Hands-on Generating Random

Size: px
Start display at page:

Download "Hands-on Generating Random"

Transcription

1 CVIP Laboratory Hands-on Generating Random Variables Shireen Elhabian Aly Farag October 2007

2 The heart of Monte Carlo simulation for statistical inference. Generate synthetic data to test our algorithms, such as data fitting and classification. Generating data encryption keys. Simulating and modeling complex phenomena. Selecting random samples from larger data sets.

3 We will learn algorithms and get them into action!!!

4 Agenda U 0,1 N 0,1 N μ, σ N μ, Σ

5 Random Truly Random Exhibiting true randomness Pseudorandom Appearance of randomness but having a specific repeatable pattern Quasi-random Having a set of non-random numbers in a randomized order

6 Generating U(0,1) Random Variables They are usually the building block for generating other random variables. We will look at: Properties that a random number generator should possess Linear Congruential Generators (LCGs) Use Matlab to generate U(0,1) variates.

7 Properties of a U(0,1) Generator Numbers should appear to be ~ U(0,1) and independent. Generator should be fast and not require too much storage. Should be able to reproduce a iven set of numbers for comparison purposes.

8 Linear Congruential Generators (LCGs) Numbers are generated according to: Z + = az +./ + c mod m where m, a, c and Z 7 are non-negative numbers. Z 7 is the seed. m is the modulus. Z + is a sequence of integer values ranging from 0 to m 1, starting from the seed point Z 7. To generate pseudo-random numbers, U /,, U ;, we set U + = Z + /m. Thus U + 0,1 i.

9 Example 1 Z 7 = 1, m = 16, a = 11, c = 0 Z + = 11 Z +./ mod 16 Now iterate to determine the Z + A s Z 7 = 1 Z / = 11 mod 16 = 11 Z C = 121 mod 16 = 9 Z F = 99 mod 16 = 3 Z H = 33 mod 16 = 1 What is wrong with this? The Z + s are not that random. They can only take on a finite number of values. The period of the generator can be very poor.

10 How to Guarantee a Full Period?!! Theorem The linear congruential generator has full period if and only if the following three conditions holds: 1. If 4 divides m, then 4 divides a 1 2. The only positive integer that exactly divides both m and c is 1, i.e. m and c are relatively prime, such that gcd m, c = 1 3. If q is a prime number that divides m, then it divides a 1.

11 Example 2 Z 7 = 1, m = 16, a = 13, c = 13 Z + = 13 Z +./ + 13 mod 16 Now iterate to determine the Z + A s Z 7 = 1 Z / = 26 mod 16 = 10 Z C = 143 mod 16 = 15 Z F = 248 mod 16 = 0 Z H = 13 mod 16 = 13 The linear congruential generator has full period if and only if the following three conditions holds: 1. If 4 divides m, then 4 divides a 1 2. The only positive integer that exactly divides both m and c is 1, i.e. m and c are relatively prime, such that gcd m, c = 1 3. If q is a prime number that divides m, then it divides a 1. Check to see that this LCG has full period: Are the conditions of the theorem satisfied? They can only take on a finite number of values. Does it matter what integer we use for Z 7?

12 Seeds In your experimentation, you can generate 100 streams each with a different seed point in order to: avoid duplicate streams of random numbers, get a general idea of the behavior of the random number generator on your workstation. Seeds can be obtained from: A. M. Law and W. D. Kelton, Simulation Modeling & Analysis, 2nd Edition, McGraw-Hill, NewYork, 1991.

13 In Matlab J Notes: The function rand with no arguments returns a single instance of the random variable U. To get an array mxn of uniform variates, you can use the syntax rand(m,n). If you use rand(n), then you get an nxn matrix.

14 In Matlab J The seed or the state of the generator is reset to the default when Matlab starts up, so the same sequencyes of random variables are generated whenever you start Matlab. If you call the function using rand('state',0), then MATLAB resets the generator to the initial state. If you want to specify another state, then use the syntax rand('state',j) to set the generator to the j-th state. You can obtain the current state using S = rand( state ), where S is a 35 element vector. To reset the state to this one, use rand( state,s).

15 Inverse Transform Method This method converts a known distribution with known parameters to another distribution with different parameters. Example: Generate Y~U( 1,1) from X~U 0,1. p(x) p(y) x y x ~ U(0,1) g(.) y ~ U( 1,1)

16 Inverse Transform Method p(x) p(y) F X x = Y x.\ p x dx x F Y (y) = Y y.\ p y dy y ì0 x 0 ï FX ( x) = íx 0< x< 1 ï î1 x ³ 1 x ì 0 y -1 ï y + 1 FY ( y) = í - 1< y< 1 ï 2 y ³ 1 ïî 1 y

17 Inverse Transform Method F X x = Y x.\ p x dx F Y (y) = Y y.\ p y dy x y ì0 x 0 ï FX ( x) = íx 0< x< 1 ï î1 x ³ 1 ì 0 y -1 ï y + 1 FY ( y) = í - 1< y< 1 ï 2 y ³ 1 ïî ( ) ( ) ( ) x( ) -1 ( ) F ( Y) = P Y y = P g( x) y = P x g ( y) = F g ( y) y F ( Y) = F g ( y) = x y x ì 0 y -1 ï y + 1 x= FY ( y) = í - 1< y< 1 ï 2 y ³ 1 ïî 1 ì 0 x 0-1 ï y= F Y ( x) = í- 1+ 2x 0< x< 1 ï î 1 x ³ 1

18 Box-Muller Approach Standard Normal U 0, 1 N 0, 1 If U / and U C are independent random variates from U(0,1) generated before. Then Z / = 2 ln U / cos 2πU C and Z C = 2 ln U / sin 2πU C are ~ N(0,1) and independent.

19 In Matlab J

20 In Matlab J As shown when using more streams to obtain the histogram, the resultant becomes closer to the ideal standard normal where about 98% of the area under curve (pdf) lies in the interval [-3,3], centered at the zero mean.

21 Univariate Normal : X ~ N μ, σ If U / and U C are independent random variates from U(0,1) generated before. Then Z = 2 ln U / cos 2πU C ~ N(0,1) Therefore, X = σz + μ ~ N(μ, σ)

22 Multivariate Normal: X ~ N μ, Σ Start with a d dimensional vector of standard normal N 0,1. These can be transofrmed to the desried distribution using x = R m z + μ d d matrix R m R = Σ d 1 d 1 ~ N(0,1)

23 In Matlab J é1ù é4 4ù M = ê ú ë 2û å = ê ú ë4 9 û

24 In Matlab J é1 ù M =ê ú ë 2û é 4 4ù å = ê4 9 ú ë û

25 Probability Density Function The multi-normal Gaussian PDF can be computed using the following equation: p x = 1 2π p C Σ / C exp 1 2 x μ m Σ./ x μ where d is the dimension of the input vector x.

26 In Matlab J

27 In Matlab J

28 Results

29 In Matlab J é 5 M = ê -5 ê êë 6 ù ú ú úû å é 5 2-1ù = ê ú ê ú êë úû

30 In Matlab J

31 In Matlab J

32 Thank You Questions

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds Applied Numerical Analysis Pseudo Random Number Generator Lecturer: Emad Fatemizadeh What is random number: A sequence in which each term is unpredictable 29, 95, 11, 60, 22 Application: Monte Carlo Simulations

More information

Generating pseudo- random numbers

Generating pseudo- random numbers Generating pseudo- random numbers What are pseudo-random numbers? Numbers exhibiting statistical randomness while being generated by a deterministic process. Easier to generate than true random numbers?

More information

Class 12. Random Numbers

Class 12. Random Numbers Class 12. Random Numbers NRiC 7. Frequently needed to generate initial conditions. Often used to solve problems statistically. How can a computer generate a random number? It can t! Generators are pseudo-random.

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

Random number generators and random processes. Statistics and probability intro. Peg board example. Peg board example. Notes. Eugeniy E.

Random number generators and random processes. Statistics and probability intro. Peg board example. Peg board example. Notes. Eugeniy E. Random number generators and random processes Eugeniy E. Mikhailov The College of William & Mary Lecture 11 Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 1 / 11 Statistics and probability intro

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations What are Monte Carlo Simulations and why ones them? Pseudo Random Number generators Creating a realization of a general PDF The Bootstrap approach A real life example: LOFAR simulations

More information

B. Maddah ENMG 622 Simulation 11/11/08

B. Maddah ENMG 622 Simulation 11/11/08 B. Maddah ENMG 622 Simulation 11/11/08 Random-Number Generators (Chapter 7, Law) Overview All stochastic simulations need to generate IID uniformly distributed on (0,1), U(0,1), random numbers. 1 f X (

More information

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint Chapter 4: Monte Carlo Methods Paisan Nakmahachalasint Introduction Monte Carlo Methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

Random Number Generation. Stephen Booth David Henty

Random Number Generation. Stephen Booth David Henty Random Number Generation Stephen Booth David Henty Introduction Random numbers are frequently used in many types of computer simulation Frequently as part of a sampling process: Generate a representative

More information

A simple algorithm that will generate a sequence of integers between 0 and m is:

A simple algorithm that will generate a sequence of integers between 0 and m is: Using the Pseudo-Random Number generator Generating random numbers is a useful technique in many numerical applications in Physics. This is because many phenomena in physics are random, and algorithms

More information

Uniform Random Number Generators

Uniform Random Number Generators JHU 553.633/433: Monte Carlo Methods J. C. Spall 25 September 2017 CHAPTER 2 RANDOM NUMBER GENERATION Motivation and criteria for generators Linear generators (e.g., linear congruential generators) Multiple

More information

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring Independent Events Two events are independent if knowing that one occurs does not change the probability of the other occurring Conditional probability is denoted P(A B), which is defined to be: P(A and

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

2008 Winton. Review of Statistical Terminology

2008 Winton. Review of Statistical Terminology 1 Review of Statistical Terminology 2 Formal Terminology An experiment is a process whose outcome is not known with certainty The experiment s sample space S is the set of all possible outcomes. A random

More information

Random number generators

Random number generators s generators Comp Sci 1570 Introduction to Outline s 1 2 s generator s The of a sequence of s or symbols that cannot be reasonably predicted better than by a random chance, usually through a random- generator

More information

Random Number Generators

Random Number Generators 1/18 Random Number Generators Professor Karl Sigman Columbia University Department of IEOR New York City USA 2/18 Introduction Your computer generates" numbers U 1, U 2, U 3,... that are considered independent

More information

Tae-Soo Kim and Young-Kyun Yang

Tae-Soo Kim and Young-Kyun Yang Kangweon-Kyungki Math. Jour. 14 (2006), No. 1, pp. 85 93 ON THE INITIAL SEED OF THE RANDOM NUMBER GENERATORS Tae-Soo Kim and Young-Kyun Yang Abstract. A good arithmetic random number generator should possess

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Review of Statistical Terminology

Review of Statistical Terminology Review of Statistical Terminology An experiment is a process whose outcome is not known with certainty. The experiment s sample space S is the set of all possible outcomes. A random variable is a function

More information

Random Number Generators - a brief assessment of those available

Random Number Generators - a brief assessment of those available Random Number Generators - a brief assessment of those available Anna Mills March 30, 2003 1 Introduction Nothing in nature is random...a thing appears random only through the incompleteness of our knowledge.

More information

Simulation. Version 1.1 c 2010, 2009, 2001 José Fernando Oliveira Maria Antónia Carravilla FEUP

Simulation. Version 1.1 c 2010, 2009, 2001 José Fernando Oliveira Maria Antónia Carravilla FEUP Simulation Version 1.1 c 2010, 2009, 2001 José Fernando Oliveira Maria Antónia Carravilla FEUP Systems - why simulate? System any object or entity on which a particular study is run. Model representation

More information

Lecture 15 Random variables

Lecture 15 Random variables Lecture 15 Random variables Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn No.1

More information

In manycomputationaleconomicapplications, one must compute thede nite n

In manycomputationaleconomicapplications, one must compute thede nite n Chapter 6 Numerical Integration In manycomputationaleconomicapplications, one must compute thede nite n integral of a real-valued function f de ned on some interval I of

More information

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary CPSC 531: Random Numbers Jonathan Hudson Department of Computer Science University of Calgary http://www.ucalgary.ca/~hudsonj/531f17 Introduction In simulations, we generate random values for variables

More information

Random processes and probability distributions. Phys 420/580 Lecture 20

Random processes and probability distributions. Phys 420/580 Lecture 20 Random processes and probability distributions Phys 420/580 Lecture 20 Random processes Many physical processes are random in character: e.g., nuclear decay (Poisson distributed event count) P (k, τ) =

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 2: Monte Carlo simulation methods Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

ISyE 3044 Fall 2017 Test #1a Solutions

ISyE 3044 Fall 2017 Test #1a Solutions 1 NAME ISyE 344 Fall 217 Test #1a Solutions This test is 75 minutes. You re allowed one cheat sheet. Good luck! 1. Suppose X has p.d.f. f(x) = 4x 3, < x < 1. Find E[ 2 X 2 3]. Solution: By LOTUS, we have

More information

Physics 403 Monte Carlo Techniques

Physics 403 Monte Carlo Techniques Physics 403 Monte Carlo Techniques Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Simulation and Random Number Generation Simulation of Physical Systems Creating

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number Topic Contents Factoring Methods Unit 3 The smallest divisor of an integer The GCD of two numbers Generating prime numbers Computing prime factors of an integer Generating pseudo random numbers Raising

More information

IE 581 Introduction to Stochastic Simulation. One page of notes, front and back. Closed book. 50 minutes. Score

IE 581 Introduction to Stochastic Simulation. One page of notes, front and back. Closed book. 50 minutes. Score One page of notes, front and back. Closed book. 50 minutes. Score Schmeiser Page 1 of 4 Test #1, Spring 2001 1. True or false. (If you wish, write an explanation of your thinking.) (a) T Data are "binary"

More information

Pseudo-random Number Generation. Qiuliang Tang

Pseudo-random Number Generation. Qiuliang Tang Pseudo-random Number Generation Qiuliang Tang Random Numbers in Cryptography The keystream in the one-time pad The secret key in the DES encryption The prime numbers p, q in the RSA encryption The private

More information

Systems Simulation Chapter 7: Random-Number Generation

Systems Simulation Chapter 7: Random-Number Generation Systems Simulation Chapter 7: Random-Number Generation Fatih Cavdur fatihcavdur@uludag.edu.tr April 22, 2014 Introduction Introduction Random Numbers (RNs) are a necessary basic ingredient in the simulation

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function

CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function that is reasonably random in behavior, then take any

More information

Random numbers and generators

Random numbers and generators Chapter 2 Random numbers and generators Random numbers can be generated experimentally, like throwing dice or from radioactive decay measurements. In numerical calculations one needs, however, huge set

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

Intelligent Systems I

Intelligent Systems I 1, Intelligent Systems I 12 SAMPLING METHODS THE LAST THING YOU SHOULD EVER TRY Philipp Hennig & Stefan Harmeling Max Planck Institute for Intelligent Systems 23. January 2014 Dptmt. of Empirical Inference

More information

MTH739U/P: Topics in Scientific Computing Autumn 2016 Week 6

MTH739U/P: Topics in Scientific Computing Autumn 2016 Week 6 MTH739U/P: Topics in Scientific Computing Autumn 16 Week 6 4.5 Generic algorithms for non-uniform variates We have seen that sampling from a uniform distribution in [, 1] is a relatively straightforward

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

Monte Carlo Techniques

Monte Carlo Techniques Physics 75.502 Part III: Monte Carlo Methods 40 Monte Carlo Techniques Monte Carlo refers to any procedure that makes use of random numbers. Monte Carlo methods are used in: Simulation of natural phenomena

More information

Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients

Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients Journal of mathematics and computer Science 8 (2014) 28-32 Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients Behrouz Fathi Vajargah Department of statistics,

More information

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico Lecture 20 Randomness and Monte Carlo J. Chaudhry Department of Mathematics and Statistics University of New Mexico J. Chaudhry (UNM) CS 357 1 / 40 What we ll do: Random number generators Monte-Carlo integration

More information

Generating Random Variables

Generating Random Variables Generating Random Variables These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable copy and print a single

More information

Pseudo-Random Generators

Pseudo-Random Generators Pseudo-Random Generators Topics Why do we need random numbers? Truly random and Pseudo-random numbers. Definition of pseudo-random-generator What do we expect from pseudorandomness? Testing for pseudo-randomness.

More information

Pseudo-Random Generators

Pseudo-Random Generators Pseudo-Random Generators Why do we need random numbers? Simulation Sampling Numerical analysis Computer programming (e.g. randomized algorithm) Elementary and critical element in many cryptographic protocols

More information

Monte Carlo Simulation

Monte Carlo Simulation Monte Carlo Simulation 198 Introduction Reliability indices of an actual physical system could be estimated by collecting data on the occurrence of failures and durations of repair. The Monte Carlo method

More information

Topics. Pseudo-Random Generators. Pseudo-Random Numbers. Truly Random Numbers

Topics. Pseudo-Random Generators. Pseudo-Random Numbers. Truly Random Numbers Topics Pseudo-Random Generators Why do we need random numbers? Truly random and Pseudo-random numbers. Definition of pseudo-random-generator What do we expect from pseudorandomness? Testing for pseudo-randomness.

More information

Physics 403. Segev BenZvi. Monte Carlo Techniques. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Monte Carlo Techniques. Department of Physics and Astronomy University of Rochester Physics 403 Monte Carlo Techniques Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Simulation and Random Number Generation Simulation of Physical Systems Creating

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Sources of randomness

Sources of randomness Random Number Generator Chapter 7 In simulations, we generate random values for variables with a specified distribution Ex., model service times using the exponential distribution Generation of random

More information

Lecture 5: Random numbers and Monte Carlo (Numerical Recipes, Chapter 7) Motivations for generating random numbers

Lecture 5: Random numbers and Monte Carlo (Numerical Recipes, Chapter 7) Motivations for generating random numbers Lecture 5: Random numbers and Monte Carlo (Numerical Recipes, Chapter 7) Motivations for generating random numbers To sample a function in a statistically controlled manner (i.e. for Monte Carlo integration)

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 2: Random Numbers http://www.wiley.com/go/smed What are random numbers good for (according to D.E. Knuth) simulation sampling numerical analysis computer

More information

MATH5835 Statistical Computing. Jochen Voss

MATH5835 Statistical Computing. Jochen Voss MATH5835 Statistical Computing Jochen Voss September 27, 2011 Copyright c 2011 Jochen Voss J.Voss@leeds.ac.uk This text is work in progress and may still contain typographical and factual mistakes. Reports

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Probability theory and statistical analysis: a review Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Concepts assumed known Histograms, mean, median, spread, quantiles Probability,

More information

Outline. Random Variables. Examples. Random Variable

Outline. Random Variables. Examples. Random Variable Outline Random Variables M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Random variables. CDF and pdf. Joint random variables. Correlated, independent, orthogonal. Correlation,

More information

Numerical methods for lattice field theory

Numerical methods for lattice field theory Numerical methods for lattice field theory Mike Peardon Trinity College Dublin August 9, 2007 Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 9, 2007 1 / 37 Numerical

More information

probability of k samples out of J fall in R.

probability of k samples out of J fall in R. Nonparametric Techniques for Density Estimation (DHS Ch. 4) n Introduction n Estimation Procedure n Parzen Window Estimation n Parzen Window Example n K n -Nearest Neighbor Estimation Introduction Suppose

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Mainz, May 2, 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler 2. Random Numbers 2.1 Why random numbers:

More information

Chapter 4: Monte-Carlo Methods

Chapter 4: Monte-Carlo Methods Chapter 4: Monte-Carlo Methods A Monte-Carlo method is a technique for the numerical realization of a stochastic process by means of normally distributed random variables. In financial mathematics, it

More information

Efficient Pseudorandom Generators Based on the DDH Assumption

Efficient Pseudorandom Generators Based on the DDH Assumption Efficient Pseudorandom Generators Based on the DDH Assumption Andrey Sidorenko (Joint work with Reza Rezaeian Farashahi and Berry Schoenmakers) TU Eindhoven Outline Introduction provably secure pseudorandom

More information

Chapter 7 Random Numbers

Chapter 7 Random Numbers Chapter 7 Random Numbers February 15, 2010 7 In the following random numbers and random sequences are treated as two manifestations of the same thing. A series of random numbers strung together is considered

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information

Stream Ciphers. Çetin Kaya Koç Winter / 20

Stream Ciphers. Çetin Kaya Koç   Winter / 20 Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 1 / 20 Linear Congruential Generators A linear congruential generator produces a sequence of integers x i for i = 1,2,... starting with the given initial

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Ordered Sample Generation

Ordered Sample Generation Ordered Sample Generation Xuebo Yu November 20, 2010 1 Introduction There are numerous distributional problems involving order statistics that can not be treated analytically and need to simulated through

More information

An Introduction to Monte Carlo

An Introduction to Monte Carlo 1/28 An Introduction to Monte Carlo Joshua Lande Stanford February 23, 2011 Monte Carlo - Only SASS Topic to Win an Academy Award? 2/28 As part of the 73rd Scientific and Technical Academy Awards ceremony

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Design of Cryptographically Strong Generator By Transforming Linearly Generated Sequences

Design of Cryptographically Strong Generator By Transforming Linearly Generated Sequences Design of Cryptographically Strong Generator By Transforming Linearly Generated Sequences Matthew N. Anyanwu Department of Computer Science The University of Memphis Memphis, TN 38152, U.S.A. manyanwu

More information

COMBINING VARIABLES ERROR PROPAGATION. What is the error on a quantity that is a function of several random variables

COMBINING VARIABLES ERROR PROPAGATION. What is the error on a quantity that is a function of several random variables COMBINING VARIABLES ERROR PROPAGATION What is the error on a quantity that is a function of several random variables θ = f(x, y,...) If the variance on x, y,... is small and uncorrelated variables then

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

Computer Applications for Engineers ET 601

Computer Applications for Engineers ET 601 Computer Applications for Engineers ET 601 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Random Variables (Con t) 1 Office Hours: (BKD 3601-7) Wednesday 9:30-11:30 Wednesday 16:00-17:00 Thursday

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics KTH Royal Institute of Technology jimmyol@kth.se Lecture 2 Random number generation 27 March 2014 Computer Intensive Methods

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

2905 Queueing Theory and Simulation PART IV: SIMULATION

2905 Queueing Theory and Simulation PART IV: SIMULATION 2905 Queueing Theory and Simulation PART IV: SIMULATION 22 Random Numbers A fundamental step in a simulation study is the generation of random numbers, where a random number represents the value of a random

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture III (29.10.07) Contents: Overview & Test of random number generators Random number distributions Monte Carlo The terminology Monte Carlo-methods originated around

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 12. Gaussian Processes Alex Smola Carnegie Mellon University http://alex.smola.org/teaching/cmu2013-10-701 10-701 The Normal Distribution http://www.gaussianprocess.org/gpml/chapters/

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

AMath 483/583 Lecture 26. Notes: Notes: Announcements. Notes: AMath 483/583 Lecture 26. Outline:

AMath 483/583 Lecture 26. Notes: Notes: Announcements. Notes: AMath 483/583 Lecture 26. Outline: AMath 483/583 Lecture 26 Outline: Monte Carlo methods Random number generators Monte Carlo integrators Random walk solution of Poisson problem Announcements Part of Final Project will be available tomorrow.

More information

A Horadam-based pseudo-random number generator

A Horadam-based pseudo-random number generator A Horadam-based pseudo-random number generator Item type Authors Citation DOI Publisher Journal Meetings and Proceedings Bagdasar, Ovidiu; Chen, Minsi Bagdasar, O. and Chen, M. (4) 'A Horadam-based pseudo-random

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Contents. 1 Probability review Introduction Random variables and distributions Convergence of random variables...

Contents. 1 Probability review Introduction Random variables and distributions Convergence of random variables... Contents Probability review. Introduction..............................2 Random variables and distributions................ 3.3 Convergence of random variables................. 6 2 Monte Carlo methods

More information

Uniform Random Binary Floating Point Number Generation

Uniform Random Binary Floating Point Number Generation Uniform Random Binary Floating Point Number Generation Prof. Dr. Thomas Morgenstern, Phone: ++49.3943-659-337, Fax: ++49.3943-659-399, tmorgenstern@hs-harz.de, Hochschule Harz, Friedrichstr. 57-59, 38855

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

Methods of Data Analysis Random numbers, Monte Carlo integration, and Stochastic Simulation Algorithm (SSA / Gillespie)

Methods of Data Analysis Random numbers, Monte Carlo integration, and Stochastic Simulation Algorithm (SSA / Gillespie) Methods of Data Analysis Random numbers, Monte Carlo integration, and Stochastic Simulation Algorithm (SSA / Gillespie) Week 1 1 Motivation Random numbers (RNs) are of course only pseudo-random when generated

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

Department of Electrical- and Information Technology. ETS061 Lecture 3, Verification, Validation and Input

Department of Electrical- and Information Technology. ETS061 Lecture 3, Verification, Validation and Input ETS061 Lecture 3, Verification, Validation and Input Verification and Validation Real system Validation Model Verification Measurements Verification Break model down into smaller bits and test each bit

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Copyright c 2007 by Karl Sigman 1 Simulating normal Gaussian rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Fundamental to many applications

More information

Appendix C: Generation of Pseudo-Random Numbers

Appendix C: Generation of Pseudo-Random Numbers 4 Appendi C: Generation of Pseudo-Random Numbers Computers are deterministic machines: if fed with eactly the same input data, a program will always arrive at eactly the same results. Still, there eist

More information

Uniform and Exponential Random Floating Point Number Generation

Uniform and Exponential Random Floating Point Number Generation Uniform and Exponential Random Floating Point Number Generation Thomas Morgenstern Hochschule Harz, Friedrichstr. 57-59, D-38855 Wernigerode tmorgenstern@hs-harz.de Summary. Pseudo random number generators

More information

Cryptographic Pseudo-random Numbers in Simulation

Cryptographic Pseudo-random Numbers in Simulation Cryptographic Pseudo-random Numbers in Simulation Nick Maclaren University of Cambridge Computer Laboratory Pembroke Street, Cambridge CB2 3QG. A fruitful source of confusion on the Internet is that both

More information