Unit III Introduction sine bar Sine bar Working principle of sine bar

Size: px
Start display at page:

Download "Unit III Introduction sine bar Sine bar Working principle of sine bar"

Transcription

1 Unit III Introduction Angular measurement is an important element in measuring. It involves the measurement of angles of tapers and similar surfaces. In angular measurements, two types of angle measuring devices are used. They are Angle gauges corresponding to slip gauges. Divided scale corresponding to line standard. The most common instrument is sine bar. The main difference between linear and angular measurement is the no absolute standard is required for angular measurement. Sine bar Sine bar are always used along with slip gauges as a device for the measurement of angles very precisely. They are used to: Measure angle very accurately. Locate the work piece to given angle with very high precision. Sine bars are made from high carbon, high chromium, and corrosion resistant steel. These materials are highly hardened, ground and stabilised. In sine bar, two cylinders of equal diameter are attached at the ends with its axes mutually parallel to each other. Two cylinders are also equal distance from the upper surface of the sine bar. Mostly the distance between the axes of two cylinders is 100mm, 200mm or 300mm. The working surfaces of the rollers are finished to 0.2µm Ra value. The cylindrical holes are provided to reduce the weight of the sine bar and alsoto facilitate handling. Working principle of sine bar The working of sine bar is based on trigonometry principle. To measure the angle of the specimen, one roller of the sine bar is placed on the surface plate and another one roller is placed over the surface of slip gauges. Now, h be the height of the slip gauges and L be the distance between roller canters, then the angle is calculated as sin h L 1 h sin L 1

2 Principle of Sine bar Accuracy requirements of sine bar: The accuracy of sine bar depends on the following constructional features: The rollers must have equal diameter and equal cylinder. The rollers should be placed parallel to each other and also to upper face. The accurate center to center of rollers must be known. The top surface of the bar must be flat with high degree of accuracy. Use of sine bar Sine bar are used for I. Locating any work to a given angle. II. To check unknown angle. III. Measurement of unknown angles for heavier components IV. Measurement of unknown angles of heavier components with more accurate readings. I. Locating any work to a given angle To set at a given angle, first h of the slip gauge is calculated by the formula sin =h/l. After calculating the height h,the required height h is made by suitable slip gauge combinations. After this, one of the roller is placed on the surface plate and other on is placed on the top of the slip gauges combination. II. To check unknown angle : 2

3 Before checking the unknown angle of the specimen, the angle of the given specimen is found approximately by bevel protector. Then the sine bar is set at angle of and clamped on the angle plate. Now the work piece is placed on the sine bar and the dial indicator is set at one end of the work and it s moved across the work piece and deviations are noted. Slip gauge is adjusted so that the dial indicator reads zero throughout the work piece. III. Measurement of unknown angles for heavier components : For heavy components, the sine bar is mounted on the work piece at inverted position (i.e. the rollers are placed in such a way that the rollers should face upward). The heights of the rollers are measured on the vernier height gauge. The dial test indicator is mounted on the vernier height gauges to ensure constant measuring pressure. Now, the sine angle is calculated as the difference between two vernier height gauge readings divided by center distance of sine bar rollers. h h sin L 1 2 Limitations of sine bars Sine bars are fairly reliable for angles less than It is physically difficult to hold in position. Slight errors in sine bar cause larger angular error. The size of parts to be inspected by sine bar is limited. Sources of error in sine bar The different sources of errors are listed below: Error in distance between roller centers. Error in slip gauge combination. 3

4 Error in equality of size of rollers and cylindricity. Error in flatness of the upper surface of sine bar Error in parallelism of roller axes with each other. Bevel protractors Bevel protractors are nothing but angular measuring instruments. Types of bevel protractors: The different types of bevel protractors used are: 1) Vernier bevel protractor 2) Universal protractor 3) Optical protractor Vernier bevel protractor: Working principle: A vernier bevel protractor is attached with acute angle attachment. The body is designed its back is flat and no projections beyond its back. The base plate is attached to the main body and an adjustable blade is attached to the circular plate containing vernier scale. The main scale is graduated in degrees from 0 to 90 in both the directions. The adjustable can be made to rotate freely about the center of the main scale and it can be locked at any position. For measuring acute angle, a special attachment is provided. The base plate is made fiat for measuring angles and can be moved throughout its length. The ends of the blade are beveled at angles of 45 and 60. The main scale is graduated as one main scale division is 1 and vernier is graduated into 12 divisions on each side of zero. Therefore the least count is calculated as Least count = One main scale division/no. of on vernier scale =1 0 /12 4

5 =1/12*60 =5 minutes Thus, the bevel protractor can be used to measure to an accuracy of 5 minutes. Optical bevel Protractor Stock The working edge of the stock is about 90 mm in length and 7 mm thick. It is very essential that the working edge of the stock be perfectly straight. Blade It can be moved along the turret throughout its length and can also be reversed. It is about 150 or 300 mm long, 3 mm wide and 2 mm thick and ends bevelled at angles of 45 and 60 within the accuracy of 2 minutes of arc. It can be clamped in any position. The values are obtained by means of an optical magnifying system. This optical magnifying system is attached with the bevel protractor itself separate arrangement is provided for adjusting the focus of the system for the normal variation of eyesight. The main and vernier scale are arranged always in focus of the optical system. Applications of bevel protractor The bevel protractor can be used in the following applications. 1. For checking a V block: Checking V block 2. For checking acute angle 5

6 Auto- collimator: Measuring acute angle An autocollimator is an optical instrument for non-contact measurement of angles. It s used for the measurement of small angular differences, changes or deflection, plane surface inspection etc. For small angular measurements, autocollimator provides a very sensitive and accurate approach. An auto-collimator is essentially an infinity telescope and a collimator combined into one instrument. Basic principle: Note: Principle of Auto-collimator If a light source is placed in the flows of a collimating lens, it is projected as a parallel beam of light. If this beam is made to strike a plane reflector, kept normal to the optical axis, it is reflected back along its own path and is brought to the same focus. If the reflector is tilted through a small angle. Then the parallel beam is deflected twice the angle and is brought to focus in the same plane as the light source. The distance of focus from the object is given by The position of the final image does not depend upon the distance of reflector from the lens. i.e. distance x is independent of the position of reflection from the lens. But if the reflector is moved too much back then reflected rays would completely miss the lens and no image will be formed. Working of auto-collimator: There are three main parts in auto-collimator. 6

7 1. Micrometer microscope. 2. Lighting unit and 3. Collimating lens. Fig. Shows a line diagram of a modern auto-collimator. A target graticule is positioned perpendicular to the optical axis. When the target graticule is illuminated by a lamp, rays of light diverging from the intersection point reach the objective lens via beam splitter. From objective, the light rays are projected as a parallel rays to the reflector. A flat reflector placed in front of the objective and exactly normal to the optical axis reflects the parallel rays of light back along their original paths. They are then brought to the target graticule and exactly coincide with its intersection. A portion of the returned light passes through the beam splitter and is visible through the eyepiece. If the reflector is tilted through a small angle ( ), the reflected beam will be changed its path at twice the angle. It can also be brought to target graticule but linearly displaced from the actual target by the amount 2 *f. Linear displacement of the graticule image in the plane tilted angle of eyepiece is directly proportional to the reflector. This can be measured by optical micrometer. The photoelectric auto- collimator is particularly suitable for calibrating polygons, for checking angular indexing and for checking small linear displacements. Applications of auto-collimator Auto-collimators are used for 7

8 Measuring the difference in height of length standards. Checking the flatness and straightness of surfaces. Checking squareness of two surfaces. Precise angular indexing in conjunction with polygons. Checking alignment or parallelism. Measurement of small linear dimensions. For machine tool adjustment testing. Angle Gauges Angle gauges is a hardened steel block approximately 75mm long and 1mm wide which lapped flat working faces lying at a very precise angle to each other. It can be constructed at any angle from 0 to 360 degree by suitable combination of gauges. Each angle gauge is marked with V which indicates the direction of included angle. To add the angles, all V marks should be in same line and to subtract, V marks should be in opposite direction. Total angle = (Not to scale) Uses of angle gauges (i) (ii) Direct use of angle gauges to measure the angle in the die insert Use of angle gauges with square plate. CLINOMETER A Clinometer is a spirit level mounted on a rotator member. The angle of inclination of the rotary member relative to its base can be measured by a circular scale. There are various types of Clinometer. Vernier Clinometer Micrometer Clinometer Dial Clinometer Optical Clinometer Vernier Clinometer: It consists of a spirit level mounted on a rotator member carried in housing. One face of the housing forms the base of the instrument. There is a circular scale on the housing. 8

9 The angle of inclination of the rotary member relative to the base be measured by a circular scale. The scale may cover the whole circle or only part of it. Clinometers are generally used to determine the angle included between two adjacent faces of a work piece. The base of the instrument is placed on one of the surfaces and rotary member is adjusted till zero reading of the bubbles is obtained. The angle of rotation is then noted on the circular scale against an index. The instrument is then placed on the other surface and the reading is taken in the similar manner. Micrometer Clinometer: In this type spirit level is attached at one end of the barrel of a micrometer. The other end of the spirit level is hinged on the base. The base is placed on the surface whose inclination is to be measured. The micrometer is adjusted till the level is horizontal. This type of clinometer is used for measuring small angles. Dial Clinometer: The dial clinometer is similar in principle to the bevel protractor. The spirit level is attached to a gear and a dial gauge. The whole angle can be observed through an opening in the dial on the circular scale on the gear and fraction of the angle can be read on the dial gauge. 9

10 Uses of clinometer: It is used for checking included angles, relief angles as well as angular face on larger cutting tools and milling cutter inserts. It also used for setting inclinable tables on jig boring machines and angular work on grinding machines,etc. Screw Thread Measurement Screw threads are used to transmit the power and motion, and also used to fasten two components with the help of nuts, bolts and studs. There is a large variety of screw threads varying in their form, by included angle, head angle, helix angle etc. The screw threads are mainly classified into 1) External thread 2) Internal thread. External Thread Internal Thread Screw thread Terminology Screw thread: It is a continuous helical groove of specified cross-section produced on the external or internal surface. Crest: It is top surface joining the two sides of thread. 10

11 Flank: Surface between crest and root. Root: The bottom of the groove between the two flanks of the thread. Lead: Lead = number starts x pitch Pitch: The distance measured parallel to the axis from a point on a thread to the corresponding next point. Helix angle: The helix is the angle made by the helix of the thread at the pitch line with the axis. Flank angle: Angle made by the flank of a thread with the perpendicular to the thread axis. Depth of thread: The distance between the crest and root of the thread. Included angle: Angle included between the flanks of a thread measured in an axial plane. Major diameter: Diameter of an imaginary co-axial cylinder which would touch the crests of external or internal thread. Minor diameter (Root diameter or Core diameter): Diameter of an imaginary co-axial cylinder which would touch the roots of an external thread. Addendum Radial distance between the major and pitch cylinders For external thread. Radial distance between the minor and pitch cylinder For internal thread. Dedendum: Radial distance between the pitch and minor cylinder for external thread. Radial distance between the major and pitch cylinders for internal thread. Measurement of various elements of thread To find out the accuracy of a screw thread it will be necessary to measure the following: 1) Major diameter. 2) Minor diameter. 3) Effective or Pitch diameter. 4) Pitch 5) Thread angle and form. 1. Measurement of major diameter: The instruments which are used to find the major diameter are by Ordinary micrometre Bench micrometre. Ordinary micrometre: The ordinary micrometre is quite suitable for measuring the external major diameter. It is first adjusted for appropriate cylindrical size (S) having the same diameter (approximately).this process is known as gauge setting. After taking this reading R the micrometre is set on the major diameter of the thread, and the new reading is R2 Then the major diameter, D =S± (R 1 R 2 ) 11

12 Where, S =Size of setting Gauge. R 1 = Micrometre reading over setting gauge. R 2 =Micrometre Reading Over thread. Bench micrometre: For getting the greater accuracy the bench micrometre is used for measuring the major diameter. In this process the variation in measuring Pressure, pitch errors are being neglected.. The fiducial indicator is used to ensure all the measurements are made at same pressure. The instrument has a micrometre head with a vernier scale to read the accuracy of 0.002mm. Calibrated setting cylinder having the same diameter as the major diameter of the thread to be measured is used as setting standard. After setting the standard, the setting cylinder is held between the anvils and the reading is taken. Then the Minor diameter, D =S± (D 2 D 1 ) Where, S =Diameter of setting Gauge. R 1 = Micrometre reading on screw thread. R 2 =Micrometre Reading on setting cylinder. Measurement of minor diameter: The minor diameter is measured by a comparative method by using floating carriage diameter measuring machine and small V pieces which make contact with the root of the thread. V piece are made up of hardened steel These Pieces are made in several sizes, having radii at the edges. The floating carriage diameter-measuring machine is a bench micrometer mounted on a carriage. 12

13 The thread work piece is mounted between the centres of the instrument and the V pieces are placed on the each of the work piece and then reading is noted. After taking this reading the work piece is then replaced by standard reference cylindrical setting gauge The minor diameter of the thread = D± (R2 R 1 ) Where, D=Diameter of cylinder gauge. R 2 = Micrometer reading on the thread work piece R 1 =Micrometer reading on cylindrical gauge. Gear Measurements The most commonly used forms of gear teeth are in volute & cycloid. It is used to transmit power from one shaft to another shaft. The various types of commonly used gears are: Spur gear: it is a cycloid gear whose tooth traces is straight line. Helical gear: it is a cylindrical gear whose tooth traces is straight helices. Spiral gear: a gear whose tooth traces is curved line. Straight bevel gear: a gear whose tooth traces is a straight-line generator of cone. It is conical in form in operating and intersecting axes usually at angles. Worm gear pair: the worm and mating worm wheel have their axes non-parallel and non-intersecting Gear terminology: Addendum circle It is a circle, which passes through the tip of the tooth. Dedendum circle It is a circle, which passes through the root of the tooth. Tooth thickness It is the thickness of the tooth measured along the pitch circle. Space width 13

14 It is the distance between two adjacent teeth measured along the pitch circle. Circular pitch It is the distance from a point on one tooth to a similar point on the adjacent tooth measured along the pitch circle. It is also the ratio of the circumference of the pitch circle to the number of teeth. Face width It is the length of the tooth measured parallel to the axis of the gear. Addendum It is the radial height of the tooth between the pitch circle and addendum circle. Dedendum It is the radial height of the tooth between the pitch circle and dedendum circle. Face It is the working area of the tooth between addendum circle and pitch circle. Flank It is the working area of the tooth between pitch circle and dedendum circle. Module (m) It is the diameter measured per tooth of the gear. It is always represented in mm. Diametral pitch (Pd) It is a reciprocal of module of the number of teeth per mm of diameter. Pressure angle It is the angle between the line of contact and the common tangent at the pitchpoint. Clearance It is the difference between the dedendum and addendum. Backlash It is the difference between the space width and tooth thickness. Gear ratio (I) 14

15 It is the ratio of the gear diameter to the pinion diameter or the ratio of the pinion speed to the gear speed or ratio of number of teeth on gear to that on pinion. Measurement of Gear tooth thickness. The tooth thickness is generally measured at pitch circle and is therefore, the pitch line thickness of tooth. It may be mentioned that the tooth thickness is defined as the length of an arc, which is difficult to measure directly. In most of the cases, it is sufficient to measure the chordal thickness i.e., the chord joining the intersection of the tooth profile with the pitch circle. Also the difference between chordal tooth thickness and circular tooth thickness is very small for gear of small pitch. The thickness measurement is the most important measurement because most of the gears manufactured may not undergo checking of all other parameters, but thickness measurement is a must for all gears. There are various methods of measuring the gear tooth thickness. Gear tooth vernier calliper (Chordal thickness method), Constant chord method (gear tooth micrometre), Base tangent method, Measurement by dimension over pins. Gear Tooth Calliper. The tooth thickness can be very conveniently measured by a gear tooth vernier. The tooth thickness is generally measured at pitch circle, and the instrument is capable of measuring the tooth thickness at a specified position on the tooth. The gear tooth vernier consists of two vernier scales and two perpendicular arms. In two arms, one arm is used to measure the thickness and other arm is used to measure the depth. Vernier gear tooth calliper Horizontal vernier scale reading gives chordal thickness (W) and vertical scale gives the chordal addendum. The thickness of a tooth at pitch line and the addendum is measured by an adjustable tongue, each of which is adjusted independently by adjusting screw on graduated bars. 15

16 This method is simple and inexpensive. However it needs different setting for a variation in number of teeth for a given pitch and accuracy is limited by the least count of instrument. Since the wear during use is concentrated on the two jaws, the calliper has to be calibrated at regular intervals to maintain the accuracy of measurement. Disadvantage of tooth vernier method: Not closer to 0.05mm Two vernier readings Measurement is done by edge of measuring jaw and not by face. Base tangent method In this method, the span of a convenient number of teeth is measured with the help of the tangent comparator. The measurement is done by using micrometre with anvils. There are two anvils used in this method. David brown tangent comparator One is fixed and another one is movable and micrometre on moving anvil has slightly made either side of the setting. The distance for S no of teeth are calculated and set with the help of slip gauges. The distance W theoretical and actual is verified for any difference. PARKINSON GEAR TESTER Working principle: The master gear is fixed on vertical spindle and the gear to be tested is fixed on similar spindle which is mounted on a carriage. The carriage which can slide both side and these gears are maintained in mesh by spring pressure. When the gears are rotated, the movement of sliding carriage is indicated by a dial indicator and these variations arc is measure of any irregularities in the car under test. Fig. The variation is recorded in a recorder which is fitted in the form of a waxed circular chart. 16

17 In the gears are fitted on the mandrels and are free to rotate without clearance and the left mandrel move along the table and the right mandrel move along the spring-loaded carriage. The two spindles can be adjusted so that the axial distance is equal and a scale is attached to one side and vernier to the other, this enables center distance to be measured to with in 0.025mm. If any errors in the tooth form when gears are in close mesh, pitch or concentricity of pitch line will cause a variation in center distance from this movement of carriage as indicated to the dial gauge will show the errors in the gear test. The recorder also fitted in the form of circular or rectangular chart and the errorsare recorded. Limitations of Parkinson gear tester: Accuracy±0.001mm Maximum gear diameter is 300mm Errors are not clearly identified: Measurement dependent upon the master gear. Low friction in the movement of the floating carriage. CO-ORDINATE MEASURING MACHINES Measuring machines are used for measurement of length over the outer surfaces of a length bar or any other long member. The member may be either rounded or flat and parallel. It is more useful and advantageous than vernier calipers, micrometer, screw gauges etc. The measuring machines are generally universal character and can be used for works of varied nature. The co-ordinate measuring machine is used for contact inspection of parts. When used for computer-integrated manufacturing these machines are controlled by 17

18 computer numerical control. Types of Measuring Machines Constructions of CMM i. Universal measuring machine. ii. Co-ordinate measuring machine. iii. Computer controlled co-ordinate measuring machine. Co-ordinate measuring machines are very useful for three dimensional measurements. These machines have movements in X-Y-Z co-ordinate, controlled and measured easily by using touch probes. These measurements can be made by positioning the probe by hand, or automatically in more expensive machines. Reasonable accuracies are 5 micro in. or 1 micrometer. The method these machines work on is measurement of the position of the probe using linear position sensors. Transducer is provided in tilt directions for giving digital display and senses positive and negative direction. Types of CMM (i) Cantilever type The cantilever type is very easy to load and unload, but mechanical error takes place because of sag or deflection in Y-axis. (ii) Bridge type Bridge type is more difficult to load but less sensitive to mechanical errors. (iii) Horizontal boring Mill type This is best suited for large heavy work pieces. Types of CMM 18

19 Working Principle CMM is used for measuring the distance between two holes. The work piece is clamped to the worktable and aligned for three measuring slides x, y and z. The measuring head provides a taper probe tip which is seated in first datum hole and the position of probe digital read out is set to zero. The probe is then moved to successive holes, the read out represent the co-ordinate part print hole location with respect to the datum hole. Automatic recording and data processing units are provided to carry out complex geometric and statistical analysis. Special co-ordinate measuring machines are provided both linear and rotary axes. This can measure various features of parts like cone, cylinder and hemisphere. The prime advantage of co-ordinate measuring machine is the quicker inspection and accurate measurements. Schematic Diagram Causes of Errors in CMM The table and probes are in imperfect alignment. The weight of the work piece may change the geometry of the guide ways and therefore, the work piece must not exceed maximum weight. Variation in temperature of CMM, specimen and measuring lab influence the uncertainly of measurements. APPLICATIONS Co-ordinate measuring machines find applications in automobile, machine tool, electronics, space and many other large companies. These machines are best suited for the test and inspection of test equipment, gauges and tools. For aircraft and space vehicles, hundred percent inspections is carried out by using CMM. CMM can be used for determining dimensional accuracy of the components. These are ideal for determination of shape and position, maximum metal condition, linkage of results etc. which cannot do in conventional machines. 19

20 Advantages The inspection rate is increased. Accuracy is more. A skill requirement of the operator is reduced. Reduction in calculating and recording time. Reduction in set up time. No need of separate go / no go gauges for each feature. Reduction of scrap and good part rejection. Reduction in off line analysis time. Disadvantages The lable and probe may not be in perfect alignment. The probe may have run out. The probe moving in Z-axis may have some perpendicular errors. Probe while moving in X and Y direction may not be square to each other. There may be errors in digital system. 20

LINEAR AND ANGULAR MEASUREMENTS

LINEAR AND ANGULAR MEASUREMENTS UNIT II LINEAR AND ANGULAR MEASUREMENTS UNIT-II 2. 1 CONTENTS 2.1 LINEAR MEASURING INSTRUMENTS 2.1.1 SCALES 2.1.2 CALIPERS 2.1.3 VERNIER CALIPERS 2.1.4 MICROMETERS 2.1.5 SLIP GAUGES 2.2 INTERFEROMETERS

More information

UNIT-II LINEAR AND ANGULAR MEASUREMENTS

UNIT-II LINEAR AND ANGULAR MEASUREMENTS UNIT-II LINEAR AND ANGULAR MEASUREMENTS MEASUREMENT OF ENGINEERING COMPONENTS: v Measurement systems are mainly used in industries for quality control management. v Often quality control engineers are

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU-534007 METROLOGY LABORATORY MANUAL III/IV B.TECH (Mechanical): II SEMESTER DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING METROLOGY

More information

Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere. Lecture 26 Measurement of Gear Elements

Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere. Lecture 26 Measurement of Gear Elements Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere Lecture 26 Measurement of Gear Elements (Refer Slide Time: 00:19) (Refer Slide Time: 00:28) I welcome

More information

Tutorials. 1. Autocollimator. Angle Dekkor. General

Tutorials. 1. Autocollimator. Angle Dekkor. General Tutorials 1. Autocollimator General An autocollimator is a Precise Optical Instrument for measurement of small angle deviations with very high sensitivity. Autocollimator is essentially an infinity telescope

More information

BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI. DEPARTMENT OF MECHANICAL ENGINEERING FAQ

BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI. DEPARTMENT OF MECHANICAL ENGINEERING FAQ BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI. DEPARTMENT OF MECHANICAL ENGINEERING FAQ Year/Sem : III/V Sub.Code/Title: ME6504- METROLOGY & MEASUREMENTS UNIT-I CONCEPT OF MEASUREMENT PART-A 1. Define

More information

Read the following BEFORE getting started:

Read the following BEFORE getting started: BASIC MEASUREMENTS Read the following BEFORE getting started: Ruler: A ruler, or rule, is an instrument used in geometry, technical drawing and engineering/ building to measure distances and/or to rule

More information

Seminar report Autocollimator Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical

Seminar report Autocollimator Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical A Seminar report On Autocollimator Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org Preface I

More information

Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere

Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere Metrology Prof. Dr Kanakuppi Sadashivappa Bapuji Institute of Engineering and Technology Davangere Lecture 32 Introduction To Comparators, Mechanical Comparators (Refer Slide Time: 00:15) I welcome you

More information

E.G.S. PILLAY ENGINEERING COLLEGE Nagapattinam DEPARTMENT OF MECHANICAL ENGINEERING V SEMESTER REGULATION 2013 CHENNAI

E.G.S. PILLAY ENGINEERING COLLEGE Nagapattinam DEPARTMENT OF MECHANICAL ENGINEERING V SEMESTER REGULATION 2013 CHENNAI E.G.S. PILLAY ENGINEERING COLLEGE Nagapattinam 611002. DEPARTMENT OF MECHANICAL ENGINEERING V SEMESTER REGULATION 2013 CHENNAI ME 6513- METROLOGY AND MEASUREMENTS LAB LAB MANUAL Prepared & Compiled by

More information

Auto collimator. Introduction. Objectives: Apparatus: Theory:

Auto collimator. Introduction. Objectives: Apparatus: Theory: Auto collimator Introduction An autocollimator is an optical instrument that is used to measure small angles with very high sensitivity. As such, the autocollimator has a wide variety of applications including

More information

DHANALAKSHMI COLLEGE OF ENGINEERING. (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai

DHANALAKSHMI COLLEGE OF ENGINEERING. (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai DHANALAKSHMI COLLEGE OF ENGINEERING (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai - 601 301 DEPARTMENT OF MECHANICAL ENGINEERING III YEAR V SEMESTER ME6504 ENGINEERING METROLOGY AND MEASUREMENTS QUESTION

More information

2 - Machining Fundamentals Measurement. Manufacturing Processes - 2, IE-352 Ahmed M El-Sherbeeny, PhD Spring-2015

2 - Machining Fundamentals Measurement. Manufacturing Processes - 2, IE-352 Ahmed M El-Sherbeeny, PhD Spring-2015 2 - Machining Fundamentals Measurement Manufacturing Processes - 2, IE-352 Ahmed M El-Sherbeeny, PhD Spring-2015 Learning Objectives Measure to 1/64 (.5 mm) with a steel rule Reading an Inch-based Vernier

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Title: MODEL ANSWER SUMMER 17 EXAMINATION Subject Code: 17530 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

Dhanalakshmi College of Engineering

Dhanalakshmi College of Engineering Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai 601 301 DEPARTMENT OF MECHANICAL ENGINEERING ME6513 METROLOGY AND MEASUREMENTS LABORATORY V SEMESTER - R 2013 LABORATORY MANUAL Name

More information

Course: Technology II Training course topic: Metrology

Course: Technology II Training course topic: Metrology Department of machining, process planning and metrology ver.2017-01 Following problems and tasks will be solved during the first two weeks of the training courses of Technology II. Detailed information

More information

Dhanalakshmi College of Engineering

Dhanalakshmi College of Engineering Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai 601 301 DEPARTMENT OF MECHANICAL ENGINEERING ME6513 METROLOGY AND MEASUREMENTS LABORATORY V SEMESTER - R 2013 LABORATORY MANUAL Name

More information

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Sub Code/Name: ME 1304/Engineering Metrology & Measurements Year/Sem :III/ V UNIT-I

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Sub Code/Name: ME 1304/Engineering Metrology & Measurements Year/Sem :III/ V UNIT-I DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub Code/Name: ME 1304/Engineering Metrology & Measurements Year/Sem :III/ V UNIT-I CONCEPT OF MEASUREMENT Part- A (2 Marks) 1. Differentiate between

More information

Engineering Metrology

Engineering Metrology Albaha University Faculty of Engineering Mechanical Engineering Department Engineering Metrology Lecture 04: Angular Measurements Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department

More information

Engineering Metrology and Instrumentation

Engineering Metrology and Instrumentation 3 types Mechanical Cleaning Physically disturb contaminants Electrolytic Cleaning Abrasive bubbles aid in contaminant removal Chemical Cleaning Solution Saponification Emulsification Dispersion Aggregation

More information

1 Measure various dimensions of component using Vernier caliper and dial type vernier caliper. d 3 d 1

1 Measure various dimensions of component using Vernier caliper and dial type vernier caliper. d 3 d 1 1 Measure various dimensions of component using Vernier caliper and dial type vernier caliper. 1. Note down the apparatus needed and draw component drawing and label parameters to measure. Vernier Caliper

More information

ME3192 METROLOGY AND INSTRUMENTATION LABORATORY

ME3192 METROLOGY AND INSTRUMENTATION LABORATORY ME19 METROLOGY AND INSTRUMENTATION LABORATORY FORMAT FOR TABULAR COLUMNS - CYCLE 1 Batch 1 Expt 1 FIT BETWEEN NUT AND BOLTS Table 1: Order of specimens for different parameters Sl No Parameters Order 1

More information

Metrology is science considering measurement

Metrology is science considering measurement Metrology is science considering measurement Categories: Scientific deals with organization and development of etalons and their conservation(highest level) Industrial deals with function of measuring

More information

+ + = integer (13-15) πm. z 2 z 2 θ 1. Fig Constrained Gear System Fig Constrained Gear System Containing a Rack

+ + = integer (13-15) πm. z 2 z 2 θ 1. Fig Constrained Gear System Fig Constrained Gear System Containing a Rack Figure 13-8 shows a constrained gear system in which a rack is meshed. The heavy line in Figure 13-8 corresponds to the belt in Figure 13-7. If the length of the belt cannot be evenly divided by circular

More information

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS MESA PROJECT Lesson of Mechanics and Machines done in the 5th A-M, 2012-2013 by the teacher Pietro Calicchio. THE GEARS To transmit high power are usually used gear wheels. In this case, the transmission

More information

TR CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF DIMENSIONAL METROLOGY

TR CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF DIMENSIONAL METROLOGY CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF DIMENSIONAL METROLOGY Approved By: Chief Executive Officer: Ron Josias Executive: Accreditation: Mpho Phaloane Revised By: Specialist Technical Committee

More information

DISCONTINUED PRECISION MEASURING FOWLER CALIPERS 1 - VERNIER CALIPERS 4 - ELECTRONIC CALIPERS

DISCONTINUED PRECISION MEASURING FOWLER CALIPERS 1 - VERNIER CALIPERS 4 - ELECTRONIC CALIPERS FOWLER CALIPERS 1 - VERNIER CALIPERS 4 - ELECTRONIC CALIPERS 52-058-016 Fine quality vernier calipers are constructed of stainless steel. 52-057-004 offers 3-way measurement to accuracy. 52-058-XXX series

More information

Measurement devices. Kalevi Aaltonen, Aalto University

Measurement devices. Kalevi Aaltonen, Aalto University Measurement devices Kalevi Aaltonen, Aalto University Production engineering measurements, measuring uncertainty, measurement accuracy = statistical mathematical methods The pyramid of accuracy Material

More information

Automatic Level Maintenance Manual SAL-XX W/ AIR DAMPENED COMPENSATOR

Automatic Level Maintenance Manual SAL-XX W/ AIR DAMPENED COMPENSATOR Automatic Level Maintenance Manual SAL-XX W/ AIR DAMPENED COMPENSATOR CST/Berger 2001 SAL 20/24/28/32 PAGE 1 REV. C 071803 Automatic Level Maintenance Manual User Calibration and Testing... 3 Circular

More information

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P Optics Spectrometer Prism spectrometer LD Physics Leaflets P5.7.1.1 Measuring the line spectra of inert gases and metal vapors using a prism spectrometer Objects of the experiment Adjusting the prism spectrometer.

More information

An accessory to the polarizing microscope for the optical examination of crystals.

An accessory to the polarizing microscope for the optical examination of crystals. 513 An accessory to the polarizing microscope for the optical examination of crystals. By H. C. G. VINCENT, M.A., F.G.S. Department of Geology, University of Cape Town. [Taken as read November 4, 1954.]

More information

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread.

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread. To find the downward force, along an inclined plane, acting on a roller due to gravity and study its relationship with the angle of inclination by plotting graph between force and sin θ. Inclined plane

More information

Introduction To Metrology

Introduction To Metrology Introduction To Metrology Meaning of Metrology Metrology is the science of measurement. Metrology may be divided depending upon the quantity to be measured like metrology of length, metrology of time.

More information

Toothed Gearing. 382 l Theory of Machines

Toothed Gearing. 382 l Theory of Machines 38 l Theory of Machines 1 Fea eatur tures es 1. Introduction.. Friction Wheels. 3. dvantages and Disadvantages of Gear Drive. 4. Classification of Toothed Wheels. 5. Terms Used in Gears. 6. Gear Materials.

More information

Helical Gears n A Textbook of Machine Design

Helical Gears n A Textbook of Machine Design 1066 n A Textbook of Machine Design C H A P T E R 9 Helical Gears 1. Introduction.. Terms used in Helical Gears. 3. Face Width of Helical Gears. 4. Formative or Equivalent Number of Teeth for Helical Gears.

More information

Wenzhou Tripod Instrument Manufacturing Co., Ltd.

Wenzhou Tripod Instrument Manufacturing Co., Ltd. Wenzhou Tripod Instrument Manufacturing Co., Ltd. Website: http://aliyiqi.en.alibaba.com http://www.wzydyq.com/english/ Phone: 86-577-57572515 57572515 Fax: 86-577-57572516 57572516 E-mail: aliyiqi@gmail.com

More information

Experiment #4: Optical Spectrometer and the Prism Deviation

Experiment #4: Optical Spectrometer and the Prism Deviation Experiment #4: Optical Spectrometer and the Prism Deviation Carl Adams October 2, 2011 1 Purpose In the first part of this lab you will set up and become familiar with an optical spectrometer. In the second

More information

NEW STANDARD SEXTANT OF THE U. S. NAVY

NEW STANDARD SEXTANT OF THE U. S. NAVY NEW STANDARD SEXTANT OF THE U. S. NAVY Director of the United States of America Hydrographic Office has sent to the International Hydrographic Bureau the following data relating to the new Standard Sextant

More information

Fig. 6.1 Plate or disk cam.

Fig. 6.1 Plate or disk cam. CAMS INTRODUCTION A cam is a mechanical device used to transmit motion to a follower by direct contact. The driver is called the cam and the driven member is called the follower. In a cam follower pair,

More information

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra Ph 3455/MSE 3255 Experiment 2: Atomic Spectra Background Reading: Tipler, Llewellyn pp. 163-165 Apparatus: Spectrometer, sodium lamp, hydrogen lamp, mercury lamp, diffraction grating, watchmaker eyeglass,

More information

EXPERIMENT NO.5 Measurement of Screw Thread using Floating Carriage Micrometer

EXPERIMENT NO.5 Measurement of Screw Thread using Floating Carriage Micrometer EXPERIMENT NO.5 Measurement of Screw Thread using AIM:To measure the Major, Minor and Effective diameter of external parallel screw threads using. APPARATUS: EDMM-100CL, Prism (A to D), Wire (1 to 4mm),

More information

AE302,ME302,DAE14,DME14

AE302,ME302,DAE14,DME14 AE302,ME302,DAE14,DME14 III SEMESTER DIPLOMA EXAMINATION, JANUARY-2013 MANUFACTURING TECHNOLOGY-I Time: 3 Hours Max. Marks: 75 GROUP A : Answer any three questions. (Question No. 1 is compulsory) Q.1 What

More information

Uncertainty Analysis of Experimental Data and Dimensional Measurements

Uncertainty Analysis of Experimental Data and Dimensional Measurements Uncertainty Analysis of Experimental Data and Dimensional Measurements Introduction The primary objective of this experiment is to introduce analysis of measurement uncertainty and experimental error.

More information

Height Master Page 343. Check Master Page 347. Calibration Tools Page 352

Height Master Page 343. Check Master Page 347. Calibration Tools Page 352 Calibration Instruments Height Master Page 343 Check Master Page 347 Calibration Tools Page 352 342 Digital Height Master Functions ZERO/ABS DATA/HOLD Auto Power OFF after 20 min. non use Low voltage alarm

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines and Guidelines Page 1 of 12 22 Table of Contents TUPURPOSE...UT2 TUWORK INSTRUCTION UT2 TU1 TU2 TU3 Introduction.2 Subject and Condition of Calibration...2 TU2.1UT TUSubject and Main Tools of Calibration...UT2

More information

FUNDAMENTALS OF DIMENSIONAL METROLOGY

FUNDAMENTALS OF DIMENSIONAL METROLOGY FUNDAMENTALS OF DIMENSIONAL METROLOGY CEJohansson Irvine, California SUB Gfittingen 7 215 940 806 Mesa Community College Mesa, Arizona CONTENTS ASUREMENT AND METROLOGY 1 1-1 Measurement as the Language

More information

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and

More information

CHAPTER 6. Quality Assurance of Axial Mis-alignment (Bend and Twist) of Connecting Rod

CHAPTER 6. Quality Assurance of Axial Mis-alignment (Bend and Twist) of Connecting Rod Theoretical Background CHAPTER 6 Quality Assurance of Axial Mis-alignment (Bend and Twist) of Connecting Rod 6.1 Introduction The connecting rod is the intermediate member between piston and crankshaft.

More information

1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg

1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg 1. What would be the value of F1 to balance the system if F2=20N? F2 5cm 20cm F1 (a) 3 N (b) 5 N (c) 4N (d) None of the above 2. The stress in a wire of diameter 2 mm, if a load of 100 gram is applied

More information

Laboratory Manual Physics_1. Index of refraction for solids

Laboratory Manual Physics_1. Index of refraction for solids AGH University of Science and Technology in Cracow Department of Electronics Laboratory Manual Physics_ Title: 009 r. Index of refraction for solids Experiment No. 9 . Goal To determine the index of refraction

More information

Winmeen Tnpsc Group 1 & 2 Study Materials

Winmeen Tnpsc Group 1 & 2 Study Materials 5. Measurement and Measuring Instrument 1. What was the writing of Claudius Ptolemy? He wrote that the moon, the sun and all the planets around the Earth in an almost circular path. 2. Who was the first

More information

Surveying Prof. Bharat Lohani Indian Institute of Technology, Kanpur. Module 5 Lecture 1

Surveying Prof. Bharat Lohani Indian Institute of Technology, Kanpur. Module 5 Lecture 1 Surveying Prof. Bharat Lohani Indian Institute of Technology, Kanpur (Refer Slide Time: 00:20) Module 5 Lecture 1 Welcome to this another lecture on basic surveying. Today we are going to start a new module.

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE CHAPTER-8 DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE 8.1 Introduction The behavior of materials is different when they are subjected to dynamic loading [9]. The testing of materials under dynamic conditions

More information

Atomic emission spectra experiment

Atomic emission spectra experiment Atomic emission spectra experiment Contents 1 Overview 1 2 Equipment 1 3 Measuring the grating spacing using the sodium D-lines 4 4 Measurement of hydrogen lines and the Rydberg Constant 5 5 Measurement

More information

Controlling Thermal Expansion

Controlling Thermal Expansion Controlling Thermal Expansion Strategies for Maximizing the Repeatability of your Linear Stage By David Goosen, Mechanical Engineering Team INTRODUCTION Most of us are aware that all common engineering

More information

PRECISION GEARS Spur Gears

PRECISION GEARS Spur Gears Spur Gears Description Symbol Unit Equation Normal Module m n Transverse Module m t = m n Normal Pressure Angle a n degrees = 2 Transverse Pressure Angle a t degrees = a n Number of Teeth z Profile Shift

More information

Cams. 774 l Theory of Machines

Cams. 774 l Theory of Machines 774 l Theory of Machines 0 Fea eatur tures es 1. Introduction.. Classification of Followers. 3. Classification of Cams. 4. Terms used in Radial cams. 5. Motion of the Follower. 6. Displacement, Velocity

More information

6. Tolerances are specified (a) to obtain desired fits (b) because it is not possible to manufac ture a size exactly (c) to obtain high accuracy

6. Tolerances are specified (a) to obtain desired fits (b) because it is not possible to manufac ture a size exactly (c) to obtain high accuracy 1. Who made the following classic statement. "When you can measure what you are speaking about and express it in numbers, you know something about it, and when you can't express it in numbers, your knowledge,

More information

WATTS MICROPTIC ALIDADE OPERATING INSTRUCTIONS 20-7

WATTS MICROPTIC ALIDADE OPERATING INSTRUCTIONS 20-7 WATTS MICROPTIC ALIDADE 20-7 OPERATING INSTRUCTIONS WATTS Operating Instructions for the WATTS MICROPTIC ALIDADE SA100 SA101 RANK PRECISION INDUSTRIES METROLOGY DIVISION Survey Equipment Sales Langston

More information

P R E C I S I O N G E A R S Spur Gears

P R E C I S I O N G E A R S Spur Gears Spur Gears Description Symbol Unit Equation Normal Module m n Transverse Module m t = m n Normal Pressure Angle α n degrees = 2 Transverse Pressure Angle α t degrees = α n Number of Teeth z Profile Shift

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

QUADRANT WITH SPHERICAL LEVEL FOR FIXING THE POSITION IN A BALLOON.

QUADRANT WITH SPHERICAL LEVEL FOR FIXING THE POSITION IN A BALLOON. QUADRANT WITH SPHERICAL LEVEL FOR FIXING THE POSITION IN A BALLOON. by M. Iy. FAVÉ, I n g é n ie u r H y d r o g r a p h e e n C h e f {{French Navy) GENERAL. The Quadrant with spherical level is specially

More information

Instruction for use Plunger Probes M FB and M78-Plus

Instruction for use Plunger Probes M FB and M78-Plus Instruction for use Plunger Probes M5678-78FB and M78-Plus Rev 3 (10/2012) DIATEST Plunger Probe M5678-68FB Self-centering interior measuring gauge for bore diameter from 19,5 to 330 mm Design A plunger

More information

THE LOSMANDY G-11 MOUNT

THE LOSMANDY G-11 MOUNT Checking the parts THE LOSMANDY G-11 MOUNT Depending on which accessories you ordered, your G-11 mount was shipped in four or more boxes. The contents of each box are as follows: Equatorial Mount Adjustable

More information

Gears Calculation هندبوک مهندسی نرم افزار. انجمن اینونتور ایران Autodesk Inventor. Tel: &

Gears Calculation هندبوک مهندسی نرم افزار. انجمن اینونتور ایران   Autodesk Inventor. Tel: & Autodesk Inventor Engineer s Handbook هندبوک مهندسی نرم افزار Autodesk Inventor انجمن اینونتور ایران www.irinventor.com Email: irinventor@chmail.ir irinventor@hotmail.com Tel: 09352191813 & Gears Calculation

More information

ROTARY CONTROLS. Rotary controls 1. GENERAL FEATURES 2. POSITION INDICATORS

ROTARY CONTROLS. Rotary controls 1. GENERAL FEATURES 2. POSITION INDICATORS ROTARY CONTROLS 1. GENERAL FEATURES ELESA-CLAYTON rotary controls are used to set and regulating a wide variety of machine functions. The device consists of: - a handwheel/knob, to manoeuvre the control

More information

BD-04a: Check Machine Geometry and Lost Motion

BD-04a: Check Machine Geometry and Lost Motion Page 1 of 14 BD-04a: Check Machine Geometry and Lost Motion SAFETY FIRST o Follow all Caterpillar facility safety standards when performing this task. o A hoist will be necessary for moving the cube or

More information

Physical Measurements

Physical Measurements PC1141 Physics I Physical Measurements 1 Objectives Demonstrate the specific knowledge gained by repeated physical measurements for the mass, length, inner and outer diameters of a hollow cylinder. Apply

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

Analysis of bending strength of bevel gear by FEM

Analysis of bending strength of bevel gear by FEM Analysis of bending strength of bevel gear by FEM Abhijeet.V. Patil 1, V. R. Gambhire 2, P. J. Patil 3 1 Assistant Prof., Mechanical Engineering Dept.,ADCET,Ashta.. 2 Prof., Mechanical Engineering Dept.,TKIET,

More information

Operating Instructions Spectro-Goniometer Student. 1 Functional Elements. 2 Safety Precautions. Figure 1: Spectro-Goniometer Student

Operating Instructions Spectro-Goniometer Student. 1 Functional Elements. 2 Safety Precautions. Figure 1: Spectro-Goniometer Student Operating Instructions Spectro-Goniometer Student 1 Functional Elements Figure 1: Spectro-Goniometer Student 1. Adjustable entrance slit, holding screw for slit cover 2. Lock ring fixing entrance slit

More information

ALIGNMENT OF THE MSGC BARREL SUPPORT STRUCTURE

ALIGNMENT OF THE MSGC BARREL SUPPORT STRUCTURE ALIGNMENT OF THE MSGC BARREL SUPPORT STRUCTURE Kari Tammi*, Miikka Kotamäki*, Antti Onnela+, Tommi Vanhala* *HIP, Helsinki Institute of Physics, CERN/EP, CH-1211 GENEVA + CERN, European Laboratory for

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994 A.A. JANSSON Inc. 2070 Airport Road Waterford, MI 48327-1204 Justin Frazzini Phone: 248 674 4811 CALIBRATION Valid To: August 31, 2016

More information

1. Choose answer and indicate by writing only the corresponding capital letter (A, B, C, D) as the case may be).

1. Choose answer and indicate by writing only the corresponding capital letter (A, B, C, D) as the case may be). 1. Choose answer and indicate by writing only the corresponding capital letter (A, B, C, D) as the case may be). 1.1 The manufacturing area of a plat is divided into four quadrants. Four machines have

More information

Physics 3 Summer 1990 Lab 4 - Energy Losses on an Inclined Air Track. Figure 1

Physics 3 Summer 1990 Lab 4 - Energy Losses on an Inclined Air Track. Figure 1 Physics 3 Summer 1990 Lab 4 - Energy Losses on an Inclined Air Track Theory Consider a car on an air track which is inclined at an angle θ to the horizontal as shown in figure 1. If the car is held at

More information

Leveling. 3.1 Definitions

Leveling. 3.1 Definitions Leveling 3.1 Definitions Leveling is the procedure used to determine differences in elevation between points that are remote from each other. Elevation is a vertical distance above or below a reference

More information

Measurement of basic constants: length, weight and time

Measurement of basic constants: length, weight and time Measurement of basic constants: length, weight and time TEP Related topics Length, diameter, inside diameter thickness, curvature, vernier, weight resolution, time measurement. Principle Caliper gauges,

More information

DISPERSION OF A GLASS PRISM

DISPERSION OF A GLASS PRISM PH2 page 1 DISPERSION OF A GLASS PRISM OBJECTIVE The objective of this experiment is to analyze the emission spectrum of helium and to analyze the dispersion of a glass prism by measuring the index of

More information

THE DIFFRACTION GRATING SPECTROMETER

THE DIFFRACTION GRATING SPECTROMETER Purpose Theory THE DIFFRACTION GRATING SPECTROMETER a. To study diffraction of light using a diffraction grating spectrometer b. To measure the wavelengths of certain lines in the spectrum of the mercury

More information

Determination of Cauchy s Contants

Determination of Cauchy s Contants 8. Determination of Cauchy s Contants 8.1 Objective: To determine Cauchy s Constants using a prism and spectrometer. Apparatus: Glass prism, spectrometer and mercury vapour lamp. 8. Theory: The wavelength

More information

Levers. 558 A Textbook of Machine Design

Levers. 558 A Textbook of Machine Design 558 A Textbook of Machine Design C H A P T E R 15 Levers 1. Introduction.. Application of Levers in Engineering Practice.. Design of a Lever. 4. Hand Lever. 5. Foot Lever. 6. Cranked Lever. 7. Lever for

More information

This annex is valid from: to Replaces annex dated: Location(s) where activities are performed under accreditation

This annex is valid from: to Replaces annex dated: Location(s) where activities are performed under accreditation Wiltonstraat 25 3905 KW Veenendaal The Netherlands Location(s) where activities are performed under accreditation Head Office Location Abbreviation/ location Main Location Wiltonstraat 25 3905 KW Veenendaal

More information

[ Extract from Astronomical Spectroscopy for Amateurs ] 18.0 Guiding, OAG and Beam splitters/ Flip mirrors Off Axis Guiders

[ Extract from Astronomical Spectroscopy for Amateurs ] 18.0 Guiding, OAG and Beam splitters/ Flip mirrors Off Axis Guiders [ Extract from Astronomical Spectroscopy for Amateurs ] 18.0 Guiding, OAG and Beam splitters/ Flip mirrors You ll quickly find it s a challenge to get a star focused on the spectroscope slit and hold it

More information

External Micrometers. C-1

External Micrometers.   C-1 External Micrometers C-1 E X T E R N A L M I C R O M E T E R S PRECISION MEASUREMENT Precision measurement requires the use of micrometers. In 1848, the first measuring tool of this type was patented by

More information

Chapter 6 & 10 HW Solution

Chapter 6 & 10 HW Solution Chapter 6 & 10 HW Solution Problem 6.1: The center-to-center distance is the sum of the two pitch circle radii. To mesh, the gears must have the same diametral pitch. These two facts are enough to solve

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

FOUR-POINT CONTACT SLEWING RINGS - without gear [ O ]

FOUR-POINT CONTACT SLEWING RINGS - without gear [ O ] FOUR-POINT CONTACT SLEWING RINGS - without gear [ O ] Number of the Loading Boundary Dimensions Static Ax.Basic Load Rating Designation Weight Abutment Dimensions Curve d D T C oa G J 1 J 2 N 1 N 2 n 1

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 14 Spur and Helical Gears 1 2 The Lewis Bending Equation Equation to estimate bending stress in gear teeth in which tooth form entered into the formulation: 3 The Lewis Bending Equation Assume

More information

Physics 476LW Advanced Physics Laboratory Michelson Interferometer

Physics 476LW Advanced Physics Laboratory Michelson Interferometer Physics 476LW Advanced Physics Laboratory Michelson Interferometer Introduction An optical interferometer is an instrument which splits a beam of light into two beams, each beam follows a different path

More information

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating.

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. 12. Diffraction grating OBJECT To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. INTRODUCTION: Consider a light beam transmitted through an aperture

More information

External Micrometers. C-1

External Micrometers.  C-1 External Micrometers www.tesatechnology.com C-1 External Micrometers Precision Measurement Precision measurement requires the use of micrometers. In 1848, the first measuring tool of this type was patented

More information

Automated Spur Gear Designing Using MATLAB

Automated Spur Gear Designing Using MATLAB Kalpa Publications in Engineering Volume 1, 2017, Pages 493 498 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Engineering Automated

More information

Model Answers Attempt any TEN of the following :

Model Answers Attempt any TEN of the following : (ISO/IEC - 70-005 Certified) Model Answer: Winter 7 Sub. Code: 17 Important Instructions to Examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

Dial removed for clarity

Dial removed for clarity 8 7 4 1 18 19 15 1 9 24 21 24 29 17 14 20 21 29 23 22 3 40 22 25 2 44 41 39 2 32 12 33 13 12 31 43 42 ITEM QTY PART NO. DESCRIPTION 1 1 Back 2 1 Front 3 3 Spacer top 4 1 Pendulum hanger 5 1 Clock dial

More information

Atomic Spectra HISTORY AND THEORY

Atomic Spectra HISTORY AND THEORY Atomic Spectra HISTORY AND THEORY When atoms of a gas are excited (by high voltage, for instance) they will give off light. Each element (in fact, each isotope) gives off a characteristic atomic spectrum,

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information