gear automation and design revised

Size: px
Start display at page:

Download "gear automation and design revised"

Transcription

1 gear automation and design revised Backlash_lookup.5 Backlash_lookup.9 Backlash_lookup Backlash_lookup. Backlash_lookup.9 Backlash_lookup Backlash_lookup. Backlash_lookup.8 6 numerical example... Table page 68 Lynwander, Gear Drive Sysytems for backlash at various diametral values DP diametral_pitch middle of course range... 6 per Shigley Table 9.3 deg N P N G 3 pressure_angle_at_pitch_radius number_of_pinion_teeth number_of_gear_teeth addendum DP.5 dedendum DP Table 9. Sigley for pressure angles,.5 and 5 ************************************ end of input ************************************************************************* C N P N G DP C.5 center_distance R N G N P N G N P R G R DP P R G.5 DP R P BL Backlash_lookup BL. DP T P = T G = CP BL BL = allocate / backlash to each P & G DP R P CP CP.34 N P BL T P T DP P.5 T G T P T G.5 T P.34 R root_p R P dedendum R root_p.875 root_radius_pinion dedendum.5 R root_g R G dedendum R root_g.375 root_radius_gear R add_p R P addendum R add_p. addendum_radius_pinion addendum. R add_g R G addendum R add_g.6 addendum_radius_gear inv tan CTT T P involute_function circular_tooth_thickness_at_pitch_radius inv involute_angle_at_pitch_radius.854 deg /8/6

2 geometry to determine points on involute between root and addendum R, B CTT CTT R R B( R RB A RB A figure. page 3 Lynwander reversed and rotated - values at pitch radius figure. page 3 Lynwander reversed and rotated CTT A = here consider varying from R to a value > design angle = CTT = circular_tooth_thickness = involute_of_ = pressure_angle_design B = A = involute_of_design_pressure_angle R B R = pitch_radius = cos R = R B cos Pinion geometry. R B_P R P cos = circular_range_variable base_radius_pinion R B_P.94 R root_p.875 want to go from base to addendum radius in say points R B_P _add_p acos _add_p 3.3 deg R add_p R root_p R B_P N N = number_of_points_along_involute _add_p i N i ( i ) N involute_angle_at_local_radius inv increment_of_pressure_angle let's put base radius to addendum in :n+ R B_P radius_on_involute R _Pi cos i CTT i R _Pi CTT R P i thickness_at_location /8/6

3 number of teeth N P B_del ( ) angular increment for teeth (offset to angle B) N P thickness B = angle_relative_to_tooth_center = r,l = right,left side of tooth radius_at_location Bl_P i CTT i R _Pi B_del Br_P i B_del CTT i R _Pi i = range_variable_along_involute = tooth_number adding a point at the root radius so we need to add two values of R root and one each of Br and Bl. these are the first points R _P R root_p Bl_P Bl_P Br_P Br_P now i needs to go from to N + N N i N put into vector of R and for polar plot effectiveness N+ points from i up and down. radius up across then down across connecting the dots... R_plot_P R i( N) ( ) _Pi R_plot_P i( N) [ ( ) ] put right data first alternate by and "right" and "left" in sequence R _PN i B_plot_P Br_P B_plot_P Bl_P i( N) ( ) i i( N) [ ( ) ] Ni bug rows( R_plot_P) R_plot_P R_plot_P B_plot_P B_plot_P close curve krhs bug bug Xr_P i Yr_P i convert to X, Y coordinates to allow a closeup of one tooth, cannot restrain in polar plot R _Pi cos Br_P i R _Pi sin Br_P i Xl_P i Yl_P i R _Pi cos Bl_P i R _Pi sin Bl_P i.5 closeup of tooth gear outline root radius base radius /8/6

4 Gear geometry reset reset to avoid extra values in gear R B_G R G cos base_radius_gear R B_G.4 N 4 R root_g.375 want to go from base to addendum radius in say points retained separate number N R B_G _add_g acos _add_g 8.4 deg R add_g N N = number_of_points_along_involute R B_G R root_g R B_G _ded_g acos _ded_g.86i deg R root_g _root_g if R root_g R B_G _ded_g i N i _root_g if root is > base, start involute at root not base. to allow the pposite, insert extra point as in pinion. _add_g _root_g N ( i ) increment_of_pressure_angle inv involute_angle_at_local_radius R B_G radius_on_involute R _G cos CTT CTT i R _Gi i R thickness_at_location G N G B_del ( ) angular increment for teeth (offset to angle B) N G thickness B = angle_relative_to_tooth_center = r,l = right,left side of tooth radius_at_location CTT i = range_variable_along_involute i CTT i Bl_G B_del Br_G B_del i R i _Gi R = tooth_number _Gi adding a point at the root radius, R root is max(r B,R root ) and one each of Br and Bl. these are the first points. in either case, added point is R root_g. R _G R root_g put into vector of R and for polar plot effectiveness Bl_G Bl_G Br_G Br_G now i needs to go from to N + N N i N N points from i up and down. radius up across then down across connecting the dots... R_plot_G R i( N) ( ) _Gi R_plot_G i( N) [ ( ) ] put right data first, alternate by and "right" and "left" in sequence B_plot_G Br_G B_plot_G i( N) ( ) i i( N) [ ( ) ] bug R _GN i rows( R_plot_G) R_plot_G R_plot_G B_plot_G B_plot_G bug bug Bl_G Ni close curve convert to X, Y coordinates to allow a closeup of one tooth, cannot restrain in polar plot Xr_G i Yr_G i R _Gi cos Br_G i R _Gi sin Br_G i Xl_G i Yl_G i krhs R _Gi cos Bl_G i R _Gi sin Bl_G i 4 /8/6

5 9.5 6 closeup of tooth R_plot_G B_plot_G geometry to shift gear to appropriate center 3 relationships to shift a circle R, from center at, to C, atan(r*sin(/(r*cos(c)) R, R*cos(C R*sin( Rcos C Rsin R R C = angle_circle_center_rotated atan R C Rsin Rcos C shift gear a distance C, no rotation of center but rotate gear (B P ) by / circular pitch angle to mesh Gear i rows( R_plot_G) add rotation dependent on FRAME start at / -CP go to CP/?? B_shift B_shift 6 deg N G B_rot B_shift B_shift FRAME B_rot 6 deg BL B_ad_P 4R P and finally... remove BL for meshing, applying half thedistance on each of pinion and gear pinion is rotating CCW so adust BL/4*R P and gear is CW so add BL/4*RG (CCW) to gear B_shift B_rot B_ad_G = total_rotation_of_gear B_ad_G applied before translation BL 4R G 5 /8/6

6 R_plot_G_ R i R_plot_G B_plot_G B_shift B_rot B_ad_G C i i B_plot_G_ i R_plot_G B_plot_G B_shift B_rot B_ad_G C i i now add tangent to the mix... pinion is rotating ccw therefore tangent is at: R B_P gear is rotating cw therefore tangent before shift is at: R B_G and we need to translate it R tan_g R R B_G C tan_g R B_G C so tangent plot is t_plot R B_P R tan_g tan_g t_plot R_plot_G_ R_plot_P t_plot B_plot_G_ B_plot_PB_rotRB_ad_P t_plot 6 /8/6

7 X_G reset Y_G reset shift to X,Y so can get closeup of mesh in animation rows( R_plot_P) X_G R_plot_G_ cos B_plot_G_ X_P R_plot_P cos B_plot_P B_rotR B_ad_P i i i Y_G R_plot_G_ sin B_plot_G_ Y_P R_plot_P sin B_plot_P B_rotR B_ad_P i i i X_tan_G R tan_g cos tan_g X_tan_P R B_P cos Y_tan_G R tan_g sin tan_g Y_tan_P R B_P sin t_xy_pl Y_tan_G Y_tan_P X_tan_G X_tan_P.5 Y_G Y_P t_xy_pl X_GX_P t_xy_pl R.5 N P N G 3 B_rotR 9 deg 7 /8/6

8 .5. Y_G Y_P t_xy_pl X_GX_P t_xy_pl These last two figures are animated in gear mesh video revised. In animating, the variable FRAME is incremented from :, the calculations highlighted above are carried out and plotted, the plots updated and a video screen captured. 8 /8/6

Chapter 6 & 10 HW Solution

Chapter 6 & 10 HW Solution Chapter 6 & 10 HW Solution Problem 6.1: The center-to-center distance is the sum of the two pitch circle radii. To mesh, the gears must have the same diametral pitch. These two facts are enough to solve

More information

Designing Very Strong Gear Teeth by Means of High Pressure Angles

Designing Very Strong Gear Teeth by Means of High Pressure Angles technical Designing Very Strong Gear Teeth by Means of High Pressure Angles Rick Miller The purpose of this paper is to present a method of designing and specifying gear teeth with much higher bending

More information

Toothed Gearing. 382 l Theory of Machines

Toothed Gearing. 382 l Theory of Machines 38 l Theory of Machines 1 Fea eatur tures es 1. Introduction.. Friction Wheels. 3. dvantages and Disadvantages of Gear Drive. 4. Classification of Toothed Wheels. 5. Terms Used in Gears. 6. Gear Materials.

More information

CHAPTER 3 TOOTH GEOMETRY

CHAPTER 3 TOOTH GEOMETRY 1 CHAPTER 3 TOOTH GEOMETRY 3.1 GEOMETRIC PARAMETERS Figure 3.1 shows a portion of the involute curve bounded by the outside where root diameters have been used as tooth profile. In a properly designed

More information

Helical Gears n A Textbook of Machine Design

Helical Gears n A Textbook of Machine Design 1066 n A Textbook of Machine Design C H A P T E R 9 Helical Gears 1. Introduction.. Terms used in Helical Gears. 3. Face Width of Helical Gears. 4. Formative or Equivalent Number of Teeth for Helical Gears.

More information

APPENDIX A : Continued Fractions and Padé Approximations

APPENDIX A : Continued Fractions and Padé Approximations APPENDIX A : Continued Fractions and Padé Approximations Truncating infinite power series in order to use the resulting polynomials as approximating functions is a well known technique. While some infinite

More information

Analysis of bending strength of bevel gear by FEM

Analysis of bending strength of bevel gear by FEM Analysis of bending strength of bevel gear by FEM Abhijeet.V. Patil 1, V. R. Gambhire 2, P. J. Patil 3 1 Assistant Prof., Mechanical Engineering Dept.,ADCET,Ashta.. 2 Prof., Mechanical Engineering Dept.,TKIET,

More information

Understanding the contact ratio for spur gears with some comments on ways to read a textbook

Understanding the contact ratio for spur gears with some comments on ways to read a textbook What s the go o that? Physicist James Clerk Maxwell, aged three, as quoted in Wikipedia. If the answer was unsatisfactory he would follow with, But what s the particular go o that? Understanding the contact

More information

Stress Distribution Analysis in Non-Involute Region of Spur Gear

Stress Distribution Analysis in Non-Involute Region of Spur Gear Stress Distribution Analysis in Non-Involute Region of Spur Gear Korde A. 1 & Soni S 2 1 Department of Mechanical Engineering, Faculty of Technology and Bionics Hochschule Rhein-Waal, Kleve, NRW, Germany,

More information

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS MESA PROJECT Lesson of Mechanics and Machines done in the 5th A-M, 2012-2013 by the teacher Pietro Calicchio. THE GEARS To transmit high power are usually used gear wheels. In this case, the transmission

More information

Spur Gear Des Mach Elem Mech. Eng. Department Chulalongkorn University

Spur Gear Des Mach Elem Mech. Eng. Department Chulalongkorn University Spur Gear 10330 Des Mach Elem Mech. Eng. Department Chulalongkorn University Introduction Gear Transmit power, rotation Change torque, rotational speed Change direction of rotation Friction Gear + + Slip

More information

Research Article Two Mathematical Models for Generation of Crowned Tooth Surface

Research Article Two Mathematical Models for Generation of Crowned Tooth Surface e Scientific World Journal, Article ID 6409, 6 pages http://dx.doi.org/0.55/204/6409 Research Article Two Mathematical Models for Generation of Crowned Tooth Surface Laszlo Kelemen and Jozsef Szente University

More information

+ + = integer (13-15) πm. z 2 z 2 θ 1. Fig Constrained Gear System Fig Constrained Gear System Containing a Rack

+ + = integer (13-15) πm. z 2 z 2 θ 1. Fig Constrained Gear System Fig Constrained Gear System Containing a Rack Figure 13-8 shows a constrained gear system in which a rack is meshed. The heavy line in Figure 13-8 corresponds to the belt in Figure 13-7. If the length of the belt cannot be evenly divided by circular

More information

Contact Stress Analysis of Spur Gear Teeth Pair

Contact Stress Analysis of Spur Gear Teeth Pair ontact Stress Analysis of Spur Gear Teeth Pair Ali Raad Hassan Abstract ontact stress analysis between two spur gear teeth was considered in different contact positions, representing a pair of mating gears

More information

Contact Stress Analysis of Spur Gear Teeth Pair

Contact Stress Analysis of Spur Gear Teeth Pair Vol:3, No:0, 009 ontact Stress Analysis of Spur Gear Teeth Pair Ali Raad Hassan International Science Index, Mechanical and Mechatronics Engineering Vol:3, No:0, 009 waset.org/publication/365 Abstract

More information

Analysis and Calculation of Double Circular Arc Gear Meshing Impact Model

Analysis and Calculation of Double Circular Arc Gear Meshing Impact Model Send Orders for Reprints to reprints@benthamscienceae 160 The Open Mechanical Engineering Journal, 015, 9, 160-167 Open Access Analysis and Calculation of Double Circular Arc Gear Meshing Impact Model

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

On Spatial Involute Gearing

On Spatial Involute Gearing 6 th International Conference on Applied Informatics Eger, Hungary, January 27 31, 2004. On Spatial Involute Gearing Hellmuth Stachel Institute of Discrete Mathematics and Geometry, Vienna University of

More information

Robotics I. Test November 29, 2013

Robotics I. Test November 29, 2013 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected

More information

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES Overview Throughout the first few weeks of the semester, we have studied vector calculus using almost exclusively the familiar Cartesian x,y,z coordinate

More information

Noelia Frechilla Alonso, Roberto José Garcia Martin and Pablo Frechilla Fernández

Noelia Frechilla Alonso, Roberto José Garcia Martin and Pablo Frechilla Fernández Int. J. Mech. Eng. Autom. Volume 3, Number 1, 2016, pp. 27-33 Received: June 30, 2015; Published: January 25, 2016 International Journal of Mechanical Engineering and Automation Determination of the Bending

More information

Pitch Circle. Problem 8.17

Pitch Circle. Problem 8.17 Follower Travel, mm Displacement, cm 1.5 1.0 0.5 0 1 3 4 5 6 7 8 9 10 Cam Rotation Angle 90 Pitch Circle 0 1 3 4 5 10 9 8 7 6 Problem 8.17 Construct the profile of a disk cam that follows the displacement

More information

CALCULATION METOD FOR THE EVALUATION OF INFLUENCE OF TOOTH ENGAGAMENT PARITY IN CONICAL SPUR GEAR ON CONTACT PRESSURES, WEAR AND DURABILITY

CALCULATION METOD FOR THE EVALUATION OF INFLUENCE OF TOOTH ENGAGAMENT PARITY IN CONICAL SPUR GEAR ON CONTACT PRESSURES, WEAR AND DURABILITY Applied Computer Science, vol., no. 3, pp. 74 84 Submitted: 06-07-0 Revised: 06-09-05 Accepted: 06-09-9 involute conical gear, tooth correction, contact and tribocontact pressures, tooth wear, gear durability

More information

Computerized Generation and Simulation of Meshing and Contact of New Type of Novikov-Wildhaber Helical Gears

Computerized Generation and Simulation of Meshing and Contact of New Type of Novikov-Wildhaber Helical Gears NASA/CR 2000-209415 ARL CR 428 U.S. ARMY RESEARCH LABORATORY Computerized Generation and Simulation of Meshing and Contact of New Type of Novikov-Wildhaber Helical Gears Faydor L. Litvin, Pin-Hao Feng,

More information

ABSTRACT. Keywords: Highest Point of Single Tooth Contact (HPSTC), Finite Element Method (FEM)

ABSTRACT. Keywords: Highest Point of Single Tooth Contact (HPSTC), Finite Element Method (FEM) American Journal of Engineering and Applied Sciences, 2012, 5 (2), 205-216 ISSN: 1941-7020 2012 Science Publication doi:10.3844/ajeassp.2012.205.216 Published Online 5 (2) 2012 (http://www.thescipub.com/ajeas.toc)

More information

Unit III Introduction sine bar Sine bar Working principle of sine bar

Unit III Introduction sine bar Sine bar Working principle of sine bar Unit III Introduction Angular measurement is an important element in measuring. It involves the measurement of angles of tapers and similar surfaces. In angular measurements, two types of angle measuring

More information

Rating of Asymmetric Tooth Gears

Rating of Asymmetric Tooth Gears TECHNICAL Rating of Asymmetric Tooth Gears Alex L. Kapelevich and Yuriy V. Shekhtman Asymmetric gears and their rating are not described by existing gear design standards. Presented is a rating approach

More information

Warm up: Unit circle Fill in the exact values for quadrant 1 reference angles.

Warm up: Unit circle Fill in the exact values for quadrant 1 reference angles. Name: 4-1 Unit Circle and Exact Values Learning Goals: 1) How can we use the unit circle to find the value of sine, cosine, and tangent? 2) Given a point on a circle and the radius of the circle, how can

More information

American Journal of Engineering and Applied Sciences. Introduction. Case Reports. Αntonios D. Tsolakis, Konstantinos G. Raptis and Maria D.

American Journal of Engineering and Applied Sciences. Introduction. Case Reports. Αntonios D. Tsolakis, Konstantinos G. Raptis and Maria D. American Journal of Engineering and Applied Sciences Case Reports Bending Stress and Deflection Analysis of Meshing Spur Gear Tooth during the Single Tooth Contact with Finite Element Method and Determination

More information

Gears Calculation هندبوک مهندسی نرم افزار. انجمن اینونتور ایران Autodesk Inventor. Tel: &

Gears Calculation هندبوک مهندسی نرم افزار. انجمن اینونتور ایران   Autodesk Inventor. Tel: & Autodesk Inventor Engineer s Handbook هندبوک مهندسی نرم افزار Autodesk Inventor انجمن اینونتور ایران www.irinventor.com Email: irinventor@chmail.ir irinventor@hotmail.com Tel: 09352191813 & Gears Calculation

More information

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 14 Spur and Helical Gears 1 2 The Lewis Bending Equation Equation to estimate bending stress in gear teeth in which tooth form entered into the formulation: 3 The Lewis Bending Equation Assume

More information

Practical Information on Gears

Practical Information on Gears Practical Information on Gears This chapter provides fundamental theoretical and practical information about gearing. It also introduces various gear-related standards as an aid for the designer who is

More information

On Spatial Involute Gearing

On Spatial Involute Gearing 6 th International Conference on Applied Informatics Eger, Hungary, January 27 3, 2004. On Spatial Involute Gearing Hellmuth Stachel Institute of Discrete Mathematics and Geometry, Vienna University of

More information

Automated Spur Gear Designing Using MATLAB

Automated Spur Gear Designing Using MATLAB Kalpa Publications in Engineering Volume 1, 2017, Pages 493 498 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Engineering Automated

More information

PRECISION GEARS Spur Gears

PRECISION GEARS Spur Gears Spur Gears Description Symbol Unit Equation Normal Module m n Transverse Module m t = m n Normal Pressure Angle a n degrees = 2 Transverse Pressure Angle a t degrees = a n Number of Teeth z Profile Shift

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

EFFECTS OF ADDENDUM MODIFICATION ON ROOT STRESS IN INVOLUTE SPUR GEARS

EFFECTS OF ADDENDUM MODIFICATION ON ROOT STRESS IN INVOLUTE SPUR GEARS EFFECTS OF ADDENDUM MODIFICATION ON ROOT STRESS IN INVOLUTE SPUR GEARS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Mechanical Engineering By

More information

Theoretical Modeling Approaches to Spur Gear Strength Analysis by FEM Jianrong Zhang a, Shuangxue Fu b

Theoretical Modeling Approaches to Spur Gear Strength Analysis by FEM Jianrong Zhang a, Shuangxue Fu b 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) Theoretical Modeling Approaches to Spur Gear Strength Analysis by FEM Jianrong Zhang a, Shuangxue Fu b Guangzhou

More information

g Centroid { s } G. 3) How do your geometric calculations compare to boundary integral results? i 0 deg 30 deg 90 deg -60 deg

g Centroid { s } G. 3) How do your geometric calculations compare to boundary integral results? i 0 deg 30 deg 90 deg -60 deg 1) Use the full size image of link 3 for the web cutter provided below to calculate mass, centroid location and centroidal polar mass moment of inertia using classical geometric methods. Provide { s }

More information

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as

More information

Research Article Investigations of Dynamic Behaviors of Face Gear Drives Associated with Pinion Dedendum Fatigue Cracks

Research Article Investigations of Dynamic Behaviors of Face Gear Drives Associated with Pinion Dedendum Fatigue Cracks Shock and Vibration Volume 26, Article ID 37386, pages http://dx.doi.org/.55/26/37386 Research Article Investigations of Dynamic Behaviors of Face Gear Drives Associated with Dedendum Fatigue Cracks Zhengminqing

More information

ENGR 1100 Introduction to Mechanical Engineering

ENGR 1100 Introduction to Mechanical Engineering ENGR 1100 Introduction to Mechanical Engineering Mech. Engineering Objectives Newton s Laws of Motion Free Body Diagram Transmissibility Forces and Moments as vectors Parallel Vectors (addition/subtraction)

More information

ON JACK PHILLIP'S SPATIAL INVOLUTE GEARING

ON JACK PHILLIP'S SPATIAL INVOLUTE GEARING The th International Conference on Geometry and Graphics, -5 August, 004, Guangzhou, China ON JACK PHILLIP'S SPATIAL INVOLUTE GEARING Hellmuth STACHEL Vienna University of Technology, Vienna, AUSTRIA ABSTRACT

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 04.09.2014 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Friction of Polymer/Steel Gear Pairs

Friction of Polymer/Steel Gear Pairs Friction of Polymer/Steel Gear Pairs Róbert KERESZTES, László ZSIDAI, Gábor KALÁCSKA, Mátyás ANDÓ and Rajmund LEFÁNTI Department of Maintenance of Machinery, Institute for Mechanical Engineering Technology

More information

Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere. Lecture 26 Measurement of Gear Elements

Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere. Lecture 26 Measurement of Gear Elements Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere Lecture 26 Measurement of Gear Elements (Refer Slide Time: 00:19) (Refer Slide Time: 00:28) I welcome

More information

Study of Circular and Elliptical Holes as a Stress Relieving Feature in Spur Gear

Study of Circular and Elliptical Holes as a Stress Relieving Feature in Spur Gear Study of Circular and Elliptical Holes as a Stress Relieving Feature in Spur Gear Prof. S.B.Naik 1, Mr. Sujit R. Gavhane 2 Asst. Prof. Department of Mechanical Engineering, Walchand Institute of Technology,

More information

How to rotate a vector using a rotation matrix

How to rotate a vector using a rotation matrix How to rotate a vector using a rotation matrix One of the most useful operations in computer graphics is the rotation of a vector using a rotation matrix. I want to introduce the underlying idea of the

More information

P R E C I S I O N G E A R S Spur Gears

P R E C I S I O N G E A R S Spur Gears Spur Gears Description Symbol Unit Equation Normal Module m n Transverse Module m t = m n Normal Pressure Angle α n degrees = 2 Transverse Pressure Angle α t degrees = α n Number of Teeth z Profile Shift

More information

KINESIOLOGY PT617 Moment of Force and Rotation Homework Solution

KINESIOLOGY PT617 Moment of Force and Rotation Homework Solution KINESIOLOGY PT617 Moment of Force and Rotation Homework Solution 1. Muscle force F = 25 N has an insertion at I, θ= 30, and the distance between insertion and joint center C is d = 0.2 m. Sketch a diagram

More information

Designing geared 3D twisty puzzles (on the example of Gear Pyraminx) Timur Evbatyrov, Jan 2012

Designing geared 3D twisty puzzles (on the example of Gear Pyraminx) Timur Evbatyrov, Jan 2012 Designing geared 3D twisty puzzles (on the example of Gear Pyraminx) Timur Evbatyrov, Jan 2012 Introduction In this tutorial I ll demonstrate you my own method of designing geared 3D twisty puzzles on

More information

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp Polar Coordinates Acoordinatesystemusesapairofnumberstorepresentapointontheplane. We are familiar with the Cartesian or rectangular coordinate system, (x, y). It is not always the most convenient system

More information

INFLUENCE OF THE FRICTION ON THE CYCLOIDAL SPEED REDUCER EFFICIENCY

INFLUENCE OF THE FRICTION ON THE CYCLOIDAL SPEED REDUCER EFFICIENCY Journal of the Balkan Tribological Association Vol. 8, No, 7 7 (0) INFLUENCE OF THE FRICTION ON THE CYCLOIDAL SPEED REDUCER EFFICIENCY Friction in cycloidal speed reducers M. BLAGOJEVIc a *, M. KOcIc b,

More information

Master of Intelligent Systems - French-Czech Double Diploma. Hough transform

Master of Intelligent Systems - French-Czech Double Diploma. Hough transform Hough transform I- Introduction The Hough transform is used to isolate features of a particular shape within an image. Because it requires that the desired features be specified in some parametric form,

More information

Keywords: Brake Disks, Brake Drums, Gear Forces, Multiple Spindle Drilling Head, Pitch Circles, Thrust Force, Velocity Ratio.

Keywords: Brake Disks, Brake Drums, Gear Forces, Multiple Spindle Drilling Head, Pitch Circles, Thrust Force, Velocity Ratio. Theoretical Design and Analysis of A Semi- Automatic Multiple-Spindle Drilling Head (MSDH) For Mass Production Processes in Developing Countries Chukwumuanya, Emmanuel O*.(Okechukwuchukwumuanya@yahoo.com),

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU-534007 METROLOGY LABORATORY MANUAL III/IV B.TECH (Mechanical): II SEMESTER DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING METROLOGY

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 11.20.2013 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Robotics I. Classroom Test November 21, 2014

Robotics I. Classroom Test November 21, 2014 Robotics I Classroom Test November 21, 2014 Exercise 1 [6 points] In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of link 2 upper arm and is connected to the joint

More information

Homework. In GIS Fundamentals book, Chapter 2, exact formula

Homework. In GIS Fundamentals book, Chapter 2, exact formula Homework In GIS Fundamentals book, Chapter 2, exact formula Homework 2) Use the spherical triangles method to calculate the ini7al azimuth from St. Paul to: Reykjavik t r o N e l o hp C a B Reykjavik

More information

Chapter 5 HW Solution

Chapter 5 HW Solution ME 314 Chapter 5 HW March 6, 1 Chapter 5 HW Solution Problem 5.: The reciprocating flat-face follower motion is a rise of in with SHM in 18 of cam rotation, followed by a return with SHM in the remaining

More information

2191. Dynamic analysis of torus involute gear including transient elastohydrodynamic effects

2191. Dynamic analysis of torus involute gear including transient elastohydrodynamic effects 2191. Dynamic analysis of torus involute gear including transient elastohydrodynamic effects Lei Liu 1, Jingwen Tan 2 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics

More information

REDESIGN OF FACE GEAR OF SPINNING MACHINE USING FINITE ELEMENT ANALYSIS

REDESIGN OF FACE GEAR OF SPINNING MACHINE USING FINITE ELEMENT ANALYSIS REDESIGN OF FACE GEAR OF SPINNING MACHINE USING FINITE ELEMENT ANALYSIS Rushikesh A Padwe 1, Prof.A.C.Gawande 2, Prof. Pallavi S. Sarode 3 1P.G. Student, D.M.I.E.T.R. Wardha, M.S. India, rushi.padwe@gmail.com,

More information

Objective Mathematics

Objective Mathematics Chapter No - ( Area Bounded by Curves ). Normal at (, ) is given by : y y. f ( ) or f ( ). Area d ()() 7 Square units. Area (8)() 6 dy. ( ) d y c or f ( ) c f () c f ( ) As shown in figure, point P is

More information

Optimum Number of Teeth for Span Measurement

Optimum Number of Teeth for Span Measurement Optimum Number of Teeth for Span Measurement by J.. R. Colbourne University of Alberta Edmonton, Alberta, Canada Abstract An expression is derived, giving the optimum number of teeth over which the span

More information

Design Analysis and Testing of a Gear Pump

Design Analysis and Testing of a Gear Pump Research Inventy: International Journal Of Engineering And Science Vol., Issue (May 01), PP 01-07 Issn(e): 78-471, Issn(p):19-48, Www.Researchinventy.Com Design Analysis and Testing of a Gear Pump E.A.P.

More information

Karlstads University Faculty of Technology and Science Physics. Rolling constraints. Author: Henrik Jackman. Classical mechanics

Karlstads University Faculty of Technology and Science Physics. Rolling constraints. Author: Henrik Jackman. Classical mechanics Karlstads University Faculty of Technology and Science Physics Rolling constraints Author: Henrik Jackman Classical mechanics 008-01-08 Introduction Rolling constraints are so called non-holonomic constraints.

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Investigations On Gear Tooth Surface And Bulk Temperatures Using ANSYS

Investigations On Gear Tooth Surface And Bulk Temperatures Using ANSYS Investigations On Gear Tooth Surface And Bulk Temperatures Using ANSYS P R Thyla PSG College of Technology, Coimbatore, INDIA R Rudramoorthy PSG College of Technology, Coimbatore, INDIA Abstract In gears,

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

Mathematical Fundamentals

Mathematical Fundamentals Mathematical Fundamentals Ming-Hwa Wang, Ph.D. COEN 148/290 Computer Graphics COEN 166/366 Artificial Intelligence COEN 396 Interactive Multimedia and Game Programming Department of Computer Engineering

More information

Gears Calculation هندبوک مهندسی نرم افزار. انجمن اینونتور ایران Autodesk Inventor. Tel: &

Gears Calculation هندبوک مهندسی نرم افزار. انجمن اینونتور ایران  Autodesk Inventor. Tel: & Autodesk Inventor Engineer s Handbook هندبوک مهندسی نرم افزار Autodesk Inventor انجمن اینونتور ایران www.irinventor.com Email: irinventor@chmail.ir irinventor@hotmail.com Tel: 09352191813 & Gears Calculation

More information

Innovative Systems Design and Engineering ISSN (Paper) ISSN (Online) Vol 3, No 6, 2012

Innovative Systems Design and Engineering ISSN (Paper) ISSN (Online) Vol 3, No 6, 2012 Analytical Solution of Bending Stress Equation for Symmetric and Asymmetric Involute Gear Teeth Shapes with and without Profile Correction Mohammad Qasim Abdullah* Abstract Department of Mechanical Engineering,

More information

Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis

Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis Engineering, 2013, 5, 268-276 http://dx.doi.org/10.4236/eng.2013.53037 Published Online March 2013 (http://www.scirp.org/journal/eng) Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis

More information

Physics 139 Relativity. Thomas Precession February 1998 G. F. SMOOT. Department ofphysics, University of California, Berkeley, USA 94720

Physics 139 Relativity. Thomas Precession February 1998 G. F. SMOOT. Department ofphysics, University of California, Berkeley, USA 94720 Physics 139 Relatiity Thomas Precession February 1998 G. F. SMOOT Department ofphysics, Uniersity of California, erkeley, USA 94720 1 Thomas Precession Thomas Precession is a kinematic eect discoered by

More information

Experimental Analysis of the Relative Motion of a Gear Pair under Rattle Conditions Induced by Multi-harmonic Excitation

Experimental Analysis of the Relative Motion of a Gear Pair under Rattle Conditions Induced by Multi-harmonic Excitation Proceedings of the World Congress on Engineering 5 Vol II WCE 5, July -, 5, London, U.K. Experimental Analysis of the Relative Motion of a Gear Pair under Rattle Conditions Induced by Multi-harmonic Excitation

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

e s 82-GT-246 Copyright 1982 by ASME

e s 82-GT-246 Copyright 1982 by ASME e s THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the

More information

ME Machine Design I. EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, September 30th, 2009

ME Machine Design I. EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, September 30th, 2009 ME - Machine Design I Fall Semester 009 Name Lab. Div. EXAM. OPEN BOOK AND CLOSED NOTES. Wednesday, September 0th, 009 Please use the blank paper provided for your solutions. Write on one side of the paper

More information

Program Compound Epicyclic Gear Design (Parallel Axis) Introduction

Program Compound Epicyclic Gear Design (Parallel Axis) Introduction Program 60-1162 Compound Epicyclic Gear Design (Parallel Axis) Introduction The compound epicyclic gear unit consists of a central external gear (sun gear) meshed with one or more external gears (sun planet

More information

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots Week 3: Wheeled Kinematics AMR - Paul Furgale Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Wheeled Kinematics 1 AMRx Flipped Classroom A Matlab exercise is coming later

More information

Method for Translating a Point in One Plane to Another Plane, Given a Set of Corresponding Control Points in Each Plane

Method for Translating a Point in One Plane to Another Plane, Given a Set of Corresponding Control Points in Each Plane Method for Translating a Point in One Plane to Another Plane, Given a Set of Corresponding Control Points in Each Plane Justin A. Parr q3ej7ejsjb@snkmail.com http://justinparrtech.com Version 1.0, 9/24/2016

More information

ILLINO PRODUCTION NOTE. University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007.

ILLINO PRODUCTION NOTE. University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. H ILLINO S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. UNIVERSITY OF ILLINOIS BULLETIN Vol. XXXIX

More information

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes Parametric Differentiation 11.6 Introduction Sometimes the equation of a curve is not be given in Cartesian form y f(x) but in parametric form: x h(t), y g(t). In this Section we see how to calculate the

More information

An Innovative Planetary Gear Reducer with Overcoming the Dead Point

An Innovative Planetary Gear Reducer with Overcoming the Dead Point Send Orders for Reprints toreprints@benthamscience.net 70 The Open Mechanical Engineering Journal, 2013, 7, 70-75 Open Access An Innovative Planetary Gear Reducer with Overcoming the Dead Point Feng Guan,

More information

Machine Elements: Design Project

Machine Elements: Design Project Machine Elements: Design Project Drag Chain Conveyor Matthew Gray, Michael McClain, Pete White, Kyle Gilliam, Alejandro Moncada and Matthew Gonzalez Executive Summary The logistics of many industries use

More information

The Big 50 Revision Guidelines for C3

The Big 50 Revision Guidelines for C3 The Big 50 Revision Guidelines for C3 If you can understand all of these you ll do very well 1. Know how to recognise linear algebraic factors, especially within The difference of two squares, in order

More information

A VISUAL APPROACH TO UNDERSTANDING COMPLEX FUNCTIONS

A VISUAL APPROACH TO UNDERSTANDING COMPLEX FUNCTIONS DOING PHYSICS WITH MATLAB http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm A VISUAL APPROACH TO UNDERSTANDING COMPLEX FUNCTIONS John Sims Biomedical Engineering Department Federal University of ABC

More information

A Design for the Pitch Curve of Noncircular Gears with Function Generation

A Design for the Pitch Curve of Noncircular Gears with Function Generation Proceedings of the International ulticonference of Engineers and Computer Scientists 008 Vol II IECS 008, 9- arch, 008, Hong Kong A Design for the Pitch Curve of Noncircular Gears with Function Generation

More information

Distances Among the Feuerbach Points

Distances Among the Feuerbach Points Forum Geometricorum Volume 16 016) 373 379 FORUM GEOM ISSN 153-1178 Distances mong the Feuerbach Points Sándor Nagydobai Kiss bstract We find simple formulas for the distances from the Feuerbach points

More information

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

Threshold of singularity formation in the semilinear wave equation

Threshold of singularity formation in the semilinear wave equation PHYSICAL REVIEW D 71, 044019 (2005) Threshold of singularity formation in the semilinear wave equation Steven L. Liebling Department of Physics, Long Island University-C.W. Post Campus, Brookville, New

More information

Rotational Mechanical Systems. Unit 2: Modeling in the Frequency Domain Part 6: Modeling Rotational Mechanical Systems

Rotational Mechanical Systems. Unit 2: Modeling in the Frequency Domain Part 6: Modeling Rotational Mechanical Systems Unit 2: Modeling in the Frequency Domain Part 6: Modeling Rotational mechanical systems are modelled in almost the same way as translational systems except that... We replace displacement, x(t) with angular

More information

Examination of finite element analysis and experimental results of quasi-statically loaded acetal copolymer gears

Examination of finite element analysis and experimental results of quasi-statically loaded acetal copolymer gears Examination of finite element analysis and experimental results of quasi-statically loaded acetal copolymer gears Paul Wyluda Ticona Summit, NJ 07901 Dan Wolf MSC Palo Alto, CA 94306 Abstract An elastic-plastic

More information

Optimisation of Effective Design Parameters for an Automotive Transmission Gearbox to Reduce Tooth Bending Stress

Optimisation of Effective Design Parameters for an Automotive Transmission Gearbox to Reduce Tooth Bending Stress Modern Mechanical Engineering, 2017, 7, 35-56 http://www.scirp.org/journal/mme ISSN Online: 2164-0181 ISSN Print: 2164-0165 Optimisation of Effective Design Parameters for an Automotive Transmission Gearbox

More information

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY ADITYA SILVER OAK INSTITUTE OF TECHNOLOGY

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY ADITYA SILVER OAK INSTITUTE OF TECHNOLOGY SUBJECT: ENGINEERING THERMODYNAMICS (2131905) (ME) DATE: 11-08-2017 TIME: 10:00 am to 11:30 am TOTAL MARKS: 40 Q.1 (a) Answer following questions in short/brief: 1. Energy of an isolated system is always

More information