Potential energy. Announcements:

Size: px
Start display at page:

Download "Potential energy. Announcements:"

Transcription

1 Announcements: Created a new column in D2L for sum of scores from First Midterm Will change the way Clicker Questions are written out in Lecture notes. Finish Chapter 8 and Cover material in Chap. 9 Advertise LA program Potential energy Web page

2 Sum of Midterm Grades

3 Come to the LA Info Session to learn more about becoming a Learning Assistant. When: Monday, March 5, 2012, at 6 p.m. Where: UMC 235 (hall right of Reception Desk) RSVP: By March 1 st to laprogram@colorado.edu Refreshments will be served, while they last. Applications for Fall 2012 available March 5 19 Goto: Get more information from faculty and LAs in these departments: Applied Math Math MCDBiology EBIO Education Chemistry Physics Astronomy ATOC Mech Engineering

4 Potential energy We have found that the work due to gravity is where y 1 is the initial height and y 2 is the final height. One more rule about conservative forces is that we can define a quantity called potential energy for them. We define gravitational potential energy as. With this definition: If gravity is the only force contributing to the work then and so by the work energy theorem we arrive at

5 Potential energy which can be written We further define the total mechanical energy of the system as Then the above equation is simply Since points 1 and 2 are arbitrary what we are really saying is that E is constant no matter where we are. So long as gravity is the only force acting, E is constant. This is an example of the conservation of mechanical energy.

6 2.5 m The power of conservation of energy Initial energy: Final energy: Conservation of energy: A block starts at rest at a height of 2.5 m and slides down a frictionless inclined plane. What is the block velocity when it reaches the bottom? If energy is conserved you don t need to know how a particle gets from one place to another. If you can determine the energy at one place then you know it at any other place.

7 Clicker question 1 Set frequency to BA A marble rolls down a frictionless track, and reaches speed v at the bottom. If you want it to reach a speed of 4v at the bottom, you need the start of the new track to be A: twice as high B: 4 times as high C: half as high D: 16 times as high E: (need more information) as the original track height.

8 Clicker question 1 Set frequency to BA A marble rolls down a frictionless track, and reaches speed v at the bottom. If you want it to reach a speed of 4v at the bottom, you need the start of the new track to be A: twice as high B: 4 times as high C: half as high D: 16 times as high E: (need more information) as the original track height. PE initial = mgh, KE final = 1/2 m v 2. To reach 4 v, you need 4 2 =16 times the energy. So, you need 16 times the height.

9 Clicker question 2 Set frequency to BA A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is 4 m/s and the height of the plateau is 1 m. Will the puck make it all the way up the ramp? A. yes v = 4 m/s h = 1 m B. no C. impossible to tell without knowing the mass

10 Clicker question 2 Set frequency to BA A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is 4 m/s and the height of the plateau is 1 m. Will the puck make it all the way up the ramp? A. yes v = 4 m/s h = 1 m B. no C. impossible to tell without knowing the mass The minimum speed needed to make it to the top is when it arrives at the top at rest (no kinetic energy). Conservation of energy: Initial speed must be or greater to make it to the top. But

11 Clicker question 3 Set frequency to BA A pendulum is launched in two different ways. During both launches, the bob has an initial speed of 3.0 m/s. On launch 1, the speed is up (along the trajectory). On launch 2, the speed is down (along the trajectory). Which launch will cause the pendulum to swing the largest angle from the equilibrium position on the left side? A: Launch 1 B: Launch 2 C: Both launches give the same max displacement.

12 Clicker question 3 Set frequency to BA A pendulum is launched in two different ways. During both launches, the bob has an initial speed of 3.0 m/s. On launch 1, the speed is up (along the trajectory). On launch 2, the speed is down (along the trajectory). Which launch will cause the pendulum to swing the largest angle from the equilibrium position on the left side? A: Launch 1 B: Launch 2 C: Both launches give the same max displacement. Conservation of energy says KE(init) is what matters in determining the height. Squaring the v means sign doesn't matter. If you swing it with v1, it'll go up and come back, and when it reaches its starting point again it'll have v2=-v1. Either way, it makes it just as far on the left side. (Barring frictional losses)

13 Clicker question 4 Set frequency to BA A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal and the mass is pushed down with an initial speed vo. What initial kinetic energy is required for the mass to pivot 270 o (to the vertical, or "12 o'clock" position?) 1 2 mv 2 = A: mgr B: mg*(2r) C: mg*(3r) D: 0 E: None of these o

14 Clicker question 4 Set frequency to BA A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal and the mass is pushed down with an initial speed vo. What initial kinetic energy is required for the mass to pivot 270 o (to the vertical, or "12 o'clock" position?) 1 2 mv 2 = A: mgr B: mg*(2r) C: mg*(3r) D: 0 E: None of these o KE(i)+PE(i) = KE(f)+PE(f) At the top, KE(f) = 0, if it "just makes it". Let's set the center of the circle to PE(i)=0. So KE(i)+0 = 0 + PE(f) = 0 + mg*r. That's all you need.

15 More about gravitational potential energy If gravity is the only force doing work, conservation of energy means Note that the y=0 point is arbitrary (but must be the same reference point for all points). This has some consequences: 1. Gravitational potential energy can be positive or negative. 2. Only differences in gravitational potential energy are physically meaningful.

16 Clicker question 5 A small mass, starting at rest, slides without friction down a loop-de-loop as shown. The maximum height of the loop is the same as the initial height of the mass. Will the ball make it to the top of the loop? A: Yes, the ball makes it to the top of the loop. B: No, the ball will not make it to the top. C: Not enough info to say, or don't know. Set frequency to BA

17 Clicker question 5 A small mass, starting at rest, slides without friction down a loop-de-loop as shown. The maximum height of the loop is the same as the initial height of the mass. Will the ball make it to the top of the loop? A: Yes, the ball makes it to the top of the loop. B: No, the ball will not make it to the top. C: Not enough info to say, or don't know. Set frequency to BA This is subtle! It has enough energy to make it to the top, but as it climbs the loop, its velocity will slow, and it will come to a point when it falls off the loop. (At the peak of its trajectory, will it be at its original height?) No! At the top of the trajectory, it still has an "x-component" of velocity, i.e. some KE, which takes away from PE. Basically, its energy is never fully converted into pure PE - some of it will still be KE.

18 What about forces other than gravity? The spring force The force applied to the spring is force by the spring is is also a conservative force while the Note that the x=0 point is not arbitrary; the x=0 point is when the spring is in the relaxed position relaxed spring no force applied extended spring displacement and applied force to the right

19 Work by a spring The work done by a spring is This is true for positive or negative x 1 and x 2. A spring starts at x = 0 Spring is extended to position x 2 so force by spring is opposite the motion and so work is negative: Then the spring is moved from x 2 to x 2 and the positive work from x 2 to 0 is canceled by the negative work from 0 to x 2 :

20 Elastic potential energy The potential energy from a spring is Remember x is the distance from the relaxed position This potential energy is always 0 and is physically meaningful by itself (unlike gravitational potential energy) The combined conservation of mechanical energy equation is valid when only gravitational and elastic forces do work: or simply

21 Using conservation of energy A spring loaded gun with spring constant of 5000 N/m is used to fire a 0.01 kg BB off a 100 m cliff. The spring is compressed 0.1 m before launch. Assuming no air resistance, what is the speed of the BB just before it hits the ground? Use conservation of energy to find the kinetic energy at impact We choose to set y=0 at the base of the cliff Initial energy: Final energy: By conservation of energy:

22 Using conservation of energy A spring loaded gun with spring constant of 5000 N/m is used to fire a 0.01 kg BB off a 100 m cliff. The spring is compressed 0.1 m before launch. Assuming no air resistance, what is the speed of the BB just before it hits the ground? What if we pick the y=0 point at the top of the cliff? Initial energy: Final energy: Energy conservation:

23 Clicker question 6 Set frequency to BA A spring-loaded dart gun shoots a dart straight up into the air, and the dart reaches a height of 24 m. The same dart is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the dart go this time, neglecting friction and assuming an ideal spring? A. 3 m B. 6 m C. 12 m D. 24 m E. 48 m

24 Clicker question 6 Set frequency to BA A spring-loaded dart gun shoots a dart straight up into the air, and the dart reaches a height of 24 m. The same dart is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the dart go this time, neglecting friction and assuming an ideal spring? A. 3 m B. 6 m C. 12 m D. 24 m E. 48 m Before the dart is launched and when it reaches the maximum height the kinetic energy is 0 Initial energy: Final energy: By conservation of energy, E 1 = E 2 If x is reduced by a factor of 2, h will be reduced a factor of 4

University of Colorado, Boulder, 2004 CT8-3

University of Colorado, Boulder, 2004 CT8-3 University of Colorado, Boulder, 2004 CT8-3 A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is 4m/s and the height of the plateau

More information

Answer: mgr You get the same answer regardless of where you set the zero of height.

Answer: mgr You get the same answer regardless of where you set the zero of height. Page 1 of 10 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

Potential energy. Web page:

Potential energy. Web page: Potential energy Announcements: CAPA homework due at 10pm today New CAPA assignment available at 5pm. Grading questions on Midterm connected with how scantron sheets filled out will need to see Professor

More information

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night.

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. Work and kinetic energy LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. 1 Work I apply a force of 2N in the x direction to an object that moves 5m in x. How much work have I done

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0-kg box rests on a horizontal

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Work and Potential Energy

Work and Potential Energy Work and Potential Energy One general type of energy is potential energy, U. It is the energy that can be associated with the configuration (or arrangement) of a system of objects that exert forces on

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits? Name Period Date Honor Physics Final Exam Review Circuits You should be able to: Calculate the total (net) resistance of a circuit. Calculate current in individual resistors and the total circuit current.

More information

Energy Conservation AP

Energy Conservation AP Energy Conservation AP Manicouagan Reservoir seen from space shuttle; formed almost 1 million years ago when a large meteorite hit Earth Earth did work on meteorite to change its kinetic energy energy

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7. Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

More information

Conservation of Energy Concept Questions

Conservation of Energy Concept Questions Conservation of Energy Concept Questions Question 1: A block of inertia m is attached to a relaxed spring on an inclined plane. The block is allowed to slide down the incline, and comes to rest. The coefficient

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon 1 Your Name: PHYSICS 101 MIDTERM October 26, 2006 2 hours Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon Problem Score 1 /13 2 /20 3 /20 4

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 6 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Unit 08 Work and Kinetic Energy. Stuff you asked about:

Unit 08 Work and Kinetic Energy. Stuff you asked about: Unit 08 Work and Kinetic Energy Today s Concepts: Work & Kinetic Energy Work in a non-constant direction Work by springs Mechanics Lecture 7, Slide 1 Stuff you asked about: Can we go over the falling,

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. When a spring is compressed 10 cm, compared to its

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Announcements 2 Oct 2014

Announcements 2 Oct 2014 Announcements 2 Oct 2014 1. Prayer 2. Exam 1 starts today! a. Thursday Oct 2 Tuesday Oct 7 (2 pm) in the Testing Center, late fee after Oct 6, 2 pm b. Covers through today's lecture (unless we don't quite

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J.

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J. Phys 0 Homework 9 Solutions 3. (a) The force of ity is constant, so the work it does is given by W F d, where F is the force and d is the displacement. The force is vertically downward and has magnitude

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

Slide 1 / 76. Work & Energy Multiple Choice Problems

Slide 1 / 76. Work & Energy Multiple Choice Problems Slide 1 / 76 Work & Energy Multiple Choice Problems Slide 2 / 76 1 A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system. PSI AP Physics I Work and Energy Chapter Questions 1. Define a system, the environment and the system boundary. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

More information

Energy in Collisions Problems AP Physics C

Energy in Collisions Problems AP Physics C 1. A bullet of mass m and velocity v 0 is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Energy Storage and Transfer Model: Review Sheet

Energy Storage and Transfer Model: Review Sheet Name Energy Storage and Transfer Model: Review Sheet Date Pd 1. A softball (m = 180 g) traveling at 22.3 m/s moves a fielder's glove backward 25 cm when the ball is caught. a. Construct an energy bar graph

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

PHYSICS 8A, Lecture 2 Spring 2017 Midterm 2, C. Bordel Thursday, April 6 th, 7pm-9pm

PHYSICS 8A, Lecture 2 Spring 2017 Midterm 2, C. Bordel Thursday, April 6 th, 7pm-9pm PHYSICS 8A, Lecture 2 Spring 2017 Midterm 2, C. Bordel Thursday, April 6 th, 7pm-9pm Student name: Student ID #: Discussion section #: Name of your GSI: Day/time of your DS: Physics Instructions In the

More information

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK. Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 2-5. Clearly cross out the page

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Announcements. There will still be a WebAssign due this Friday, the last before the midterm.

Announcements. There will still be a WebAssign due this Friday, the last before the midterm. Announcements THERE WILL BE NO CLASS THIS FRIDAY, MARCH 5 (We are 1 full lecture ahead of the syllabus, so we will still have review/problem solving on March 7 and 9). There will still be a WebAssign due

More information

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK. Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 2-5. Clearly cross out the page

More information

Conservation of energy

Conservation of energy Conservation of energy Objectives Use a variety of approaches and techniques to solve physics problems. Describe the advantages and drawbacks of using conservation of energy to solve problems. Apply the

More information

Physics 103, Practice Midterm Exam 2

Physics 103, Practice Midterm Exam 2 Physics 103, Practice Midterm Exam 2 1) A rock of mass m is whirled in a horizontal circle on a string of length L. The period of its motion is T seconds. If the length of the string is increased to 4L

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Work is transferred energy. Doing work is the act of transferring the energy. 6.1 Work

Work is transferred energy. Doing work is the act of transferring the energy. 6.1 Work Ch 6 Work & Energy Work is transferred energy. Doing work is the act of transferring the energy. 6.1 Work Work is a Scalar Quantity A force does positive work when it has a vector component in the same

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

Lecture 18: Work and Energy. Today s Agenda

Lecture 18: Work and Energy. Today s Agenda Lecture 18: Work and Energy Work and Energy Definition of work Examples Today s Agenda Definition of Mechanical Energy Conservation of Mechanical Energy Conservative forces Physics 201: Lecture 10, Pg

More information

EXAM 3 MECHANICS 40% of the final grade

EXAM 3 MECHANICS 40% of the final grade EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiple-choice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the

More information

Conservation of Energy 1 of 8

Conservation of Energy 1 of 8 Conservation of Energy 1 of 8 Conservation of Energy The important conclusions of this chapter are: If a system is isolated and there is no friction (no non-conservative forces), then KE + PE = constant

More information

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14 Final Review: Chapters 1-11, 13-14 These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs)

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Exam 1 scores posted on Canvas: Ø Announcements If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Ø Must return regrade forms before next Wednesday, October

More information

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print) Physics 116A, Section 2, Second Exam A, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the OPSCAN

More information

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print) Physics 116A, Section 2, Second Exam Version B, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Power and Gravitational Potential Energy

Power and Gravitational Potential Energy Power and Gravitational Potential Energ REVIE of Last eek s Lecture Scalar Product A B AB cos A B x x A B A z B B cos B z A ork Fs F s constant force parallel to displacement force not parallel to displacement

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

October 24, 2014 LB273 Prof. Vash9 Sawtelle. Today s Topics: Energy. Comic: Baldo, Carlos Castellanos

October 24, 2014 LB273 Prof. Vash9 Sawtelle. Today s Topics: Energy. Comic: Baldo, Carlos Castellanos October 24, 2014 LB273 Prof. Vash9 Sawtelle Today s Topics: Energy Comic: Baldo, Carlos Castellanos Announcements Homework Ch 9 &10 due tonight midnight Exam 2 on Monday Exam correc9on problem due on Wednesday

More information

Energy Problems. Science and Mathematics Education Research Group

Energy Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Energy Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains?

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains? A 1kg ball is launched straight up into the air with an initial speed of 64 m/s. Using only energy considerations, determine the maximum height the ball attains assuming there is no air resistance. If

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Potential energy and conservation of energy

Potential energy and conservation of energy Chapter 8 Potential energy and conservation of energy Copyright 8.1_2 Potential Energy and Work Potential energy U is energy that can be associated with the configuration (arrangement) of a system of objects

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ. Slide 1 / 76 Work & nergy Multiple hoice Problems 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information