Temporal Neuronal Oscillations can Produce Spatial Phase Codes

Size: px
Start display at page:

Download "Temporal Neuronal Oscillations can Produce Spatial Phase Codes"

Transcription

1 See discussions, stats, and author profiles for this publication at: Temporal Neuronal Oscillations can Produce Spatial Phase Codes Chapter in Attention and Performance December 211 DOI: 1.116/B CITATION 1 READS 61 3 authors: Christopher Burgess University College London 2 PUBLICATIONS 1 CITATIONS Nicolas W Schuck Princeton University 17 PUBLICATIONS 11 CITATIONS SEE PROFILE SEE PROFILE Neil Burgess University College London 265 PUBLICATIONS 17,572 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Representation of spatial and temporal sequence features by neural oscillations (MEG) View project learning View project All content following this page was uploaded by Nicolas W Schuck on 1 February 214. The user has requested enhancement of the downloaded file.

2 C H A P T E R 5 Temporal Neuronal Oscillations can Produce Spatial Phase Codes Christopher Burgess*, Nicolas W. Schuck, Neil Burgess* * UCL Institute of Cognitive Neuroscience and UCL Institute of Neurology, University College London, London, UK Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany Summary distance traveled information, spatial location Space, Time and Number in the Brain. DOI: 1.116/B Elsevier Inc. All rights reserved. 59

3 6 5. TEMPORAL NEURONAL OSCILLATIONS CAN PRODUCE SPATIAL PHASE CODES temporal distance A FUNCTIONAL ROLE FOR INTERFERENCE BETWEEN NEURONAL OSCILLATIONS φab() t φa() t φb () t φ () t φ ( ) 2π[ f ( τ) f ( τ)] dτ ab ab a b t

4 A FUNCTIONAL ROLE FOR INTERFERENCE BETWEEN NEURONAL OSCILLATIONS 61 (A) a b a+b Time/s (B) a b a+b Time/s FIGURE 5.1 φ a and φ b f a (t) and f b (t)

5 62 5. TEMPORAL NEURONAL OSCILLATIONS CAN PRODUCE SPATIAL PHASE CODES AN OSCILLATORY INTERFERENCE MODEL OF GRID CELL FIRING BOX 5.1 N E U R A L B A S I S O F S P AT I A L N AV I G AT I O N : ENTORHINAL GRID-CELLS

6 AN OSCILLATORY INTERFERENCE MODEL OF GRID CELL FIRING 63 (A) (B) 1 x 1 x 1m 1m y y (C) (D) + + x = y 1 1 x y GC 1 FIGURE 5.2 Hippocampus f b (t) f a (t) s(t) speed, θ(t) ϕ d f () t f() t βs()cos(() t θ t ϕ ) a b d β φ a φ b φ ab

7 64 5. TEMPORAL NEURONAL OSCILLATIONS CAN PRODUCE SPATIAL PHASE CODES t d(t) t t ab ab a b d dτ πβd t φ () t φ ( ) 2π[ f ( τ) f ( τ)] dτ 2πβ[( s τ)cos (() θ τ ϕ )] 2 ( ) cycles every 2π β 2/ 3 (. i e. 1/cos 3 ) 2/ 3β phase

8 OSCILLATORY INTERFERENCE AND REPRESENTATIONS OF SEQUENTIAL ORDER? 65 β in vivo in vivo OSCILLATORY INTERFERENCE AND REPRESENTATIONS OF SEQUENTIAL ORDER?

9 66 5. TEMPORAL NEURONAL OSCILLATIONS CAN PRODUCE SPATIAL PHASE CODES (A) X (B) V a = COS(2πf a t) f a = f b + βx V b = COS(2πf b t) 5 1 Time [ms] 15 2 (C) (D) 1 Normalized responses (%) Time [ms] Number of items FIGURE 5.3 β

10 SUMMARY AND CONCLUSIONS 67 and values of β SUMMARY AND CONCLUSIONS Acknowledgments

11 68 5. TEMPORAL NEURONAL OSCILLATIONS CAN PRODUCE SPATIAL PHASE CODES References

12 SUMMARY AND CONCLUSIONS 69 View publication stats

Localized Excitations in Networks of Spiking Neurons

Localized Excitations in Networks of Spiking Neurons Localized Excitations in Networks of Spiking Neurons Hecke Schrobsdorff Bernstein Center for Computational Neuroscience Göttingen Max Planck Institute for Dynamics and Self-Organization Seminar: Irreversible

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

What is a chunk? Barbara Oakley, PhD, PE

What is a chunk? Barbara Oakley, PhD, PE What is a chunk? Barbara Oakley, PhD, PE (write the letters here that appear on the screen.) Relevant Readings Beilock, S. (2010). Choke. NY: Free Press. Ericsson, K. A. (2009). Development of Professional

More information

To cognize is to categorize revisited: Category Theory is where Mathematics meets Biology

To cognize is to categorize revisited: Category Theory is where Mathematics meets Biology To cognize is to categorize revisited: Category Theory is where Mathematics meets Biology Autonomous Systems Laboratory Technical University of Madrid Index 1. Category Theory 2. The structure-function

More information

Spatial Cells in the Hippocampal Formation

Spatial Cells in the Hippocampal Formation Spatial Cells in the Hippocampal Formation John O Keefe University College London Nobel Prize Lecture Stockholm 7 December 2014 Henry Molaison 1926-2008 Suzanne Corkin Brenda Milner He cannot recall anything

More information

Quantum Probability in Cognition. Ryan Weiss 11/28/2018

Quantum Probability in Cognition. Ryan Weiss 11/28/2018 Quantum Probability in Cognition Ryan Weiss 11/28/2018 Overview Introduction Classical vs Quantum Probability Brain Information Processing Decision Making Conclusion Introduction Quantum probability in

More information

Learning Spatio-Temporally Encoded Pattern Transformations in Structured Spiking Neural Networks 12

Learning Spatio-Temporally Encoded Pattern Transformations in Structured Spiking Neural Networks 12 Learning Spatio-Temporally Encoded Pattern Transformations in Structured Spiking Neural Networks 12 André Grüning, Brian Gardner and Ioana Sporea Department of Computer Science University of Surrey Guildford,

More information

Motion Perception 1. PSY305 Lecture 12 JV Stone

Motion Perception 1. PSY305 Lecture 12 JV Stone Motion Perception 1 PSY305 Lecture 12 JV Stone 1 Structure Human visual system as a band-pass filter. Neuronal motion detection, the Reichardt detector. The aperture problem. 2 The visual system is a temporal

More information

The idiosyncratic nature of confidence

The idiosyncratic nature of confidence SUPPLEMENTARY INFORMATION Articles DOI: 10.1038/s41562-017-0215-1 In the format provided by the authors and unedited. The idiosyncratic nature of confidence 1,2 Joaquin Navajas *, Chandni Hindocha 1,3,

More information

An algorithm for detecting oscillatory behavior in discretized data: the damped-oscillator oscillator detector

An algorithm for detecting oscillatory behavior in discretized data: the damped-oscillator oscillator detector An algorithm for detecting oscillatory behavior in discretized data: the damped-oscillator oscillator detector David Hsu, Murielle Hsu, He Huang and Erwin B. Montgomery, Jr Department of Neurology University

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 101 1. Åström and Murray, Exercise 1.3 2. Åström and Murray, Exercise 1.4 3. Åström and Murray, Exercise 2.6, parts (a) and (b) CDS 110a 1. Åström and Murray, Exercise 1.4 2. Åström and Murray, Exercise

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

Response Selection Using Neural Phase Oscillators

Response Selection Using Neural Phase Oscillators Response Selection Using Neural Phase Oscillators J. Acacio de Barros 1 A symposium on the occasion of Patrick Suppes 90th birthday March 10, 2012 1 With Pat Suppes and Gary Oas (Suppes et al., 2012).

More information

The Physics in Psychology. Jonathan Flynn

The Physics in Psychology. Jonathan Flynn The Physics in Psychology Jonathan Flynn Wilhelm Wundt August 16, 1832 - August 31, 1920 Freud & Jung 6 May 1856 23 September 26 July 1875 6 June Behaviorism September 14, 1849 February 27, 1936 August

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

Learning parameters in ODEs

Learning parameters in ODEs Learning parameters in ODEs Application to biological networks Florence d Alché-Buc Joint work with Minh Quach and Nicolas Brunel IBISC FRE 3190 CNRS, Université d Évry-Val d Essonne, France /14 Florence

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 part 5: Nonlinear Integrate-and-Fire Model 4.1 From Hodgkin-Huxley to 2D Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 Recing detail: Two-dimensional neuron models Wulfram

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings

Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings ESR: 1 Supervisor: Dr. Yasser Roudi 1, 2 1 Kavli Institute for Systems Neuroscience, Trondheim

More information

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests J. Benda, M. Bethge, M. Hennig, K. Pawelzik & A.V.M. Herz February, 7 Abstract Spike-frequency adaptation is a common feature of

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999 Odor recognition and segmentation by coupled olfactory bulb and cortical networks arxiv:physics/9902052v1 [physics.bioph] 19 Feb 1999 Abstract Zhaoping Li a,1 John Hertz b a CBCL, MIT, Cambridge MA 02139

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

Two dimensional synaptically generated traveling waves in a theta-neuron neuralnetwork

Two dimensional synaptically generated traveling waves in a theta-neuron neuralnetwork Neurocomputing 38}40 (2001) 789}795 Two dimensional synaptically generated traveling waves in a theta-neuron neuralnetwork Remus Osan*, Bard Ermentrout Department of Mathematics, University of Pittsburgh,

More information

Neural Networks 1 Synchronization in Spiking Neural Networks

Neural Networks 1 Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Neural Networks 1 Synchronization in Spiking Neural Networks René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Synchronization

More information

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London.

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London. in Frequency and Sensor Space Oscillation Wellcome Trust Centre for Neuroimaging. University College London. Non- Workshop on Non-Invasive Imaging of Nonlinear Interactions. 20th Annual Computational Neuroscience

More information

Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations

Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations Haili Wang, Yuanhua Qiao, Lijuan Duan, Faming Fang, Jun Miao 3, and Bingpeng Ma 3 College of Applied Science, Beijing University

More information

Cognitive Prosem. December 1, 2008

Cognitive Prosem. December 1, 2008 Cognitive Prosem December 1, 2008 Spatial Representation What does it mean to represent spatial information? What are the characteristics of human spatial representations? Reference Frames/Systems Distortions

More information

This is a repository copy of Aggregation of growing crystals in suspension: III. Accounting for adhesion and repulsion.

This is a repository copy of Aggregation of growing crystals in suspension: III. Accounting for adhesion and repulsion. This is a repository copy of Aggregation of growing crystals in suspension: III. Accounting for adhesion and repulsion. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88281/

More information

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

SOCIAL MEDIA IN THE COMMUNICATIONS CENTRE

SOCIAL MEDIA IN THE COMMUNICATIONS CENTRE SOCIAL MEDIA IN THE COMMUNICATIONS CENTRE Karen Gordon Gordon Strategy www.gordonstrategy.ca v 1 WHAT WE ARE GOING TO TALK ABOUT TODAY T h e s o c i a l m e d i a i n c i d e n t W h a t c a n h a p p

More information

Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing:

Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing: Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing: a model of the axonal plexus Erin Munro Department of Mathematics Boston University 4/14/2011 Gap junctions on pyramidal

More information

Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons

Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons Simon Fugmann Humboldt University Berlin 13/02/06 Outline The Most Probable Escape Path (MPEP) Motivation General

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Impulse Reaction Turbine

Impulse Reaction Turbine See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/80717540 Impulse Reaction Turbine Research August 015 CITATIONS 0 READS 3,406 1 author: Kailash

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach Version 1.0

DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach Version 1.0 DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach Version 1.0 Björn Kralemann 1, Michael Rosenblum 2, Arkady Pikovsky 2 1 Institut für Pädagogik, Christian-Albrechts-Universität

More information

Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops

Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops Math. Model. Nat. Phenom. Vol. 5, No. 2, 2010, pp. 67-99 DOI: 10.1051/mmnp/20105203 Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops J. Ma 1 and J. Wu 2 1 Department of

More information

DYNAMICAL SYSTEMS OF THE BCM LEARNING RULE: by Lawrence C. Udeigwe

DYNAMICAL SYSTEMS OF THE BCM LEARNING RULE: by Lawrence C. Udeigwe DYNAMICAL SYSTEMS OF THE BCM LEARNING RULE: EMERGENT PROPERTIES AND APPLICATION TO CLUSTERING by Lawrence C. Udeigwe M.A. Mathematics, University of Pittsburgh, 2008 M.S. Applied Mathematics, University

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Resource Allocation in the Brain

Resource Allocation in the Brain Theoretical REsearch in Neuroeconomic Decision-making (www.neuroeconomictheory.org) Resource Allocation in the Brain Ricardo Alonso USC Marshall Isabelle Brocas USC and CEPR Juan D. Carrillo USC and CEPR

More information

arxiv: v1 [q-bio.nc] 16 May 2017

arxiv: v1 [q-bio.nc] 16 May 2017 Optimized brute-force algorithms for the bifurcation analysis of a spin-glass-like neural network model Diego Fasoli 1,2,, Stefano Panzeri 1 arxiv:1705.05647v1 [q-bio.nc] 16 May 2017 1 Laboratory of Neural

More information

Neural mechanism to simulate a scale-invariant future

Neural mechanism to simulate a scale-invariant future Neural mechanism to simulate a scale-invariant future Karthi H. Shanar, Inder Singh, and Marc W. Howard 1 1 Center for Memory and Brain, Initiative for the Physics and Mathematics of Neural Systems, Boston

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy

A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy Neocortical Pyramidal Cells Can Send Signals to Post-Synaptic Cells Without Firing Erin

More information

THE MOST IMPORTANT BIT

THE MOST IMPORTANT BIT NEURAL NETWORKS THE MOST IMPORTANT BIT A neural network represents a function f : R d R d 2. Peter Orbanz Applied Data Mining 262 BUILDING BLOCKS Units The basic building block is a node or unit: φ The

More information

Memory Capacity for Sequences in a Recurrent Network with Biological Constraints

Memory Capacity for Sequences in a Recurrent Network with Biological Constraints Memory Capacity for Sequences in a Recurrent Network with Biological Constraints Christian Leibold,3 and Richard Kempter,2,3 Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany 2

More information

On the Dynamics of Delayed Neural Feedback Loops. Sebastian Brandt Department of Physics, Washington University in St. Louis

On the Dynamics of Delayed Neural Feedback Loops. Sebastian Brandt Department of Physics, Washington University in St. Louis On the Dynamics of Delayed Neural Feedback Loops Sebastian Brandt Department of Physics, Washington University in St. Louis Overview of Dissertation Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel,

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Gridded Ambient Air Pollutant Concentrations for Southern California, User Notes authored by Beau MacDonald, 11/28/2017

Gridded Ambient Air Pollutant Concentrations for Southern California, User Notes authored by Beau MacDonald, 11/28/2017 Gridded Ambient Air Pollutant Concentrations for Southern California, 1995-2014 User Notes authored by Beau, 11/28/2017 METADATA: Each raster file contains data for one pollutant (NO2, O3, PM2.5, and PM10)

More information

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Dileep George a,b Friedrich T. Sommer b a Dept. of Electrical Engineering, Stanford University 350 Serra Mall, Stanford,

More information

Solving Dynamic Equations: The State Transition Matrix II

Solving Dynamic Equations: The State Transition Matrix II Reading the Text Solving Dynamic Equations: The State Transition Matrix II EGR 326 February 27, 2017 Just a reminder to read the text Read through longer passages, to see what is connected to class topics.

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Smoothing, Forecasting And Prediction Of Discrete Time Series (Dover Phoenix Editions) By Robert Goodell Brown

Smoothing, Forecasting And Prediction Of Discrete Time Series (Dover Phoenix Editions) By Robert Goodell Brown Smoothing, Forecasting And Prediction Of Discrete Time Series (Dover Phoenix Editions) By Robert Goodell Brown If searching for the book Smoothing, Forecasting and Prediction of Discrete Time Series (Dover

More information

Brains and Computation

Brains and Computation 15-883: Computational Models of Neural Systems Lecture 1.1: Brains and Computation David S. Touretzky Computer Science Department Carnegie Mellon University 1 Models of the Nervous System Hydraulic network

More information

arxiv: v1 [cond-mat.dis-nn] 25 Mar 2010

arxiv: v1 [cond-mat.dis-nn] 25 Mar 2010 Chaos in Small-World Networks arxiv:034940v1 [cond-matdis-nn] 25 Mar 20 Xin-She Yang Department of Applied Mathematics and Department of Fuel and Energy, University of Leeds, LEEDS LS2 9JT, UK Abstract

More information

Modeling Place Fields in Terms of the Cortical Inputs to the Hippocampus

Modeling Place Fields in Terms of the Cortical Inputs to the Hippocampus Modeling Place Fields in Terms of the Cortical Inputs to the Hippocampus Tom Hartley, 1,2 * N. Burgess, 1,2 C. Lever, 2 F. Cacucci, 2 and J. O Keefe 1,2 1 Institute of Cognitive Neuroscience, University

More information

Perceiving Spirals and Inside/Outside Relations by A Neural Oscillator Network

Perceiving Spirals and Inside/Outside Relations by A Neural Oscillator Network Perceiving Spirals and Inside/Outside Relations by A Neural Oscillator Network Ke Chen and DeLiang L. Wang Department of Computer and Information Science and Center for Cognitive Science The Ohio State

More information

Nature-inspired Analog Computing on Silicon

Nature-inspired Analog Computing on Silicon Nature-inspired Analog Computing on Silicon Tetsuya ASAI and Yoshihito AMEMIYA Division of Electronics and Information Engineering Hokkaido University Abstract We propose CMOS analog circuits that emulate

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications Overview

More information

Time Varying Hierarchical Archimedean Copulae (HALOC)

Time Varying Hierarchical Archimedean Copulae (HALOC) Time Varying Hierarchical Archimedean Copulae () Wolfgang Härdle Ostap Okhrin Yarema Okhrin Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics Humboldt-Universität

More information

A quantitative theory of neural computation

A quantitative theory of neural computation Biol Cybern (2006) 95:205 211 DOI 10.1007/s00422-006-0079-3 ORIGINAL PAPER A quantitative theory of neural computation Leslie G. Valiant Received: 16 September 2005 / Accepted: 25 April 2006 / Published

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

Accuracy of near real time updates in wind power forecasting with regard to different weather regimes

Accuracy of near real time updates in wind power forecasting with regard to different weather regimes Accuracy of near real time updates in wind power forecasting with regard to different weather regimes Nadja Saleck 1, Florian Bertsch 2, Lüder von Bremen 1, Detlev Heinemann 1 1 ForWind, University of

More information

Chimera states in networks of biological neurons and coupled damped pendulums

Chimera states in networks of biological neurons and coupled damped pendulums in neural models in networks of pendulum-like elements in networks of biological neurons and coupled damped pendulums J. Hizanidis 1, V. Kanas 2, A. Bezerianos 3, and T. Bountis 4 1 National Center for

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Synchronization in Spiking Neural Networks

Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Synchronization in Spiking Neural Networks ~ Lecture 8 ~ René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2005 Synchronization

More information

Fast neural network simulations with population density methods

Fast neural network simulations with population density methods Fast neural network simulations with population density methods Duane Q. Nykamp a,1 Daniel Tranchina b,a,c,2 a Courant Institute of Mathematical Science b Department of Biology c Center for Neural Science

More information

Causal modeling of fmri: temporal precedence and spatial exploration

Causal modeling of fmri: temporal precedence and spatial exploration Causal modeling of fmri: temporal precedence and spatial exploration Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University Intro: What is Brain

More information

Address for Correspondence

Address for Correspondence Research Article APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR INTERFERENCE STUDIES OF LOW-RISE BUILDINGS 1 Narayan K*, 2 Gairola A Address for Correspondence 1 Associate Professor, Department of Civil

More information

A Canonical Circuit for Generating Phase-Amplitude Coupling

A Canonical Circuit for Generating Phase-Amplitude Coupling A Canonical Circuit for Generating Phase-Amplitude Coupling Angela C. E. Onslow 1,2 *, Matthew W. Jones 3, Rafal Bogacz 4,5,6 1 Bristol Centre for Complexity Sciences (B.C.C.S.), University of Bristol,

More information

Salt intrusion response to changes in tidal amplitude during low river flow in the Modaomen Estuary, China

Salt intrusion response to changes in tidal amplitude during low river flow in the Modaomen Estuary, China IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Salt intrusion response to changes in tidal amplitude during low river flow in the Modaomen Estuary, China To cite this article:

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Problem Solving Session 1: Electric Dipoles and Torque

Problem Solving Session 1: Electric Dipoles and Torque MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving Session 1: Electric Dipoles and Torque Section Table (if applicable) Group Members Introduction: In the first problem you

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics 856-7 Summer College on Plasma Physics July - 4 August, 7 Numerical methods and simulations. Lecture : Simulation of partial differential equations. B. Eliasson Institut Fuer Theoretische Physik IV Ruhr-Universitaet

More information

4th Grade Electricity And Magnetism Test

4th Grade Electricity And Magnetism Test 4th Grade Test Free PDF ebook Download: 4th Grade Test Download or Read Online ebook 4th grade electricity and magnetism test in PDF Format From The Best User Guide Database Fourth Grade- Physical Science.

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

The Use of Entropy for Analysis and Control of Cognitive Models

The Use of Entropy for Analysis and Control of Cognitive Models The Use of Entropy for Analysis and Control of Cognitive Models Roman V. Belavkin (r.belavkin@mdx.ac.uk) School of Computing Science, Middlesex University, London NW4 4BT, UK Frank E. Ritter (ritter@ist.psu.edu)

More information

Plasticity and Learning

Plasticity and Learning Chapter 8 Plasticity and Learning 8.1 Introduction Activity-dependent synaptic plasticity is widely believed to be the basic phenomenon underlying learning and memory, and it is also thought to play a

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

Fast and exact simulation methods applied on a broad range of neuron models

Fast and exact simulation methods applied on a broad range of neuron models Fast and exact simulation methods applied on a broad range of neuron models Michiel D Haene michiel.dhaene@ugent.be Benjamin Schrauwen benjamin.schrauwen@ugent.be Ghent University, Electronics and Information

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

The fiery end of a journey to the event horizon of a black hole. Douglas L. Weller

The fiery end of a journey to the event horizon of a black hole. Douglas L. Weller The fiery end of a journey to the event horizon of a black hole Douglas L. Weller Light transmitted towards the event horizon of a black hole will never complete the journey. Either the black hole will

More information

Using ParExPDE for the numerical solution of bioelectric field problems

Using ParExPDE for the numerical solution of bioelectric field problems Using ParExPDE for the numerical solution of bioelectric field problems Christoph Freundl Friedrich-Alexander-Universität Erlangen-Nürnberg Christoph.Freundl@informatik.uni-erlangen.de Harald Köstler Friedrich-Alexander-Universität

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

Dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework

Dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework Dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework Yulia Timofeeva a, Gabriel Lord a and Stephen Coombes b a Department of Mathematics, Heriot-Watt University, Edinburgh,

More information

Visual motion processing and perceptual decision making

Visual motion processing and perceptual decision making Visual motion processing and perceptual decision making Aziz Hurzook (ahurzook@uwaterloo.ca) Oliver Trujillo (otrujill@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca) Centre for Theoretical Neuroscience,

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

Linearization of F-I Curves by Adaptation

Linearization of F-I Curves by Adaptation LETTER Communicated by Laurence Abbott Linearization of F-I Curves by Adaptation Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. We show that negative

More information

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding LINEAR SYSTEMS Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display

More information