Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model

Size: px
Start display at page:

Download "Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model"

Transcription

1 Random Variables Random variables Lecture 5 - Discrete Distributions Sta02 / BME02 Colin Rundel Setember 8, 204 A random variable is a numeric uantity whose value deends on the outcome of a random event We use a caital letter, lie X, to denote a random variables The values of a random variable will be denoted with a lower case letter, in this case For eamle, P(X ) There are two tyes of random variables: Discrete random variables tae on only integer values Eamle: Number of credit hours, Difference in number of credit hours this term vs last Continuous random variables tae on real (decimal) values Eamle: Cost of boos this term, Difference in cost of boos this term vs last Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Random Variables Random Variables Discrete Probability distributions A discrete robability distribution lists all ossible events and the robabilities with which they occur. The robability distribution for the gender of one child: Event B G Probability Eamle - Discrete robability model In a game of cards you win $ if you draw a heart, $5 if you draw an ace (including the ace of hearts), $0 if you draw the ing of sades and nothing for any other card you draw. Write the robability distribution for the random variable reresenting your winnings. Rules for robability distributions: The events listed must be disjoint 2 Each robability must be between 0 and 3 The robabilities must add u to Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23

2 Random Variables Random Variables Mean and standard deviation of a discrete RVs We are often interested in the value we eect to arise from a random variable. We call this the eected value, it is a weighted average of the ossible outcomes E(X ) P(X ) Eamle - Discrete RV - Mean and SD For the revious eamle what is the eected value and the standard deviation of your winnings. X P(X ) X P(X ) (X E(X )) 2 P(X ) (X E(X )) (0 0.8) We are also often interested in the variability in the values of a random variable. Described using Variance and Standard deviation ( 0.8) (5 0.8) Var(X ) E[(X E(X )) 2 ] ( E(X )) 2 P(X ) (0 0.8) SD(X ) Var(X ) Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Bernoulli RVs Bernoulli RVs Bernoulli Random Variable A Bernoulli random variable describes a trial with only two ossible outcomes, one of which we will label a success and the other a failure and where the robability of a success is given by the arameter. (Since it needs to be numeric) the random variable taes the value to indicate a success and 0 to indicate a failure. X P(X) 0 - P(X ) { if if 0 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Proerties of a Bernoulli Random Variable Let X Bern() then E(X ) P(X ) 0 P(X 0) + P(X ) P(X ) Var(X ) E(X ) 2 E(X 2 2X + 2 ) E(X 2 ) 2 E(X ) + 2 (0 2 P(X 0) + 2 P(X )) 2 2 ( ) Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23

3 Geometric RVs Geometric RVs Geometric Random Variable A Geometric random variable describes the number of (identical) Bernoulli trials that occur before the first success is observed. The distribution has a single arameter, the robability of a success. There is another slightly different characterization that counts the number of failures before the first success. We will focus on the former for now. Some useful infinite sum results For r < then, 0 r r r r ( r) 2 We can use the first result to show that X has a valid robability distribution, X P(X ) 2 ( ) 3 ( ) 2 4 ( ) 3.. P(X ) ( ) P(X ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Geometric RVs Proerties of a Geometric Random Variable Let X Geo() then E(X ) P(X ) ( ) ( ) / ( ) ( ) ( ) ( ( )) 2 Var(X ) 2 Combinations A common roblem in robability ass - if we have n items and want to select of them how many ossible grouings (order does not matter) are there? Given by the binomial coefficient (n )!! How many combinations of two numbers between and 6 are there: Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, 204 / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23

4 Permutations Derivation Another otion for those n items is if we select of them and want to now how many ossible uniue orderings there are. Given by (n )! How many ermutations of two numbers between and 6 are there: Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Pascal s Triangle Some roerties of the Combinations / Binomial coefficient ( 4 0. ( 0 0) ( ) ( 0 ( ) 2 ) ( 2 ) ( 2 0 ) 2) ( 3 3) ( 3 ) ( 3 ) ( ) Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 0 ( ) ( ) n n n 2 n + ( n ), for 0 < < n Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23

5 Eamle - Cell Culture Binomial Distribution A researcher is woring with a new cell line, if there is a 0% chance of a single culture becoming contaminated during the wee what is the robability that if the researcher has four cultures that only one of them will be contaminated at the end of the wee? What about the robability cultures lasting the wee? Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Binomial Distribution We define a random variable X that reflects the number of successes in a fied number of indeendent trials with the same robability of success as having a binomial distribution. If there are n trials then X Binom(n, ) P(X n, ) f ( n, ) ( ) n Binomial theorem Another useful result (and a connection with combinations) is the Binomial theorem which states: (a + b) m m 0 m y n m m Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23

6 Proerties of Proerties of Let X Binom(n, ) then, E(X ) P(X ) 0 n 0 ( ) n ( ) n 0 (n )!! ( ) n (n )! (n )!( )! ( ) n n (n )! n (n ( + ))!( )! ( ) n ( +) n (n )! n (n )!( )! ( ) n 0 n( + ( )) n n (n )!( )! ( ) n Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Let X Binom(n, ) then, Var(X ) E [(X E(X )) 2] ( n) 2 P(X ) 0 ( ) ( n) 2 n P(X ) ( ) n 0. (lots of awfulness) n( ) We ll see an simle and elegant way of solving this on Wednesday. Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23 Limitations of Eected Value St. Petersburg Lottery We start with $ on the table and a coin. At each ste: Toss the coin; if it shows Heads, tae the money. If it shows Tails, I double the money on the table. How much would you ay me to lay this game? i.e. what is the eected value? Sta02 / BME02 (Colin Rundel) Lec 5 Setember 8, / 23

Random Variables. Lecture 6: E(X ), Var(X ), & Cov(X, Y ) Random Variables - Vocabulary. Random Variables, cont.

Random Variables. Lecture 6: E(X ), Var(X ), & Cov(X, Y ) Random Variables - Vocabulary. Random Variables, cont. Lecture 6: E(X ), Var(X ), & Cov(X, Y ) Sta230/Mth230 Colin Rundel February 5, 2014 We have been using them for a while now in a variety of forms but it is good to explicitly define what we mean Random

More information

BERNOULLI TRIALS and RELATED PROBABILITY DISTRIBUTIONS

BERNOULLI TRIALS and RELATED PROBABILITY DISTRIBUTIONS BERNOULLI TRIALS and RELATED PROBABILITY DISTRIBUTIONS A BERNOULLI TRIALS Consider tossing a coin several times It is generally agreed that the following aly here ) Each time the coin is tossed there are

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

1 Random Experiments from Random Experiments

1 Random Experiments from Random Experiments Random Exeriments from Random Exeriments. Bernoulli Trials The simlest tye of random exeriment is called a Bernoulli trial. A Bernoulli trial is a random exeriment that has only two ossible outcomes: success

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

8 STOCHASTIC PROCESSES

8 STOCHASTIC PROCESSES 8 STOCHASTIC PROCESSES The word stochastic is derived from the Greek στoχαστικoς, meaning to aim at a target. Stochastic rocesses involve state which changes in a random way. A Markov rocess is a articular

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Expected Value 7/7/2006

Expected Value 7/7/2006 Expected Value 7/7/2006 Definition Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by E(X) = x Ω x m(x), provided

More information

The Longest Run of Heads

The Longest Run of Heads The Longest Run of Heads Review by Amarioarei Alexandru This aer is a review of older and recent results concerning the distribution of the longest head run in a coin tossing sequence, roblem that arise

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

Part (A): Review of Probability [Statistics I revision]

Part (A): Review of Probability [Statistics I revision] Part (A): Review of Probability [Statistics I revision] 1 Definition of Probability 1.1 Experiment An experiment is any procedure whose outcome is uncertain ffl toss a coin ffl throw a die ffl buy a lottery

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

Name: 180A MIDTERM 2. (x + n)/2

Name: 180A MIDTERM 2. (x + n)/2 1. Recall the (somewhat strange) person from the first midterm who repeatedly flips a fair coin, taking a step forward when it lands head up and taking a step back when it lands tail up. Suppose this person

More information

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions.

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions. Lecture 11 Text: A Course in Probability by Weiss 5.3 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 11.1 Agenda 1 2 11.2 Bernoulli trials Many problems in

More information

Bernoulli Trials and Binomial Distribution

Bernoulli Trials and Binomial Distribution Bernoulli Trials and Binomial Distribution Sec 4.4-4.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15 MA 250 Probability and Statistics Nazar Khan PUCIT Lecture 15 RANDOM VARIABLES Random Variables Random variables come in 2 types 1. Discrete set of outputs is real valued, countable set 2. Continuous set

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

Introduction to Probability and Statistics Slides 3 Chapter 3

Introduction to Probability and Statistics Slides 3 Chapter 3 Introduction to Probability and Statistics Slides 3 Chapter 3 Ammar M. Sarhan, asarhan@mathstat.dal.ca Department of Mathematics and Statistics, Dalhousie University Fall Semester 2008 Dr. Ammar M. Sarhan

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Exam III #1 Solutions

Exam III #1 Solutions Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam III #1 Solutions November 14, 2017 This exam is in two parts on 11 pages and

More information

(b). What is an expression for the exact value of P(X = 4)? 2. (a). Suppose that the moment generating function for X is M (t) = 2et +1 3

(b). What is an expression for the exact value of P(X = 4)? 2. (a). Suppose that the moment generating function for X is M (t) = 2et +1 3 Math 511 Exam #2 Show All Work 1. A package of 200 seeds contains 40 that are defective and will not grow (the rest are fine). Suppose that you choose a sample of 10 seeds from the box without replacement.

More information

Notice how similar the answers are in i,ii,iii, and iv. Go back and modify your answers so that all the parts look almost identical.

Notice how similar the answers are in i,ii,iii, and iv. Go back and modify your answers so that all the parts look almost identical. RANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013 0) a) Suppose you flip a fair coin 3 times. i) What is the probability you get 0 heads? ii) 1 head? iii) 2 heads? iv) 3 heads? b) Suppose you are dealt

More information

Introductory Probability

Introductory Probability Introductory Probability Bernoulli Trials and Binomial Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 04, 2019 Agenda Bernoulli Trials and Probability

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2017 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

Introduction to Probability for Graphical Models

Introduction to Probability for Graphical Models Introduction to Probability for Grahical Models CSC 4 Kaustav Kundu Thursday January 4, 06 *Most slides based on Kevin Swersky s slides, Inmar Givoni s slides, Danny Tarlow s slides, Jaser Snoek s slides,

More information

4. Discrete Probability Distributions. Introduction & Binomial Distribution

4. Discrete Probability Distributions. Introduction & Binomial Distribution 4. Discrete Probability Distributions Introduction & Binomial Distribution Aim & Objectives 1 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2 Objectives

More information

Chapter 7 Sampling and Sampling Distributions. Introduction. Selecting a Sample. Introduction. Sampling from a Finite Population

Chapter 7 Sampling and Sampling Distributions. Introduction. Selecting a Sample. Introduction. Sampling from a Finite Population Chater 7 and s Selecting a Samle Point Estimation Introduction to s of Proerties of Point Estimators Other Methods Introduction An element is the entity on which data are collected. A oulation is a collection

More information

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance Covariance Lecture 0: Covariance / Correlation & General Bivariate Normal Sta30 / Mth 30 We have previously discussed Covariance in relation to the variance of the sum of two random variables Review Lecture

More information

9/6. Grades. Exam. Card Game. Homework/quizzes: 15% (two lowest scores dropped) Midterms: 25% each Final Exam: 35%

9/6. Grades. Exam. Card Game. Homework/quizzes: 15% (two lowest scores dropped) Midterms: 25% each Final Exam: 35% 9/6 Wednesday, September 06, 2017 Grades Homework/quizzes: 15% (two lowest scores dropped) Midterms: 25% each Final Exam: 35% Exam Midterm exam 1 Wednesday, October 18 8:50AM - 9:40AM Midterm exam 2 Final

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006 Review problems UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Solutions 5 Spring 006 Problem 5. On any given day your golf score is any integer

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

Random variables (discrete)

Random variables (discrete) Random variables (discrete) Saad Mneimneh 1 Introducing random variables A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Lecture 10. Variance and standard deviation

Lecture 10. Variance and standard deviation 18.440: Lecture 10 Variance and standard deviation Scott Sheffield MIT 1 Outline Defining variance Examples Properties Decomposition trick 2 Outline Defining variance Examples Properties Decomposition

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

MATH STUDENT BOOK. 12th Grade Unit 9

MATH STUDENT BOOK. 12th Grade Unit 9 MATH STUDENT BOOK 12th Grade Unit 9 Unit 9 COUNTING PRINCIPLES MATH 1209 COUNTING PRINCIPLES INTRODUCTION 1. PROBABILITY DEFINITIONS, SAMPLE SPACES, AND PROBABILITY ADDITION OF PROBABILITIES 11 MULTIPLICATION

More information

Probability Distributions

Probability Distributions Probability Distributions Series of events Previously we have been discussing the probabilities associated with a single event: Observing a 1 on a single roll of a die Observing a K with a single card

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

1 of 6 7/16/2009 6:31 AM Virtual Laboratories > 11. Bernoulli Trials > 1 2 3 4 5 6 1. Introduction Basic Theory The Bernoulli trials process, named after James Bernoulli, is one of the simplest yet most

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

In this context, the thing we call the decision variable is K, the number of beds. Our solution will be done by stating a value for K.

In this context, the thing we call the decision variable is K, the number of beds. Our solution will be done by stating a value for K. STAT-UB.0103 NOTES for Wednesday 2012.FEB.15 Suppose that a hospital has a cardiac care unit which handles heart attac victims on the first day of their problems. The geographic area served by the hospital

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Discrete Distributions

Discrete Distributions Discrete Distributions Applications of the Binomial Distribution A manufacturing plant labels items as either defective or acceptable A firm bidding for contracts will either get a contract or not A marketing

More information

Bernoulli Trials and Binomial Distribution

Bernoulli Trials and Binomial Distribution Bernoulli Trials and Binomial Distribution Sec 4.4-4.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 8 focus on multilication. Daily Unit 1: Rational vs. Irrational

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Uniform Law on the Unit Sphere of a Banach Space

Uniform Law on the Unit Sphere of a Banach Space Uniform Law on the Unit Shere of a Banach Sace by Bernard Beauzamy Société de Calcul Mathématique SA Faubourg Saint Honoré 75008 Paris France Setember 008 Abstract We investigate the construction of a

More information

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017 STA 431/535 Solution to Etra Homework 1 February 8, 017 1. Show that for any RV X, V (X 0. (You can assume X to be discrete, but this result holds in general. Hence or otherwise show that E(X E (X. Solution.

More information

Practice Problem - Skewness of Bernoulli Random Variable. Lecture 7: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example

Practice Problem - Skewness of Bernoulli Random Variable. Lecture 7: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example A little more E(X Practice Problem - Skewness of Bernoulli Random Variable Lecture 7: and the Law of Large Numbers Sta30/Mth30 Colin Rundel February 7, 014 Let X Bern(p We have shown that E(X = p Var(X

More information

Some Special Discrete Distributions

Some Special Discrete Distributions Mathematics Department De La Salle University Manila February 6, 2017 Some Discrete Distributions Often, the observations generated by different statistical experiments have the same general type of behaviour.

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections 9.8-9.9 Fall 2011 Lecture 8 Part 1 (Fall 2011) Probability Distributions Lecture 8 Part 1 1 / 19 Probability

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Review of probability

Review of probability Review of probability Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts definition of probability random variables

More information

Introduction to Probability, Fall 2009

Introduction to Probability, Fall 2009 Introduction to Probability, Fall 2009 Math 30530 Review questions for exam 1 solutions 1. Let A, B and C be events. Some of the following statements are always true, and some are not. For those that are

More information

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate: Joel Anderson ST 37-002 Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

Discrete Probability

Discrete Probability MAT 258 Discrete Mathematics Discrete Probability Kenneth H. Rosen and Kamala Krithivasan Discrete Mathematics 7E Global Edition Chapter 7 Reproduced without explicit consent Fall 2016 Week 11 Probability

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

Review of Probability Mark Craven and David Page Computer Sciences 760.

Review of Probability Mark Craven and David Page Computer Sciences 760. Review of Probability Mark Craven and David Page Computer Sciences 760 www.biostat.wisc.edu/~craven/cs760/ Goals for the lecture you should understand the following concepts definition of probability random

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

Random processes. Lecture 17: Probability, Part 1. Probability. Law of large numbers

Random processes. Lecture 17: Probability, Part 1. Probability. Law of large numbers Random processes Lecture 17: Probability, Part 1 Statistics 10 Colin Rundel March 26, 2012 A random process is a situation in which we know what outcomes could happen, but we don t know which particular

More information

Introductory Probability

Introductory Probability Introductory Probability Joint Probability with Independence; Binomial Distributions Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Comparing Two Variables with Joint Random

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Week 04 Discussion. a) What is the probability that of those selected for the in-depth interview 4 liked the new flavor and 1 did not?

Week 04 Discussion. a) What is the probability that of those selected for the in-depth interview 4 liked the new flavor and 1 did not? STAT Wee Discussion Fall 7. A new flavor of toothpaste has been developed. It was tested by a group of people. Nine of the group said they lied the new flavor, and the remaining 6 indicated they did not.

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 10: Expectation and Variance Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit Chater 5 Statistical Inference 69 CHAPTER 5 STATISTICAL INFERENCE.0 Hyothesis Testing.0 Decision Errors 3.0 How a Hyothesis is Tested 4.0 Test for Goodness of Fit 5.0 Inferences about Two Means It ain't

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3

Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3 STATISTICS 200 Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3 Objectives: Identify, and resist the temptation to fall for, the gambler s fallacy Define random variable

More information

Lecture: Condorcet s Theorem

Lecture: Condorcet s Theorem Social Networs and Social Choice Lecture Date: August 3, 00 Lecture: Condorcet s Theorem Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler Condorcet s theorem, the most basic jury

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

More Discrete Distribu-ons. Keegan Korthauer Department of Sta-s-cs UW Madison

More Discrete Distribu-ons. Keegan Korthauer Department of Sta-s-cs UW Madison More Discrete Distribu-ons Keegan Korthauer Department of Sta-s-cs UW Madison 1 COMMON DISCRETE DISTRIBUTIONS Bernoulli Binomial Poisson Geometric 2 Some Common Distribu-ons Probability Distribu-ons Discrete

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

ECE-580-DOE : Statistical Process Control and Design of Experiments Steve Brainerd 27 Distributions:

ECE-580-DOE : Statistical Process Control and Design of Experiments Steve Brainerd 27 Distributions: Distributions ECE-580-DOE : Statistical Process Control and Design of Experiments Steve Brainerd 27 Distributions: 1/29/03 Other Distributions Steve Brainerd 1 Distributions ECE-580-DOE : Statistical Process

More information

Notes 6 Autumn Example (One die: part 1) One fair six-sided die is thrown. X is the number showing.

Notes 6 Autumn Example (One die: part 1) One fair six-sided die is thrown. X is the number showing. MAS 08 Probability I Notes Autumn 005 Random variables A probability space is a sample space S together with a probability function P which satisfies Kolmogorov s aioms. The Holy Roman Empire was, in the

More information

Topic 3 Random variables, expectation, and variance, II

Topic 3 Random variables, expectation, and variance, II CSE 103: Probability and statistics Fall 2010 Topic 3 Random variables, expectation, and variance, II 3.1 Linearity of expectation If you double each value of X, then you also double its average; that

More information