Uniform and Exponential Random Floating Point Number Generation

Size: px
Start display at page:

Download "Uniform and Exponential Random Floating Point Number Generation"

Transcription

1 Uniform and Exponential Random Floating Point Number Generation Thomas Morgenstern Hochschule Harz, Friedrichstr , D Wernigerode Summary. Pseudo random number generators approximate sequences of independent real random numbers. The output lies within the finite subset of computer numbers and therefore can not be random as real numbers. Classical random number generators produce only a small part of floating-point numbers. Many small numbers are missed and the output can even not be random as floating-point numbers. We give examples of simple simulation studies that lead to wrong results. The common empirical tests are not sensitive enough to detect these deficits. By generating mantissa and exponent independently we successfully construct new uniform and exponential random number generators based on a linear congruential generator. The results of the simulation studies are improved. Knuths empirical tests show no evidence against these generators. We also develop an empirical test adapted to the floating-point numbers format. Key words: random number generation, floating point numbers, stochastic simulation, stochastic programming, statistical tests 2000 Mathematics Subject Classification: 65C10 1 Introduction Randomized algorithms like Monte Carlo simulation require long sequences of random numbers (x i ) i N. These sequences are asked to be samples of independent and identically distributed (i.i.d.) random variables (X i ) i N. Random numbers produced by algorithmic random number generators (RNG) are never random, but should appear to be random to the uninitiated. We call these generators pseudorandom number generators [1]. They should pass statistical tests of the i.i.d. hypothesis [2]. In fact, no pseudo RNG can pass all statistical tests. So we may say that bad RNGs are those that fail simple tests, whereas good RNGs fail only complicated tests that are very hard hard to find and to run [3, 4].

2 2 Thomas Morgenstern 1.1 Definitions To formalize pseudorandom number generators, we follow [2, 3, 5]: Definition 1. A (pseudo-) random number generator (RNG) is a structure (S, t, O, o) where S is a finite set of states, t : S S a transition function, O an output space, and o : S O an output function. s 0 is the initial state evolveing according to s i = t(s i 1 ). The output at step i is u i = o(s i ) O. u 0, u 1, u 2,... are called the random numbers produced by the RNG. Example 1. A good linear congruential generator (LCG), is LCG16807 introduced by Lewis, Goodman and Miller in [6]. It uses m = , a = 7 5, S = Z m and the transition function s i+1 := s i mod For values in O = (0, 1) one usually uses the output function u i := z i Simulation Examples We consider examples showing that some basic simulation tasks in physics or engineering fail, when classical pseudorandom number generators are used. Example 2. Consider a radio signal r(t) = sin(2 π f t) with frequency f. We want to determine the Energy E = T r 2 (t) dt by Monte-Carlo integration. 0 We use the generator from Ex. 1 to produce n random numbers u i and simulate time instances t i := 2 π f T u i. For a medium frequency signal (MF) f = Hz 1 MHz, a micro wave signal (UHF) f = Hz 1 GHz and n = 2 30 random numbers we get the results in Table 1. Table 1. Energy of sin, MC Simulation with LCG16807, n = 2 30 MF UHF T = 1 s T = 1 s T = s T = s 0.0 Example 3. We consider the signal r(t) = e d t sin(2 π f t) with damping d and again calculate the signal energy by Monte-Carlo integration. For the MF signal, the generator from Ex. 1 and n := 2 30 numbers we get the results in Table 2 (incl. true values).

3 Uniform and Exponential Random Floating Point Number Generation 3 Table 2. Energy of damped signals, MC Simulation with LCG16807, n = 2 30 d = 10 E = d = 250 E = T = 1 s T = 1 s T = s T = s Discrete Random Numbers On a digital computer the output is a subset of finitely many discrete numbers o(s) F R. As a finite set has measure 0 within the real numbers we can immediately construct tests these generators fail. Therefore the random numbers generated can not to be i.i.d. real numbers. They are distributed according to a discrete distribution on a finite subset of computer numbers. Definition 2. A floating point number v F(b, p, e min, e max ) with basis b, p significant digits, significand c and exponent e {e min,..., e max } has the value v := ( 1) s c b 1 p b e. A normal floating point number v 0 has digit d 0 0 and a denormal floating point number has d 0 = 0 and e = e min. 2.1 Lower Bits Test We will see, that the generator from Ex. 1 with floating point number output o(s) F(2, 24, 126, 127) generates only a small fraction of these numbers the output can not even be random as floating point numbers. The usual goodness of fit tests (e.g. χ 2 -square, Kolmogorov-Smirnov) are not very sensitive to the of computer numbers used. These tests classify the numbers in relatively few intervals determined by the first significant bits. Testing the last significant bits of random numbers requires some care (see [1, p. 13]). But the states s i of LCG16807 in Ex. 1 could be called super uniform and even the lower bits are uniformly distributed. Testing the b lower bits of the states with a χ 2 -test gives the results in Table 3. Table χ 2 -tests, n = 2 20 states, 3 and 6 lower bits probability occurrences probability occurrences p < p < p < p < p p 9

4 4 Thomas Morgenstern We use the generator from Ex. 1, the output space O = F(2, 24, 126, 127) and the output function o(z) := z If we test the b lower bits of the significands c with a χ 2 test, we get the results in Table 4. Table χ 2 -tests, n = 2 20 significands, 3 and 6 lower bits probability occurrences probability occurrences p < p < p < p < p < p < p p 1 Clearly the generator LCG16807 with this output function fails our test. The reason for this is that the last significant bits of the generated small numbers are 0. 3 Floating Point Number Generation 3.1 Uniform Random Floating Point Numbers We have to construct new generators improving the simulations and passing this test. These new generators generate the exponent e and the significand c independently in two steps and generate denormal numbers as well. Let (S, t, O, o) be a good integer RNG with output O = [0, 2 q 1 ) N 0. We can construct a floating point number generator like in Table 5. Table 5. Floating Point Number Generator Step 1 (exponent generation) e := 1; efound := false; denormal := false; while (e e min and (not efound) ) do i := q 2; while (o(s) < 2 i and i > 0) i := i 1; e := e + (i q + 2); if (i > 0) efound := true; end do; if (e < e min) then e := e min; denormal := true end if; Step 2 (mantissa generation) if (not denormal) then c := 2 q 1 + o(s) else c := o(s) end if; u := ( 1) 0 c 2 1 q 2 e ;

5 Uniform and Exponential Random Floating Point Number Generation Exponential Random Floating Point Numbers In the same fashion we can construct a floating point number generator with exponentially distributed numbers (see Table 6). Table 6. Exponential Floating Point Number Generator Step 1 e := 0; efound := false; while (not efound) do i := q 2; while (o(s) < 2 i and i > 0) i := i 1; e := e + (q 2 i); if (i > 0) efound := true; end do; Step 2 c := 2 q 1 + o(s); u := e + q log 2 (c); 4 Simulation Results We use the generator from Ex. 1 to construct a random floating point generator FloatLCG2 as in Table 5. Example 4. We continue our example 2 with the generator FloatLCG2 and get the results in Table 7. Table 7. Energy of sin, MC Simulation with FloatLCG2, n = 2 30 MF T = 1 s T = s UHF T = 1 s T = s Example 5. We continue our example 3 with the generator FloatLCG2 and get the results in Table 8. Table 8. Energy of damped signals, MC Simulation with FloatLCG2, n = 2 30 d = 10 E = d = 250 E = T = 1 s T = 1 s T = s T = s

6 6 Thomas Morgenstern 5 Mantissa Test We take 20 times n = 2 20 random floating point numbers and test the lower 1, 3 and 6 bits of the mantissa with the χ 2 test. The lowest probability found once for the last 2 bits test is p = Testing the last 3 bits one once finds p = All test values are non-suspicious. Our floating point generator FloatLCG2 passes the test. 6 Conclusions The new pseudorandom number generator FloatLCG2 for generation of uniform random binary floating point numbers is better and solves a wider class of problems than the generators with classical output function. It also passes Knuth s suite of empirical tests [1] and our test, sensitive to floating point numbers. The concept can be used to generate exponential random floating point numbers. But some further work is still required. References [1] Knuth D E (1998) The art of computer programming. Vol. 2: Seminumerical algorithms. third edition, Addison-Wesley, Reading, Mass. [2] L Ecuyer P (1994) Uniform random number generation. Annals of Operations Research 53: [3] L Ecuyer P (2004) Random number generation. In: Gentle J E, Hrdle W, Mori Y, (eds) Handbook of computational statistics. Concepts and methods. Springer, Berlin Heidelberg New York [4] L Ecuyer P (2001) Software for uniform random number generation: Distinguishing the good and the bad. In: Proceedings of the 2001 Winter Simulation Conference. Pistacaway NJ., IEEE Press [5] L Ecuyer P (1998) Random number generation. In: Banks J (ed) Handbook on Simulation. John Wiley, Hoboken, NJ. [6] Lewis P A S, Goodman, A S, Miller, J M (1969) A pseudo-random number generator for the system/360. In: IBM System s Journal 8: [7] ANSI / IEEE Std 754 (1985) IEEE Standard for Binary Floating-Point Arithmetic [8] Morgenstern T (2006) Uniform Random Binary Floating Point Number Generation. In: Proceedings of the 2. Wernigerder Automatisierungs- und Informatiktage. Hochschule Harz, Wernigerode

Uniform Random Binary Floating Point Number Generation

Uniform Random Binary Floating Point Number Generation Uniform Random Binary Floating Point Number Generation Prof. Dr. Thomas Morgenstern, Phone: ++49.3943-659-337, Fax: ++49.3943-659-399, tmorgenstern@hs-harz.de, Hochschule Harz, Friedrichstr. 57-59, 38855

More information

Uniform Random Number Generators

Uniform Random Number Generators JHU 553.633/433: Monte Carlo Methods J. C. Spall 25 September 2017 CHAPTER 2 RANDOM NUMBER GENERATION Motivation and criteria for generators Linear generators (e.g., linear congruential generators) Multiple

More information

A Repetition Test for Pseudo-Random Number Generators

A Repetition Test for Pseudo-Random Number Generators Monte Carlo Methods and Appl., Vol. 12, No. 5-6, pp. 385 393 (2006) c VSP 2006 A Repetition Test for Pseudo-Random Number Generators Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen SAM, Mathematik, ETHZ,

More information

2 P. L'Ecuyer and R. Simard otherwise perform well in the spectral test, fail this independence test in a decisive way. LCGs with multipliers that hav

2 P. L'Ecuyer and R. Simard otherwise perform well in the spectral test, fail this independence test in a decisive way. LCGs with multipliers that hav Beware of Linear Congruential Generators with Multipliers of the form a = 2 q 2 r Pierre L'Ecuyer and Richard Simard Linear congruential random number generators with Mersenne prime modulus and multipliers

More information

How do computers represent numbers?

How do computers represent numbers? How do computers represent numbers? Tips & Tricks Week 1 Topics in Scientific Computing QMUL Semester A 2017/18 1/10 What does digital mean? The term DIGITAL refers to any device that operates on discrete

More information

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary CPSC 531: Random Numbers Jonathan Hudson Department of Computer Science University of Calgary http://www.ucalgary.ca/~hudsonj/531f17 Introduction In simulations, we generate random values for variables

More information

Pseudo-Random Numbers Generators. Anne GILLE-GENEST. March 1, Premia Introduction Definitions Good generators...

Pseudo-Random Numbers Generators. Anne GILLE-GENEST. March 1, Premia Introduction Definitions Good generators... 14 pages 1 Pseudo-Random Numbers Generators Anne GILLE-GENEST March 1, 2012 Contents Premia 14 1 Introduction 2 1.1 Definitions............................. 2 1.2 Good generators..........................

More information

Tae-Soo Kim and Young-Kyun Yang

Tae-Soo Kim and Young-Kyun Yang Kangweon-Kyungki Math. Jour. 14 (2006), No. 1, pp. 85 93 ON THE INITIAL SEED OF THE RANDOM NUMBER GENERATORS Tae-Soo Kim and Young-Kyun Yang Abstract. A good arithmetic random number generator should possess

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

Stochastic Simulation of Communication Networks

Stochastic Simulation of Communication Networks Stochastic Simulation of Communication Networks Part 2 Amanpreet Singh (aps) Dr.-Ing Umar Toseef (umr) (@comnets.uni-bremen.de) Prof. Dr. C. Görg www.comnets.uni-bremen.de VSIM 2-1 Table of Contents 1

More information

Review of Statistical Terminology

Review of Statistical Terminology Review of Statistical Terminology An experiment is a process whose outcome is not known with certainty. The experiment s sample space S is the set of all possible outcomes. A random variable is a function

More information

Sources of randomness

Sources of randomness Random Number Generator Chapter 7 In simulations, we generate random values for variables with a specified distribution Ex., model service times using the exponential distribution Generation of random

More information

Random Numbers. Pierre L Ecuyer

Random Numbers. Pierre L Ecuyer 1 Random Numbers Pierre L Ecuyer Université de Montréal, Montréal, Québec, Canada Random numbers generators (RNGs) are available from many computer software libraries. Their purpose is to produce sequences

More information

Introduction CSE 541

Introduction CSE 541 Introduction CSE 541 1 Numerical methods Solving scientific/engineering problems using computers. Root finding, Chapter 3 Polynomial Interpolation, Chapter 4 Differentiation, Chapter 4 Integration, Chapters

More information

epub WU Institutional Repository

epub WU Institutional Repository epub WU Institutional Repository Günter Tirler and Peter Dalgaard and Wolfgang Hörmann and Josef Leydold An Error in the Kinderman-Ramage Method and How to Fix It Paper Original Citation: Tirler, Günter

More information

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring Independent Events Two events are independent if knowing that one occurs does not change the probability of the other occurring Conditional probability is denoted P(A B), which is defined to be: P(A and

More information

Random Number Generators - a brief assessment of those available

Random Number Generators - a brief assessment of those available Random Number Generators - a brief assessment of those available Anna Mills March 30, 2003 1 Introduction Nothing in nature is random...a thing appears random only through the incompleteness of our knowledge.

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

2008 Winton. Review of Statistical Terminology

2008 Winton. Review of Statistical Terminology 1 Review of Statistical Terminology 2 Formal Terminology An experiment is a process whose outcome is not known with certainty The experiment s sample space S is the set of all possible outcomes. A random

More information

Lecture 1: January 16

Lecture 1: January 16 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 1: January 16 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

B. Maddah ENMG 622 Simulation 11/11/08

B. Maddah ENMG 622 Simulation 11/11/08 B. Maddah ENMG 622 Simulation 11/11/08 Random-Number Generators (Chapter 7, Law) Overview All stochastic simulations need to generate IID uniformly distributed on (0,1), U(0,1), random numbers. 1 f X (

More information

Some long-period random number generators using shifts and xors

Some long-period random number generators using shifts and xors Introduction Some long-period random number generators using shifts and xors Richard P. Brent MSI & RSISE, ANU Canberra, ACT 0200 CTAC06@rpbrent.com Marsaglia recently proposed a class of uniform random

More information

Statistische Methoden der Datenanalyse. Kapitel 3: Die Monte-Carlo-Methode

Statistische Methoden der Datenanalyse. Kapitel 3: Die Monte-Carlo-Methode 1 Statistische Methoden der Datenanalyse Kapitel 3: Die Monte-Carlo-Methode Professor Markus Schumacher Freiburg / Sommersemester 2009 Basiert auf Vorlesungen und Folien von Glen Cowan und Abbildungen

More information

S6880 #6. Random Number Generation #2: Testing RNGs

S6880 #6. Random Number Generation #2: Testing RNGs S6880 #6 Random Number Generation #2: Testing RNGs 1 Testing Uniform RNGs Theoretical Tests Outline 2 Empirical Tests for Independence Gap Tests Runs Test Coupon Collectors Test The Poker Test 3 Other

More information

Some long-period random number generators using shifts and xors

Some long-period random number generators using shifts and xors ANZIAM J. 48 (CTAC2006) pp.c188 C202, 2007 C188 Some long-period random number generators using shifts and xors Richard P. Brent 1 (Received 6 July 2006; revised 2 July 2007) Abstract Marsaglia recently

More information

Lehmer Random Number Generators: Introduction

Lehmer Random Number Generators: Introduction Lehmer Random Number Generators: Introduction Revised version of the slides based on the book Discrete-Event Simulation: a first course LL Leemis & SK Park Section(s) 21, 22 c 2006 Pearson Ed, Inc 0-13-142917-5

More information

Finally, a theory of random number generation

Finally, a theory of random number generation Finally, a theory of random number generation F. James, CERN, Geneva Abstract For a variety of reasons, Monte Carlo methods have become of increasing importance among mathematical methods for solving all

More information

A NEW RANDOM NUMBER GENERATOR USING FIBONACCI SERIES

A NEW RANDOM NUMBER GENERATOR USING FIBONACCI SERIES International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 11 No. I (April, 2017), pp. 185-193 A NEW RANDOM NUMBER GENERATOR USING FIBONACCI SERIES KOTTA NAGALAKSHMI RACHANA 1 AND SOUBHIK

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Physical Tests for Random Numbers. in Simulations. P.O. Box 9 (Siltavuorenpenger 20 C) FIN{00014 University of Helsinki. Finland

Physical Tests for Random Numbers. in Simulations. P.O. Box 9 (Siltavuorenpenger 20 C) FIN{00014 University of Helsinki. Finland Physical Tests for Random Numbers in Simulations I. Vattulainen, 1;2 T. Ala{Nissila, 1;2 and K. Kankaala 2;3 1 Research Institute for Theoretical Physics P.O. Box 9 (Siltavuorenpenger 20 C) FIN{00014 University

More information

Generating Uniform Random Numbers

Generating Uniform Random Numbers 1 / 43 Generating Uniform Random Numbers Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA March 1, 2016 2 / 43 Outline 1 Introduction 2 Some Generators We Won t

More information

Systems Simulation Chapter 7: Random-Number Generation

Systems Simulation Chapter 7: Random-Number Generation Systems Simulation Chapter 7: Random-Number Generation Fatih Cavdur fatihcavdur@uludag.edu.tr April 22, 2014 Introduction Introduction Random Numbers (RNs) are a necessary basic ingredient in the simulation

More information

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico Lecture 20 Randomness and Monte Carlo J. Chaudhry Department of Mathematics and Statistics University of New Mexico J. Chaudhry (UNM) CS 357 1 / 40 What we ll do: Random number generators Monte-Carlo integration

More information

More General Functions Is this technique limited to the monomials {1, x, x 2, x 3,...}?

More General Functions Is this technique limited to the monomials {1, x, x 2, x 3,...}? More General Functions Is this technique limited to the monomials {1, x, x 2, x 3,...}? Interpolation with General Sets of Functions For a general set of functions {ϕ 1,..., ϕ n }, solve the linear system

More information

Some long-period random number generators using shifts and xors

Some long-period random number generators using shifts and xors Some long-period random number generators using shifts and xors Richard. P. Brent 2 July 2007 Abstract Marsaglia recently introduced a class of xorshift random number generators (RNGs) with periods 2 n

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

Generating Uniform Random Numbers

Generating Uniform Random Numbers 1 / 41 Generating Uniform Random Numbers Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/13/16 2 / 41 Outline 1 Introduction 2 Some Lousy Generators We Won t

More information

Generating Uniform Random Numbers

Generating Uniform Random Numbers 1 / 44 Generating Uniform Random Numbers Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/29/17 2 / 44 Outline 1 Introduction 2 Some Lousy Generators We Won t

More information

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania Monte Carlo Methods Jesús Fernández-Villaverde University of Pennsylvania 1 Why Monte Carlo? From previous chapter, we want to compute: 1. Posterior distribution: π ³ θ Y T,i = f(y T θ,i)π (θ i) R Θ i

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

PERIOD LENGTHS OF CHAOTIC PSEUDO-RANDOM NUMBER GENERATORS

PERIOD LENGTHS OF CHAOTIC PSEUDO-RANDOM NUMBER GENERATORS PERIOD LENGTHS OF CHAOTIC PSEUDO-RANDOM NUMBER GENERATORS Jörg Keller Hanno Wiese FernUniversität in Hagen LG Parallelität und VLSI 58084 Hagen, Germany joerg.keller@fernuni-hagen.de ABSTRACT Cryptographic

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 2: Random Numbers http://www.wiley.com/go/smed What are random numbers good for (according to D.E. Knuth) simulation sampling numerical analysis computer

More information

Comparison of Random Number Generators in Particle Swarm Optimization Algorithm

Comparison of Random Number Generators in Particle Swarm Optimization Algorithm 2014 IEEE Congress on Evolutionary Computation (CEC) July 6-11, 2014, Beijing, China Comparison of Random Number Generators in Particle Swarm Optimization Algorithm Ke Ding and Ying Tan Abstract Intelligent

More information

CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function

CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function that is reasonably random in behavior, then take any

More information

Resolution-Stationary Random Number Generators

Resolution-Stationary Random Number Generators Resolution-Stationary Random Number Generators Francois Panneton Caisse Centrale Desjardins, 1 Complexe Desjardins, bureau 2822 Montral (Québec), H5B 1B3, Canada Pierre L Ecuyer Département d Informatique

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Mainz, May 2, 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler 2. Random Numbers 2.1 Why random numbers:

More information

arxiv: v1 [math.co] 8 Feb 2013

arxiv: v1 [math.co] 8 Feb 2013 ormal numbers and normality measure Christoph Aistleitner arxiv:302.99v [math.co] 8 Feb 203 Abstract The normality measure has been introduced by Mauduit and Sárközy in order to describe the pseudorandomness

More information

Stochastic Simulation of

Stochastic Simulation of Stochastic Simulation of Communication Networks -WS 2014/2015 Part 2 Random Number Generation Prof. Dr. C. Görg www.comnets.uni-bremen.de VSIM 2-1 Table of Contents 1 General Introduction 2 Random Number

More information

Cryptographic Pseudo-random Numbers in Simulation

Cryptographic Pseudo-random Numbers in Simulation Cryptographic Pseudo-random Numbers in Simulation Nick Maclaren University of Cambridge Computer Laboratory Pembroke Street, Cambridge CB2 3QG. A fruitful source of confusion on the Internet is that both

More information

Uniform random numbers generators

Uniform random numbers generators Uniform random numbers generators Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2707/ OUTLINE: The need for random numbers; Basic steps in generation; Uniformly

More information

IE 581 Introduction to Stochastic Simulation. One page of notes, front and back. Closed book. 50 minutes. Score

IE 581 Introduction to Stochastic Simulation. One page of notes, front and back. Closed book. 50 minutes. Score One page of notes, front and back. Closed book. 50 minutes. Score Schmeiser Page 1 of 4 Test #1, Spring 2001 1. True or false. (If you wish, write an explanation of your thinking.) (a) T Data are "binary"

More information

PSEUDORANDOM NUMBER GENERATORS BASED ON THE WEYL SEQUENCE

PSEUDORANDOM NUMBER GENERATORS BASED ON THE WEYL SEQUENCE COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 5, 81-85 (1999) PSEUDORANDOM NUMBER GENERATORS BASED ON THE WEYL SEQUENCE K. W. WOJCIECHOWSKI Institute of Molecular Physics, Polish Academy of Sciences

More information

Random numbers and generators

Random numbers and generators Chapter 2 Random numbers and generators Random numbers can be generated experimentally, like throwing dice or from radioactive decay measurements. In numerical calculations one needs, however, huge set

More information

Binary Floating-Point Numbers

Binary Floating-Point Numbers Binary Floating-Point Numbers S exponent E significand M F=(-1) s M β E Significand M pure fraction [0, 1-ulp] or [1, 2) for β=2 Normalized form significand has no leading zeros maximum # of significant

More information

Fast Fraction-Integer Method for Computing Multiplicative Inverse

Fast Fraction-Integer Method for Computing Multiplicative Inverse Fast Fraction-Integer Method for Computing Multiplicative Inverse Hani M AL-Matari 1 and Sattar J Aboud 2 and Nidal F Shilbayeh 1 1 Middle East University for Graduate Studies, Faculty of IT, Jordan-Amman

More information

Comparison of Random Number Generators in Particle Swarm Optimization Algorithm

Comparison of Random Number Generators in Particle Swarm Optimization Algorithm Comparison of Random Number Generators in Particle Swarm Optimization Algorithm Ke Ding and Ying Tan Abstract Intelligent optimization algorithms are very effective to tackle complex problems that would

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5. Ax = b.

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5. Ax = b. CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5 GENE H GOLUB Suppose we want to solve We actually have an approximation ξ such that 1 Perturbation Theory Ax = b x = ξ + e The question is, how

More information

Chapter 1 Computer Arithmetic

Chapter 1 Computer Arithmetic Numerical Analysis (Math 9372) 2017-2016 Chapter 1 Computer Arithmetic 1.1 Introduction Numerical analysis is a way to solve mathematical problems by special procedures which use arithmetic operations

More information

Contents Functions Remarks and examples Methods and formulas Acknowledgments References Also see

Contents Functions Remarks and examples Methods and formulas Acknowledgments References Also see Title stata.com Random-number functions Contents Functions Remarks and examples Methods and formulas Acknowledgments References Also see Contents rbeta(a,b) rbinomial(n,p) rchi2(df) rexponential(b) rgamma(a,b)

More information

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo Workshop on Heterogeneous Computing, 16-20, July 2012 No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo K. P. N. Murthy School of Physics, University of Hyderabad July 19, 2012 K P N Murthy

More information

New Minimal Weight Representations for Left-to-Right Window Methods

New Minimal Weight Representations for Left-to-Right Window Methods New Minimal Weight Representations for Left-to-Right Window Methods James A. Muir 1 and Douglas R. Stinson 2 1 Department of Combinatorics and Optimization 2 School of Computer Science University of Waterloo

More information

Primality Testing SURFACE. Syracuse University. Per Brinch Hansen Syracuse University, School of Computer and Information Science,

Primality Testing SURFACE. Syracuse University. Per Brinch Hansen Syracuse University, School of Computer and Information Science, Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 6-1992 Primality Testing Per Brinch Hansen Syracuse University, School

More information

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba B.N.Bandodkar College of Science, Thane Random-Number Generation Mrs M.J.Gholba Properties of Random Numbers A sequence of random numbers, R, R,., must have two important statistical properties, uniformity

More information

Random Number Generation. Stephen Booth David Henty

Random Number Generation. Stephen Booth David Henty Random Number Generation Stephen Booth David Henty Introduction Random numbers are frequently used in many types of computer simulation Frequently as part of a sampling process: Generate a representative

More information

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm Complexity Analysis of a Fast Modular Multiexponentiation Algorithm Haimin Jin 1,, Duncan S. Wong, Yinlong Xu 1 1 Department of Computer Science University of Science and Technology of China China jhm113@mail.ustc.edu.cn,

More information

Mean Intensity. Same units as I ν : J/m 2 /s/hz/sr (ergs/cm 2 /s/hz/sr) Function of position (and time), but not direction

Mean Intensity. Same units as I ν : J/m 2 /s/hz/sr (ergs/cm 2 /s/hz/sr) Function of position (and time), but not direction MCRT: L5 MCRT estimators for mean intensity, absorbed radiation, radiation pressure, etc Path length sampling: mean intensity, fluence rate, number of absorptions Random number generators J Mean Intensity

More information

cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications

cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications n-bit unsigned integer representation Represent integer x as sum of powers of 2: If x = n 1 i=0 b i 2 i where each b i

More information

S. R. Tate. Stable Computation of the Complex Roots of Unity, IEEE Transactions on Signal Processing, Vol. 43, No. 7, 1995, pp

S. R. Tate. Stable Computation of the Complex Roots of Unity, IEEE Transactions on Signal Processing, Vol. 43, No. 7, 1995, pp Stable Computation of the Complex Roots of Unity By: Stephen R. Tate S. R. Tate. Stable Computation of the Complex Roots of Unity, IEEE Transactions on Signal Processing, Vol. 43, No. 7, 1995, pp. 1709

More information

A TEST OF RANDOMNESS BASED ON THE DISTANCE BETWEEN CONSECUTIVE RANDOM NUMBER PAIRS. Matthew J. Duggan John H. Drew Lawrence M.

A TEST OF RANDOMNESS BASED ON THE DISTANCE BETWEEN CONSECUTIVE RANDOM NUMBER PAIRS. Matthew J. Duggan John H. Drew Lawrence M. Proceedings of the 2005 Winter Simulation Conference M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. A TEST OF RANDOMNESS BASED ON THE DISTANCE BETWEEN CONSECUTIVE RANDOM NUMBER PAIRS

More information

Computation of the error functions erf and erfc in arbitrary precision with correct rounding

Computation of the error functions erf and erfc in arbitrary precision with correct rounding Computation of the error functions erf and erfc in arbitrary precision with correct rounding Sylvain Chevillard Arenaire, LIP, ENS-Lyon, France Sylvain.Chevillard@ens-lyon.fr Nathalie Revol INRIA, Arenaire,

More information

Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme

Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme P. Delsarte Philips Research Laboratory, Avenue Van Becelaere, 2 B-1170 Brussels, Belgium Y. Desmedt Katholieke Universiteit Leuven, Laboratorium

More information

On the influence of non-perfect random numbers on probabilistic algorithms

On the influence of non-perfect random numbers on probabilistic algorithms On the influence of non-perfect random numbers on probabilistic algorithms Markus Maucher Bioinformatics Group University of Ulm 01.07.09 Outline 1 Motivation and introduction 2 Theoretical results 3 Experimental

More information

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin Learning Theory Machine Learning CSE546 Carlos Guestrin University of Washington November 25, 2013 Carlos Guestrin 2005-2013 1 What now n We have explored many ways of learning from data n But How good

More information

cse 311: foundations of computing Fall 2015 Lecture 11: Modular arithmetic and applications

cse 311: foundations of computing Fall 2015 Lecture 11: Modular arithmetic and applications cse 311: foundations of computing Fall 2015 Lecture 11: Modular arithmetic and applications arithmetic mod 7 a + 7 b = (a + b) mod 7 a 7 b = (a b) mod 7 5 6 0 1 2 4 3 + 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 1

More information

Construction of Equidistributed Generators Based on Linear Recurrences Modulo 2

Construction of Equidistributed Generators Based on Linear Recurrences Modulo 2 Construction of Equidistributed Generators Based on Linear Recurrences Modulo 2 Pierre L Ecuyer and François Panneton Département d informatique et de recherche opérationnelle Université de Montréal C.P.

More information

Notes for Chapter 1 of. Scientific Computing with Case Studies

Notes for Chapter 1 of. Scientific Computing with Case Studies Notes for Chapter 1 of Scientific Computing with Case Studies Dianne P. O Leary SIAM Press, 2008 Mathematical modeling Computer arithmetic Errors 1999-2008 Dianne P. O'Leary 1 Arithmetic and Error What

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture III (29.10.07) Contents: Overview & Test of random number generators Random number distributions Monte Carlo The terminology Monte Carlo-methods originated around

More information

Stream Ciphers. Çetin Kaya Koç Winter / 20

Stream Ciphers. Çetin Kaya Koç   Winter / 20 Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 1 / 20 Linear Congruential Generators A linear congruential generator produces a sequence of integers x i for i = 1,2,... starting with the given initial

More information

Random Number Generators: Metrics and Tests for Uniformity and Randomness

Random Number Generators: Metrics and Tests for Uniformity and Randomness Random Number Generators: Metrics and Tests for Uniformity and Randomness E. A. Yfantis and J. B. Pedersen Image Processing, Computer Vision and Machine Intelligence Lab School of Computer Science College

More information

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract What Every Programmer Should Know About Floating-Point Arithmetic Last updated: November 3, 2014 Abstract The article provides simple answers to the common recurring questions of novice programmers about

More information

Preliminary statistics

Preliminary statistics 1 Preliminary statistics The solution of a geophysical inverse problem can be obtained by a combination of information from observed data, the theoretical relation between data and earth parameters (models),

More information

Arithmetic and Error. How does error arise? How does error arise? Notes for Part 1 of CMSC 460

Arithmetic and Error. How does error arise? How does error arise? Notes for Part 1 of CMSC 460 Notes for Part 1 of CMSC 460 Dianne P. O Leary Preliminaries: Mathematical modeling Computer arithmetic Errors 1999-2006 Dianne P. O'Leary 1 Arithmetic and Error What we need to know about error: -- how

More information

Random Number Generators

Random Number Generators 1/18 Random Number Generators Professor Karl Sigman Columbia University Department of IEOR New York City USA 2/18 Introduction Your computer generates" numbers U 1, U 2, U 3,... that are considered independent

More information

arxiv:hep-lat/ v2 10 Aug 1993

arxiv:hep-lat/ v2 10 Aug 1993 1 A Comparative Study of Some Pseudorandom Number Generators I. Vattulainen 1, K. Kankaala 1,2, J. Saarinen 1, and T. Ala-Nissila 1,3 arxiv:hep-lat/9304008 v2 10 Aug 1993 1 Department of Electrical Engineering

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Chapter 4 Number Representations

Chapter 4 Number Representations Chapter 4 Number Representations SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 9, 2016 Table of Contents 1 Fundamentals 2 Signed Numbers 3 Fixed-Point

More information

Spectral Analysis of the MIXMAX Random Number Generators

Spectral Analysis of the MIXMAX Random Number Generators Submitted to iinforms Journal on Computing manuscript (Please, provide the manuscript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

Lecture 7. Floating point arithmetic and stability

Lecture 7. Floating point arithmetic and stability Lecture 7 Floating point arithmetic and stability 2.5 Machine representation of numbers Scientific notation: 23 }{{} }{{} } 3.14159265 {{} }{{} 10 sign mantissa base exponent (significand) s m β e A floating

More information

Random walk tests for pseudo-random number generators

Random walk tests for pseudo-random number generators Mathematical Communications 6(001), 135-13 135 Random walk tests for pseudo-random number generators Smile Markovski, Danilo Gligoroski and Verica Bakeva Abstract. It is well known that there are no perfectly

More information

IE 581 Introduction to Stochastic Simulation. One page of notes, front and back. Closed book. 50 minutes. Score

IE 581 Introduction to Stochastic Simulation. One page of notes, front and back. Closed book. 50 minutes. Score One page of notes, front and back. Closed book. 50 minutes. Score Schmeiser Page 1 of 4 Test #1, Spring 2001 1. True or false. (If you wish, write an explanation of your thinking.) (a) T F Data are "binary"

More information

Elliptic Curve DRNGs. Çetin Kaya Koç Winter / 21

Elliptic Curve DRNGs.  Çetin Kaya Koç Winter / 21 Elliptic Curve DRNGs http://koclab.org Çetin Kaya Koç Winter 2017 1 / 21 Elliptic Curve DRNGs Linear Congruential Generator Power Generator Naor-Reingold Generator Dual EC RNG http://koclab.org Çetin Kaya

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

New Strategy for Doubling-Free Short Addition-Subtraction Chain

New Strategy for Doubling-Free Short Addition-Subtraction Chain Applied Mathematics & Information Sciences 2(2) (2008), 123 133 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. New Strategy for Doubling-Free Short Addition-Subtraction Chain

More information

Future Generation Computer Systems 16 (1999) Accepted 17 March Draft

Future Generation Computer Systems 16 (1999) Accepted 17 March Draft Future Generation Computer Systems 16 (1999) 291 305 Generating high-quality random numbers in parallel by cellular automata Abstract Marco Tomassini a,, Moshe Sipper b, Mosé Zolla a, Mathieu Perrenoud

More information

Computer Arithmetic. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Computer Arithmetic

Computer Arithmetic. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Computer Arithmetic Computer Arithmetic MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Machine Numbers When performing arithmetic on a computer (laptop, desktop, mainframe, cell phone,

More information

Slides 3: Random Numbers

Slides 3: Random Numbers Slides 3: Random Numbers We previously considered a few examples of simulating real processes. In order to mimic real randomness of events such as arrival times we considered the use of random numbers

More information

Hands-on Generating Random

Hands-on Generating Random CVIP Laboratory Hands-on Generating Random Variables Shireen Elhabian Aly Farag October 2007 The heart of Monte Carlo simulation for statistical inference. Generate synthetic data to test our algorithms,

More information

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint Chapter 4: Monte Carlo Methods Paisan Nakmahachalasint Introduction Monte Carlo Methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo

More information

Counting Prime Numbers with Short Binary Signed Representation

Counting Prime Numbers with Short Binary Signed Representation Counting Prime Numbers with Short Binary Signed Representation José de Jesús Angel Angel and Guillermo Morales-Luna Computer Science Section, CINVESTAV-IPN, Mexico jjangel@computacion.cs.cinvestav.mx,

More information