequency. variability trends in discrete Markovian. sequences of atmospheric circulation patterns

On robust estimation of low-frequency. variability trends in discrete Markovian. sequences of atmospheric circulation patterns On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns Illia Horenko Institute of Mathematics, Free University of Berlin, Berlin, Germany

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Homework 4 will be posted tonight, due Wednesday, May 8.

Homework 4 will be posted tonight, due Wednesday, May 8. Multiscale Computing and Escape Problems Friday, April 26, 2013 2:01 PM Homework 4 will be posted tonight, due Wednesday, May 8. Multiscale computation is a way to use the ideas of asymptotic reductions

More information

Bayesian Calibration of Simulators with Structured Discretization Uncertainty

Bayesian Calibration of Simulators with Structured Discretization Uncertainty Bayesian Calibration of Simulators with Structured Discretization Uncertainty Oksana A. Chkrebtii Department of Statistics, The Ohio State University Joint work with Matthew T. Pratola (Statistics, The

More information

Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data

Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data Maksym Byshkin 1, Alex Stivala 4,1, Antonietta Mira 1,3, Garry Robins 2, Alessandro Lomi 1,2 1 Università della Svizzera

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Lecture 2: Tikhonov-Regularization

Lecture 2: Tikhonov-Regularization Lecture 2: Tikhonov-Regularization Bastian von Harrach harrach@math.uni-stuttgart.de Chair of Optimization and Inverse Problems, University of Stuttgart, Germany Advanced Instructional School on Theoretical

More information

Markov Model. Model representing the different resident states of a system, and the transitions between the different states

Markov Model. Model representing the different resident states of a system, and the transitions between the different states Markov Model Model representing the different resident states of a system, and the transitions between the different states (applicable to repairable, as well as non-repairable systems) System behavior

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

Information Dynamics Foundations and Applications

Information Dynamics Foundations and Applications Gustavo Deco Bernd Schürmann Information Dynamics Foundations and Applications With 89 Illustrations Springer PREFACE vii CHAPTER 1 Introduction 1 CHAPTER 2 Dynamical Systems: An Overview 7 2.1 Deterministic

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Adaptive approach for non-linear sensitivity analysis of reaction kinetics

Adaptive approach for non-linear sensitivity analysis of reaction kinetics Adaptive approach for non-linear sensitivity analysis of reaction kinetics Illia Horenko, Sönke Lorenz, Christof Schütte, Wilhelm Huisinga Freie Universität Berlin, Institut für Mathematik II, Arnimallee

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

Finite-Horizon Statistics for Markov chains

Finite-Horizon Statistics for Markov chains Analyzing FSDT Markov chains Friday, September 30, 2011 2:03 PM Simulating FSDT Markov chains, as we have said is very straightforward, either by using probability transition matrix or stochastic update

More information

Adaptive approach for non-linear sensitivity analysis of reaction kinetics

Adaptive approach for non-linear sensitivity analysis of reaction kinetics Adaptive approach for non-linear sensitivity analysis of reaction kinetics Illia Horenko, Sönke Lorenz, Christof Schütte, Wilhelm Huisinga Freie Universität Berlin, Institut für Mathematik II, Arnimallee

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

1. Introduction. Hang Qian 1 Iowa State University

1. Introduction. Hang Qian 1 Iowa State University Users Guide to the VARDAS Package Hang Qian 1 Iowa State University 1. Introduction The Vector Autoregression (VAR) model is widely used in macroeconomics. However, macroeconomic data are not always observed

More information

Mathematical Theory of Control Systems Design

Mathematical Theory of Control Systems Design Mathematical Theory of Control Systems Design by V. N. Afarias'ev, V. B. Kolmanovskii and V. R. Nosov Moscow University of Electronics and Mathematics, Moscow, Russia KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems

Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems publications Listing in reversed chronological order. Scientific Journals and Refereed Proceedings: A. Alfonsi, E. Cances, G. Turinici, B. Di Ventura and W. Huisinga Adaptive simulation of hybrid stochastic

More information

Effects of data windows on the methods of surrogate data

Effects of data windows on the methods of surrogate data Effects of data windows on the methods of surrogate data Tomoya Suzuki, 1 Tohru Ikeguchi, and Masuo Suzuki 1 1 Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

Discrete Markov Chain. Theory and use

Discrete Markov Chain. Theory and use Discrete Markov Chain. Theory and use Andres Vallone PhD Student andres.vallone@predoc.uam.es 2016 Contents 1 Introduction 2 Concept and definition Examples Transitions Matrix Chains Classification 3 Empirical

More information

Exact Linearization Of Stochastic Dynamical Systems By State Space Coordinate Transformation And Feedback I g-linearization

Exact Linearization Of Stochastic Dynamical Systems By State Space Coordinate Transformation And Feedback I g-linearization Applied Mathematics E-Notes, 3(2003), 99-106 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Exact Linearization Of Stochastic Dynamical Systems By State Space Coordinate

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Christopher Dougherty London School of Economics and Political Science

Christopher Dougherty London School of Economics and Political Science Introduction to Econometrics FIFTH EDITION Christopher Dougherty London School of Economics and Political Science OXFORD UNIVERSITY PRESS Contents INTRODU CTION 1 Why study econometrics? 1 Aim of this

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

DETERMINATION OF MODEL VALID PREDICTION PERIOD USING THE BACKWARD FOKKER-PLANCK EQUATION

DETERMINATION OF MODEL VALID PREDICTION PERIOD USING THE BACKWARD FOKKER-PLANCK EQUATION .4 DETERMINATION OF MODEL VALID PREDICTION PERIOD USING THE BACKWARD FOKKER-PLANCK EQUATION Peter C. Chu, Leonid M. Ivanov, and C.W. Fan Department of Oceanography Naval Postgraduate School Monterey, California.

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Mathematical Framework for Stochastic Processes

Mathematical Framework for Stochastic Processes Mathematical Foundations of Discrete-Time Markov Chains Tuesday, February 04, 2014 2:04 PM Homework 1 posted, due Friday, February 21. Reading: Lawler, Ch. 1 Mathematical Framework for Stochastic Processes

More information

Cointegration Lecture I: Introduction

Cointegration Lecture I: Introduction 1 Cointegration Lecture I: Introduction Julia Giese Nuffield College julia.giese@economics.ox.ac.uk Hilary Term 2008 2 Outline Introduction Estimation of unrestricted VAR Non-stationarity Deterministic

More information

The Monte Carlo Computation Error of Transition Probabilities

The Monte Carlo Computation Error of Transition Probabilities Zuse Institute Berlin Takustr. 7 495 Berlin Germany ADAM NILSN The Monte Carlo Computation rror of Transition Probabilities ZIB Report 6-37 (July 206) Zuse Institute Berlin Takustr. 7 D-495 Berlin Telefon:

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Robert J. Elliott 1 Samuel N. Cohen 2 1 Department of Commerce, University of South Australia 2 Mathematical Insitute, University

More information

5.5.3 Statistical Innovative Trend Test Application Crossing Trend Analysis Methodology Rational Concept...

5.5.3 Statistical Innovative Trend Test Application Crossing Trend Analysis Methodology Rational Concept... Contents 1 Introduction.... 1 1.1 General... 1 1.2 Trend Definition and Analysis... 3 1.2.1 Conceptual and Visual Trends.... 4 1.2.2 Mathematical Trend.... 7 1.2.3 Statistical Trend.... 9 1.3 Trend in

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version)

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) Rasmus Waagepetersen Institute of Mathematical Sciences Aalborg University 1 Introduction These notes are intended to

More information

Linear Processes in Function Spaces

Linear Processes in Function Spaces D. Bosq Linear Processes in Function Spaces Theory and Applications Springer Preface Notation vi xi Synopsis 1 1. The object of study 1 2. Finite-dimensional linear processes 3 3. Random variables in function

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching

A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching Communications for Statistical Applications and Methods 2013, Vol 20, No 4, 339 345 DOI: http://dxdoiorg/105351/csam2013204339 A Functional Central Limit Theorem for an ARMAp, q) Process with Markov Switching

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

[11] Peter Mathé and Ulrich Tautenhahn, Regularization under general noise assumptions, Inverse Problems 27 (2011), no. 3,

[11] Peter Mathé and Ulrich Tautenhahn, Regularization under general noise assumptions, Inverse Problems 27 (2011), no. 3, Literatur [1] Radu Boţ, Bernd Hofmann, and Peter Mathé, Regularizability of illposed problems and the modulus of continuity, Zeitschrift für Analysis und ihre Anwendungen. Journal of Analysis and its Applications

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Krzysztof Fidkowski, David Galbally*, Karen Willcox* (*MIT) Computational Aerospace Sciences Seminar Aerospace Engineering

More information

The application of the theory of dynamical systems in conceptual models of environmental physics The thesis points of the PhD thesis

The application of the theory of dynamical systems in conceptual models of environmental physics The thesis points of the PhD thesis The application of the theory of dynamical systems in conceptual models of environmental physics The thesis points of the PhD thesis Gábor Drótos Supervisor: Tamás Tél PhD School of Physics (leader: László

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Artificial Intelligence

Artificial Intelligence ICS461 Fall 2010 Nancy E. Reed nreed@hawaii.edu 1 Lecture #14B Outline Inference in Bayesian Networks Exact inference by enumeration Exact inference by variable elimination Approximate inference by stochastic

More information

Gradient Estimation for Attractor Networks

Gradient Estimation for Attractor Networks Gradient Estimation for Attractor Networks Thomas Flynn Department of Computer Science Graduate Center of CUNY July 2017 1 Outline Motivations Deterministic attractor networks Stochastic attractor networks

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

Forecasting Levels of log Variables in Vector Autoregressions

Forecasting Levels of log Variables in Vector Autoregressions September 24, 200 Forecasting Levels of log Variables in Vector Autoregressions Gunnar Bårdsen Department of Economics, Dragvoll, NTNU, N-749 Trondheim, NORWAY email: gunnar.bardsen@svt.ntnu.no Helmut

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Math 456: Mathematical Modeling. Tuesday, March 6th, 2018

Math 456: Mathematical Modeling. Tuesday, March 6th, 2018 Math 456: Mathematical Modeling Tuesday, March 6th, 2018 Markov Chains: Exit distributions and the Strong Markov Property Tuesday, March 6th, 2018 Last time 1. Weighted graphs. 2. Existence of stationary

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS ANALYTIC COMPARISON of Pearl and Rubin CAUSAL FRAMEWORKS Content Page Part I. General Considerations Chapter 1. What is the question? 16 Introduction 16 1. Randomization 17 1.1 An Example of Randomization

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Anton Rodomanov Higher School of Economics, Russia Bayesian methods research group (http://bayesgroup.ru) 14 March

More information

18.600: Lecture 32 Markov Chains

18.600: Lecture 32 Markov Chains 18.600: Lecture 32 Markov Chains Scott Sheffield MIT Outline Markov chains Examples Ergodicity and stationarity Outline Markov chains Examples Ergodicity and stationarity Markov chains Consider a sequence

More information

FROM EQUILIBRIUM TO CHAOS

FROM EQUILIBRIUM TO CHAOS FROM EQUILIBRIUM TO CHAOS Practica! Bifurcation and Stability Analysis RÜDIGER SEYDEL Institut für Angewandte Mathematik und Statistik University of Würzburg Würzburg, Federal Republic of Germany ELSEVIER

More information

Modeling with Itô Stochastic Differential Equations

Modeling with Itô Stochastic Differential Equations Modeling with Itô Stochastic Differential Equations 2.4-2.6 E. Allen presentation by T. Perälä 27.0.2009 Postgraduate seminar on applied mathematics 2009 Outline Hilbert Space of Stochastic Processes (

More information

The decoupling assumption in large stochastic system analysis Talk at ECLT

The decoupling assumption in large stochastic system analysis Talk at ECLT The decoupling assumption in large stochastic system analysis Talk at ECLT Andrea Marin 1 1 Dipartimento di Scienze Ambientali, Informatica e Statistica Università Ca Foscari Venezia, Italy (University

More information

LIST OF PUBLICATIONS. 1. J.-P. Kreiss and E. Paparoditis, Bootstrap for Time Series: Theory and Applications, Springer-Verlag, New York, To appear.

LIST OF PUBLICATIONS. 1. J.-P. Kreiss and E. Paparoditis, Bootstrap for Time Series: Theory and Applications, Springer-Verlag, New York, To appear. LIST OF PUBLICATIONS BOOKS 1. J.-P. Kreiss and E. Paparoditis, Bootstrap for Time Series: Theory and Applications, Springer-Verlag, New York, To appear. JOURNAL PAPERS 61. D. Pilavakis, E. Paparoditis

More information

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications Yongmiao Hong Department of Economics & Department of Statistical Sciences Cornell University Spring 2019 Time and uncertainty

More information

The Bayesian Approach to Multi-equation Econometric Model Estimation

The Bayesian Approach to Multi-equation Econometric Model Estimation Journal of Statistical and Econometric Methods, vol.3, no.1, 2014, 85-96 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 The Bayesian Approach to Multi-equation Econometric Model Estimation

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Dynamic Regression Models (Lect 15)

Dynamic Regression Models (Lect 15) Dynamic Regression Models (Lect 15) Ragnar Nymoen University of Oslo 21 March 2013 1 / 17 HGL: Ch 9; BN: Kap 10 The HGL Ch 9 is a long chapter, and the testing for autocorrelation part we have already

More information

4452 Mathematical Modeling Lecture 16: Markov Processes

4452 Mathematical Modeling Lecture 16: Markov Processes Math Modeling Lecture 16: Markov Processes Page 1 4452 Mathematical Modeling Lecture 16: Markov Processes Introduction A stochastic model is one in which random effects are incorporated into the model.

More information

The regression model with one stochastic regressor.

The regression model with one stochastic regressor. The regression model with one stochastic regressor. 3150/4150 Lecture 6 Ragnar Nymoen 30 January 2012 We are now on Lecture topic 4 The main goal in this lecture is to extend the results of the regression

More information

Reducing The Computational Cost of Bayesian Indoor Positioning Systems

Reducing The Computational Cost of Bayesian Indoor Positioning Systems Reducing The Computational Cost of Bayesian Indoor Positioning Systems Konstantinos Kleisouris, Richard P. Martin Computer Science Department Rutgers University WINLAB Research Review May 15 th, 2006 Motivation

More information

Index. FOURTH PROOFS n98-book 2009/11/4 page 261

Index. FOURTH PROOFS n98-book 2009/11/4 page 261 FOURTH PROOFS n98-book 2009/11/4 page 261 Index activity, 10, 13 adaptive control, 215 adaptive controller, 215 adaptive immune system, 20 adaptive intervention strategy, 216 adjacency rule, 111 admissible

More information

Identifiability, Invertibility

Identifiability, Invertibility Identifiability, Invertibility Defn: If {ǫ t } is a white noise series and µ and b 0,..., b p are constants then X t = µ + b 0 ǫ t + b ǫ t + + b p ǫ t p is a moving average of order p; write MA(p). Q:

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

A Primer on Asymptotics

A Primer on Asymptotics A Primer on Asymptotics Eric Zivot Department of Economics University of Washington September 30, 2003 Revised: October 7, 2009 Introduction The two main concepts in asymptotic theory covered in these

More information

Nonstationary time series models

Nonstationary time series models 13 November, 2009 Goals Trends in economic data. Alternative models of time series trends: deterministic trend, and stochastic trend. Comparison of deterministic and stochastic trend models The statistical

More information