Introductory Probability

Size: px
Start display at page:

Download "Introductory Probability"

Transcription

1 Introductory Probability Joint Probability with Independence; Binomial Distributions Nicholas Nguyen Department of Mathematics UK

2 Agenda Comparing Two Variables with Joint Random Variables and Double Integrals Binomial Distributions Review Announcements: The sixth homework is available and due next Monday. The seventh homework is available and due next Wednesday. The next quiz is on Friday.

3 Comparing Two Variables Let X and Y be independent continuous random variables in [, 1] with density functions f X (x) = 2x, f Y (y) = 3y 2, x,y 1. Let us nd the probability that Y X 2. Let's nd the joint density function rst. Since X and Y are independent, their joint density function is the product of their individual density functions: f (x,y) = f X (x) f Y (y) = 2x 3y 2. We integrate the joint density function over the region in the square [,1] [,1] that satises y x 2 : P(Y X 2 ) = 2x 3y 2 dydx. y x 2

4 Comparing Two Variables Let X and Y be independent continuous random variables in [, 1] with density functions f X (x) = 2x, f Y (y) = 3y 2, x,y 1. Let us nd the probability that Y X 2. Let's nd the joint density function rst. Since X and Y are independent, their joint density function is the product of their individual density functions: f (x,y) = f X (x) f Y (y) = 2x 3y 2. We integrate the joint density function over the region in the square [,1] [,1] that satises y x 2 : P(Y X 2 ) = 2x 3y 2 dydx. y x 2

5 Comparing Two Variables Let X and Y be independent continuous random variables in [, 1] with density functions f X (x) = 2x, f Y (y) = 3y 2, x,y 1. Let us nd the probability that Y X 2. Let's nd the joint density function rst. Since X and Y are independent, their joint density function is the product of their individual density functions: f (x,y) = f X (x) f Y (y) = 2x 3y 2. We integrate the joint density function over the region in the square [,1] [,1] that satises y x 2 : P(Y X 2 ) = 2x 3y 2 dydx. y x 2

6 Region Y X 2 1 Y Y = X 2 X 1

7 End Limits 1 Y Y = X 2 X 1 The x-coordinate can go from to 1 (left and right sides of the square).

8 End Limits 1 Y Y = X 2 X 1 For a xed x-value, the y-coordinate can range from (the bottom edge) to x 2 (on the graph of y = x 2 ).

9 Evaluating the Integral Thus, the probability that Y X 2 is x 2 2x 3y 2 dydx = = = ( 2x y 3 ) x 2 dx 2x x 6 dx 2x 7 dx = x 8 = 1 4.

10 Evaluating the Integral Thus, the probability that Y X 2 is x 2 2x 3y 2 dydx = = = ( 2x y 3 ) x 2 dx 2x x 6 dx 2x 7 dx = x 8 = 1 4.

11 Evaluating the Integral Thus, the probability that Y X 2 is x 2 2x 3y 2 dydx = = = ( 2x y 3 ) x 2 dx 2x x 6 dx 2x 7 dx = x 8 = 1 4.

12 Evaluating the Integral Thus, the probability that Y X 2 is x 2 2x 3y 2 dydx = = = ( 2x y 3 ) x 2 dx 2x x 6 dx 2x 7 dx = x 8 = 1 4.

13 Independent Trials Process (Continuous) A sequence of continuous random variables X 1,...,X n that are mutually independent and have the same density function f X (x) is called an independent trials process. If X = (X 1,...,X n ), then for any point (x 1,...,x n ), the density function of X is the product of each density function: f (x 1,...,x n ) = f X (x 1 )... f X (x n ).

14 Independent Trials Process (Continuous) A sequence of continuous random variables X 1,...,X n that are mutually independent and have the same density function f X (x) is called an independent trials process. If X = (X 1,...,X n ), then for any point (x 1,...,x n ), the density function of X is the product of each density function: f (x 1,...,x n ) = f X (x 1 )... f X (x n ).

15 Independent Trials Process (Discrete) A sequence of discrete random variables X 1,...,X n that are mutually independent and have the same distribution function m X is called an independent trials process. If X = (X 1,...,X n ), then if ω = (ω 1,...,ω n ) is a sequence of outcomes, the distribution function m of X is m(ω) = m X (ω 1 )... m X (ω n ).

16 Independent Trials Process (Discrete) A sequence of discrete random variables X 1,...,X n that are mutually independent and have the same distribution function m X is called an independent trials process. If X = (X 1,...,X n ), then if ω = (ω 1,...,ω n ) is a sequence of outcomes, the distribution function m of X is m(ω) = m X (ω 1 )... m X (ω n ).

17 Bernoulli Trials Processes An important example of a discrete independent trials process is a Bernoulli trials process: a sequence of independent trials with 2 outcomes each (success or failure). For each trial: m(success) = p, m(failure) = 1 p = q. For example, with 5 trials, the sequence (S, S, F, F, F) has probability m(success) 2 m(failure) 3 = p 2 q 3. Let X record the number of successes in n trials. Then for any whole number k n, ( ) n P(X = k) = b(n,p,k) = p k q n k k

18 Bernoulli Trials Processes An important example of a discrete independent trials process is a Bernoulli trials process: a sequence of independent trials with 2 outcomes each (success or failure). For each trial: m(success) = p, m(failure) = 1 p = q. For example, with 5 trials, the sequence (S, S, F, F, F) has probability m(success) 2 m(failure) 3 = p 2 q 3. Let X record the number of successes in n trials. Then for any whole number k n, ( ) n P(X = k) = b(n,p,k) = p k q n k k

19 Bernoulli Trials Processes An important example of a discrete independent trials process is a Bernoulli trials process: a sequence of independent trials with 2 outcomes each (success or failure). For each trial: m(success) = p, m(failure) = 1 p = q. For example, with 5 trials, the sequence (S, S, F, F, F) has probability m(success) 2 m(failure) 3 = p 2 q 3. Let X record the number of successes in n trials. Then for any whole number k n, ( ) n P(X = k) = b(n,p,k) = p k q n k. k

20 An important example of a discrete independent trials process is a Bernoulli trials process: a sequence of independent trials with 2 outcomes each (success or failure). For each trial: m(success) = p, m(failure) = 1 p = q. For example, with 5 trials, the sequence (S, S, F, F, F) has probability m(success) 2 m(failure) 3 = p 2 q 3. Let X record the number of successes in n trials. Then for any whole number k n, ( ) n P(X = k) = b(n,p,k) = p k q n k. k The distribution function b(n,p,k) (n and p xed) is called the binomial distribution function.

21 Example We have a coin that lands heads with probability 1/5 and toss it 3 times. Then the probability of getting at least one head is 1 P(X = ) = 1 b(3,1/5,) ( ) 3 = 1 (1/5) (4/5) 3 = (64/125) = 61/125.

22 Example We have a coin that lands heads with probability 1/5 and toss it 3 times. Then the probability of getting at least one head is 1 P(X = ) = 1 b(3,1/5,) ( ) 3 = 1 (1/5) (4/5) 3 = (64/125) = 61/125.

23 Example We have a coin that lands heads with probability 1/5 and toss it 3 times. Then the probability of getting at least one head is 1 P(X = ) = 1 b(3,1/5,) ( ) 3 = 1 (1/5) (4/5) 3 = (64/125) = 61/125.

24 Bernoulli Trials Processes and Distributions For any Bernoulli trials process, we can record: The number of successes in a xed number of trials (binomial distribution) The number of trials up to and including the rst success (geometric distribution) The number of trials up to and including the kth success, k xed (negative binomial distribution)

25 Bernoulli Trials Processes and Distributions For any Bernoulli trials process, we can record: The number of successes in a xed number of trials (binomial distribution) The number of trials up to and including the rst success (geometric distribution) The number of trials up to and including the kth success, k xed (negative binomial distribution)

26 Bernoulli Trials Processes and Distributions For any Bernoulli trials process, we can record: The number of successes in a xed number of trials (binomial distribution) The number of trials up to and including the rst success (geometric distribution) The number of trials up to and including the kth success, k xed (negative binomial distribution)

27 Next Time Please read Section 5.1 (you can skip the historical remarks). We will study another distribution associated with Bernoulli trials: the geometric distribution. Homework 6 is due next Monday. Homework 7 is due next Wednesday. A quiz is this Friday.

Introductory Probability

Introductory Probability Introductory Probability Bernoulli Trials and Binomial Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 04, 2019 Agenda Bernoulli Trials and Probability

More information

Introductory Probability

Introductory Probability Introductory Probability Conditional Probability: Bayes Probabilities Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Computing Bayes Probabilities Conditional Probability and

More information

Introductory Probability

Introductory Probability Introductory Probability Discrete Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK January 9, 2019 Agenda Syllabi and Course Websites Class Information Random Variables

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Conditional Probability (cont'd)

Conditional Probability (cont'd) Conditional Probability (cont'd) April 26, 2006 Conditional Probability (cont'd) Midterm Problems In a ten-question true-false exam, nd the probability that a student get a grade of 70 percent or better

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

Conditional Probability (cont...) 10/06/2005

Conditional Probability (cont...) 10/06/2005 Conditional Probability (cont...) 10/06/2005 Independent Events Two events E and F are independent if both E and F have positive probability and if P (E F ) = P (E), and P (F E) = P (F ). 1 Theorem. If

More information

Intro to Contemporary Math

Intro to Contemporary Math Intro to Contemporary Math Unions and Intersections of Intervals Department of Mathematics UK Announcement You have a homework assignment due next Monday. Mini-exam 2 is next Wednesday. Unions and Intersections

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2 Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology, 1.2 1. Discrete Probability Distributions 1.1. The Binomial Distribution Question: You ve decided to flip

More information

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation EE 178 Probabilistic Systems Analysis Spring 2018 Lecture 6 Random Variables: Probability Mass Function and Expectation Probability Mass Function When we introduce the basic probability model in Note 1,

More information

5. Conditional Distributions

5. Conditional Distributions 1 of 12 7/16/2009 5:36 AM Virtual Laboratories > 3. Distributions > 1 2 3 4 5 6 7 8 5. Conditional Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

Discrete Probability Distribution

Discrete Probability Distribution Shapes of binomial distributions Discrete Probability Distribution Week 11 For this activity you will use a web applet. Go to http://socr.stat.ucla.edu/htmls/socr_eperiments.html and choose Binomial coin

More information

Random variables (discrete)

Random variables (discrete) Random variables (discrete) Saad Mneimneh 1 Introducing random variables A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

MULTINOMIAL PROBABILITY DISTRIBUTION

MULTINOMIAL PROBABILITY DISTRIBUTION MTH/STA 56 MULTINOMIAL PROBABILITY DISTRIBUTION The multinomial probability distribution is an extension of the binomial probability distribution when the identical trial in the experiment has more than

More information

ECE 302: Probabilistic Methods in Electrical Engineering

ECE 302: Probabilistic Methods in Electrical Engineering ECE 302: Probabilistic Methods in Electrical Engineering Test I : Chapters 1 3 3/22/04, 7:30 PM Print Name: Read every question carefully and solve each problem in a legible and ordered manner. Make sure

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Sampling WITHOUT replacement, Order IS important Number of Samples = 6

Sampling WITHOUT replacement, Order IS important Number of Samples = 6 : Different strategies sampling 2 out of numbers {1,2,3}: Sampling WITHOUT replacement, Order IS important Number of Samples = 6 (1,2) (1,3) (2,1) (2,3) (3,1) (3,2) : Different strategies sampling 2 out

More information

Topic 9 Examples of Mass Functions and Densities

Topic 9 Examples of Mass Functions and Densities Topic 9 Examples of Mass Functions and Densities Discrete Random Variables 1 / 12 Outline Bernoulli Binomial Negative Binomial Poisson Hypergeometric 2 / 12 Introduction Write f X (x θ) = P θ {X = x} for

More information

Chapter 3. Chapter 3 sections

Chapter 3. Chapter 3 sections sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional Distributions 3.7 Multivariate Distributions

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information

1. Discrete Distributions

1. Discrete Distributions Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 1. Discrete Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space Ω.

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information

18440: Probability and Random variables Quiz 1 Friday, October 17th, 2014

18440: Probability and Random variables Quiz 1 Friday, October 17th, 2014 18440: Probability and Random variables Quiz 1 Friday, October 17th, 014 You will have 55 minutes to complete this test. Each of the problems is worth 5 % of your exam grade. No calculators, notes, or

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Fault-Tolerant Computer System Design ECE 60872/CS 590. Topic 2: Discrete Distributions

Fault-Tolerant Computer System Design ECE 60872/CS 590. Topic 2: Discrete Distributions Fault-Tolerant Computer System Design ECE 60872/CS 590 Topic 2: Discrete Distributions Saurabh Bagchi ECE/CS Purdue University Outline Basic probability Conditional probability Independence of events Series-parallel

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1.(10) What is usually true about a parameter of a model? A. It is a known number B. It is determined by the data C. It is an

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

Conditional distributions (discrete case)

Conditional distributions (discrete case) Conditional distributions (discrete case) The basic idea behind conditional distributions is simple: Suppose (XY) is a jointly-distributed random vector with a discrete joint distribution. Then we can

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes? Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology 6.04/6.4: Probabilistic Systems Analysis Fall 00 Quiz Solutions: October, 00 Problem.. 0 points Let R i be the amount of time Stephen spends at the ith red light. R i is a Bernoulli random variable with

More information

X 1 ((, a]) = {ω Ω : X(ω) a} F, which leads us to the following definition:

X 1 ((, a]) = {ω Ω : X(ω) a} F, which leads us to the following definition: nna Janicka Probability Calculus 08/09 Lecture 4. Real-valued Random Variables We already know how to describe the results of a random experiment in terms of a formal mathematical construction, i.e. the

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume?

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume? Stat 400, section.1-.2 Random Variables & Probability Distributions notes by Tim Pilachowski For a given situation, or experiment, observations are made and data is recorded. A sample space S must contain

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

1 of 6 7/16/2009 6:31 AM Virtual Laboratories > 11. Bernoulli Trials > 1 2 3 4 5 6 1. Introduction Basic Theory The Bernoulli trials process, named after James Bernoulli, is one of the simplest yet most

More information

Combinations. April 12, 2006

Combinations. April 12, 2006 Combinations April 12, 2006 Combinations, April 12, 2006 Binomial Coecients Denition. The number of distinct subsets with j elements that can be chosen from a set with n elements is denoted by ( n j).

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

SOR201 Solutions to Examples 3

SOR201 Solutions to Examples 3 page 0SOR0(00) SOR0 lutions to Examples (a) An outcome is an unordered sample {i,, i n }, a subset of {,, N}, where the i j s are all different The random variable X can take the values n, n +,, N If X

More information

Chapter 1. Sets and probability. 1.3 Probability space

Chapter 1. Sets and probability. 1.3 Probability space Random processes - Chapter 1. Sets and probability 1 Random processes Chapter 1. Sets and probability 1.3 Probability space 1.3 Probability space Random processes - Chapter 1. Sets and probability 2 Probability

More information

Methods of Mathematics

Methods of Mathematics Methods of Mathematics Kenneth A. Ribet UC Berkeley Math 10B February 23, 2016 Office hours Office hours Monday 2:10 3:10 and Thursday 10:30 11:30 in Evans; Tuesday 10:30 noon at the SLC Kenneth A. Ribet

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

SOLUTION FOR HOMEWORK 12, STAT 4351

SOLUTION FOR HOMEWORK 12, STAT 4351 SOLUTION FOR HOMEWORK 2, STAT 435 Welcome to your 2th homework. It looks like this is the last one! As usual, try to find mistakes and get extra points! Now let us look at your problems.. Problem 7.22.

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Notes 12 Autumn 2005

Notes 12 Autumn 2005 MAS 08 Probability I Notes Autumn 005 Conditional random variables Remember that the conditional probability of event A given event B is P(A B) P(A B)/P(B). Suppose that X is a discrete random variable.

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Probability Theory: Counting in Terms of Proportions Lecture 10 (September 27, 2007) Some Puzzles Teams A and B are equally good In any one game, each

More information

Math 493 Final Exam December 01

Math 493 Final Exam December 01 Math 493 Final Exam December 01 NAME: ID NUMBER: Return your blue book to my office or the Math Department office by Noon on Tuesday 11 th. On all parts after the first show enough work in your exam booklet

More information

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically.

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically. . Introduction The quick summary, going forwards: Start with random variable X. 2 Compute the mean EX and variance 2 = varx. 3 Approximate X by the normal distribution N with mean µ = EX and standard deviation.

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

How are Geometric and Poisson probability distributions different from the binomial probability distribution? How are they the same?

How are Geometric and Poisson probability distributions different from the binomial probability distribution? How are they the same? Probability and Statistics The Binomial Probability Distribution and Related Topics Chapter 5 Section 4 The Geometric and Poisson Probability Distributions Essential Question: How are Geometric and Poisson

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11 1 / 15 BNAD 276 Lecture 5 Discrete Probability Distributions 1 11 Phuong Ho May 14, 2017 Exercise 1 Suppose we have the probability distribution for the random variable X as follows. X f (x) 20.20 25.15

More information

CMPT 882 Machine Learning

CMPT 882 Machine Learning CMPT 882 Machine Learning Lecture Notes Instructor: Dr. Oliver Schulte Scribe: Qidan Cheng and Yan Long Mar. 9, 2004 and Mar. 11, 2004-1 - Basic Definitions and Facts from Statistics 1. The Binomial Distribution

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model Random Variables Random variables Lecture 5 - Discrete Distributions Sta02 / BME02 Colin Rundel Setember 8, 204 A random variable is a numeric uantity whose value deends on the outcome of a random event

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

SOME THEORY AND PRACTICE OF STATISTICS by Howard G. Tucker CHAPTER 2. UNIVARIATE DISTRIBUTIONS

SOME THEORY AND PRACTICE OF STATISTICS by Howard G. Tucker CHAPTER 2. UNIVARIATE DISTRIBUTIONS SOME THEORY AND PRACTICE OF STATISTICS by Howard G. Tucker CHAPTER. UNIVARIATE DISTRIBUTIONS. Random Variables and Distribution Functions. This chapter deals with the notion of random variable, the distribution

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

CLASS 6 July 16, 2015 STT

CLASS 6 July 16, 2015 STT CLASS 6 July 6, 05 STT-35-04 Plan for today: Preparation for Quiz : Probability of the union. Conditional Probability, Formula of total probability, ayes Rule. Independence: Simple problems (solvable by

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

6.4 Type I and Type II Errors

6.4 Type I and Type II Errors 6.4 Type I and Type II Errors Ulrich Hoensch Friday, March 22, 2013 Null and Alternative Hypothesis Neyman-Pearson Approach to Statistical Inference: A statistical test (also known as a hypothesis test)

More information

Random Variable. Pr(X = a) = Pr(s)

Random Variable. Pr(X = a) = Pr(s) Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably

More information

Quiz 1 Date: Monday, October 17, 2016

Quiz 1 Date: Monday, October 17, 2016 10-704 Information Processing and Learning Fall 016 Quiz 1 Date: Monday, October 17, 016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.. Write your name, Andrew

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Data Science: Jordan Boyd-Graber University of Maryland JANUARY 18, 2018 Data Science: Jordan Boyd-Graber UMD Discrete Probability Distributions 1 / 1 Refresher: Random

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 5: Review on Probability Theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Febraury 22 th, 2015 1 Lecture Outlines o Review on probability theory

More information

6.3 Bernoulli Trials Example Consider the following random experiments

6.3 Bernoulli Trials Example Consider the following random experiments 6.3 Bernoulli Trials Example 6.48. Consider the following random experiments (a) Flip a coin times. We are interested in the number of heads obtained. (b) Of all bits transmitted through a digital transmission

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2 IEOR 316: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 2 More Probability Review: In the Ross textbook, Introduction to Probability Models, read

More information

CS1512 Foundations of Computing Science 2. Lecture 4

CS1512 Foundations of Computing Science 2. Lecture 4 CS1512 Foundations of Computing Science 2 Lecture 4 Bayes Law; Gaussian Distributions 1 J R W Hunter, 2006; C J van Deemter 2007 (Revd. Thomas) Bayes Theorem P( E 1 and E 2 ) = P( E 1 )* P( E 2 E 1 ) Order

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( )

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( ) Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr Pr = Pr Pr Pr() Pr Pr. We are given three coins and are told that two of the coins are fair and the

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate: Joel Anderson ST 37-002 Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

CS206 Review Sheet 3 October 24, 2018

CS206 Review Sheet 3 October 24, 2018 CS206 Review Sheet 3 October 24, 2018 After ourintense focusoncounting, wecontinue withthestudyofsomemoreofthebasic notions from Probability (though counting will remain in our thoughts). An important

More information