On the Dynamics of Delayed Neural Feedback Loops. Sebastian Brandt Department of Physics, Washington University in St. Louis

Size: px
Start display at page:

Download "On the Dynamics of Delayed Neural Feedback Loops. Sebastian Brandt Department of Physics, Washington University in St. Louis"

Transcription

1 On the Dynamics of Delayed Neural Feedback Loops Sebastian Brandt Department of Physics, Washington University in St. Louis

2 Overview of Dissertation Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel, Variational calculation of the limit cycle and its frequency in a two-neuron model with delay, Phys. Rev. E 74, /1-14 (2006). Chapter 3: S. F. Brandt, A. Pelster, and R. Wessel, Synchronization in a neuronal feedback loop through asymmetric temporal delays, Europhys. Lett. 79, 38001/1-5 (2007). Chapter 4: U. Meyer, J. Shao, S. Chakrabarty, S. F. Brandt, H. Luksch, and R. Wessel, Distributed delays stabilize neural feedback systems (submitted). arxiv: [physics.bio-ph]. Chapter 5: M. Caudill, S. F. Brandt, and R. Wessel, Dynamics of neural feedback triads with delays (in preparation). Chapter 6: S. F. Brandt and R. Wessel, Winner-take-all selection in a neural system with delayed feedback, Biol. Cybern. 97, (2007). Chapter 7: S. F. Brandt and R. Wessel, The isthmotectal feedback loop as a winner-take-all and novelty detection circuit (in preparation). Chapter 8: S. F. Brandt, A. Pelster, and R. Wessel, Noise-dependent stability of the synchronized state in a coupled system of active rotators (in preparation). Chapter 9: S. F. Brandt, B. K. Dellen, and R.Wessel, Synchronization from disordered driving forces in arrays of coupled oscillators, Phys. Rev. Lett. 96, /1-4 (2006).

3 Chapters 2 and 3 S. F. Brandt, A. Pelster, and R. Wessel, Variational calculation of the limit cycle and its frequency in a two-neuron model with delay, Phys. Rev. E 74, /1-14 (2006). S. F. Brandt, A. Pelster, and R. Wessel, Synchronization in a neuronal feedback loop through asymmetric temporal delays, Europhys. Lett. 79, 38001/1-5 (2007). τ 1 u ( ) u ( ) 2 t 1 t τ 2

4 Chapter 4 U. Meyer, J. Shao, S. Chakrabarty, S. F. Brandt, H. Luksch, and R. Wessel, Distributed delays stabilize neural feedback systems (submitted). arxiv: [physics.bio-ph]. τ 1 u ( ) u ( ) 2 t 1 t τ 2

5 Chapter 5 M. Caudill, S. F. Brandt, and R. Wessel, Dynamics of neural feedback triads with delays (in preparation).

6 Chapters 6 and 7 S. F. Brandt and R. Wessel, Winner-take-all selection in a neural system with delayed feedback, Biol. Cybern. 97, (2007). S. F. Brandt and R. Wessel, The isthmotectal feedback loop as a winner-take-all and novelty detection circuit (in preparation). Wang et al. (2004)

7 Chapter 8 S. F. Brandt, A. Pelster, and R. Wessel, Noise-dependent stability of the synchronized state in a coupled system of active rotators (in preparation).

8 Chapter 9 S. F. Brandt, B. K. Dellen, and R.Wessel, Synchronization from disordered driving forces in arrays of coupled oscillators, Phys. Rev. Lett. 96, /1-4 (2006).

9 Outline of Talk Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel, Variational calculation of the limit cycle and its frequency in a two-neuron model with delay, Phys. Rev. E 74, /1-14 (2006). Chapter 3: S. F. Brandt, A. Pelster, and R. Wessel, Synchronization in a neuronal feedback loop through asymmetric temporal delays, Europhys. Lett. 79, 38001/1-5 (2007). u ( ) u ( t 2 ) 1 t τ 1 τ 2 Chapter 6: S. F. Brandt and R. Wessel, Winner-take-all selection in a neural system with delayed feedback, Biol. Cybern. 97, (2007). Chapter 7: S. F. Brandt and R. Wessel, The isthmotectal feedback loop as a winner-take-all and novelty detection circuit (in preparation).

10 Time-Continuous Model of Neuron Dynamics by Hopfield Leaky neuron with external input and input from other neurons: Hopfield (1984) : input voltage, : output voltage, : synaptic interconnection matrix Nonlinear Transfer Function:

11 Two-Neuron Model With Delay Model Equations: Characteristic Equation: Supercritical Hopf-Bifurcation:

12 Poincaré-Lindstedt Method Expansions: plane: Rescaling:

13 Perturbative Results Angular Frequency Limit Cycle

14 Basic Principles of Variational Perturbation Theory Divergent Weak Coupling Series Convergent Strong Coupling Expansion Example: quantum-mechanical anharmonic oscillator:

15 Example: Anharmonic Oscillator Weak Coupling Series for Ground-State Energy Identity: Substitution: Example: First Order

16 Principle of Minimal Sensitivity Conditions:

17 Strong-Coupling Limit : Results Exponential Convergence:

18 Perturbation Expansion: Angular Frequency Introduction of Variational Parameter to the Perturbation Expansion: First Order: Result:

19 VPT Results: Convergence:

20 Limit Cycle Fourier Series: Introduction of Variational Parameter to the Fourier Series: Evaluation for Optimal Value from Angular Frequency:

21 VPT Results: Convergence:

22 Comparison VPT/Shohat Brandt, Pelster, and Wessel (2006) Conduction Velocity Asymmetry in the Biological System:

23 Numerical Results Delay Parameter: Covariance:

24 First Order VPT

25 VPT Results Brandt, Pelster, and Wessel (2007)

26 Outline of Talk Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel, Variational calculation of the limit cycle and its frequency in a two-neuron model with delay, Phys. Rev. E 74, /1-14 (2006). Chapter 3: S. F. Brandt, A. Pelster, and R. Wessel, Synchronization in a neuronal feedback loop through asymmetric temporal delays, Europhys. Lett. 79, 38001/1-5 (2007). u ( ) u ( t 2 ) 1 t τ 1 τ 2 Chapter 6: S. F. Brandt and R. Wessel, Winner-take-all selection in a neural system with delayed feedback, Biol. Cybern. 97, (2007). Chapter 7: S. F. Brandt and R. Wessel, The isthmotectal feedback loop as a winner-take-all and novelty detection circuit (in preparation).

27 Bottom-Up Model For Attention (Koch and Ullman, 1985) Itti and Koch (2001)

28 The Isthmotectal feedback loop as a WTA circuit Wang et al. (2004)

29 Model Rate Model (Hopfield, 1984): Assumptions: Membrane Time Constants: Delays: Transfer Functions:

30 Topology: System of 2N + 1First-Order DDE s: Weights:

31 Numerical Results for Local Excitation and Global Inhibition No delay With delay

32 Numerical Results for Local Inhibition and Global Excitation No delay With delay

33 Outline of Talk Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel, Variational calculation of the limit cycle and its frequency in a two-neuron model with delay, Phys. Rev. E 74, /1-14 (2006). Chapter 3: S. F. Brandt, A. Pelster, and R. Wessel, Synchronization in a neuronal feedback loop through asymmetric temporal delays, Europhys. Lett. 79, 38001/1-5 (2007). u ( ) u ( t 2 ) 1 t τ 1 τ 2 Chapter 6: S. F. Brandt and R. Wessel, Winner-take-all selection in a neural system with delayed feedback, Biol. Cybern. 97, (2007). Chapter 7: S. F. Brandt and R. Wessel, The isthmotectal feedback loop as a winner-take-all and novelty detection circuit (in preparation).

34 Results from Marín et. al: Novelty Detection Marín et al., J. Neurosci. (2007)

35 Model Network of Integrate-and-Fire Neurons dv τ dt = V E ) ( L + R I V = V T : V V R

36 Model Network of Integrate-and-Fire Neurons dv τ dt = V E ) ( L + R I V = V T : V V R

37 Model Network of Integrate-and-Fire Neurons dv τ dt = V E ) ( L + R I V = V T : V V R

38 Model Parameters variable constant

39 Random Scan of Parameter Space Simulate 1000 networks with random combinations of parameters Score networks according to winner-take-all selection and novelty detection TeO Ipc Imc

40 - Best network: unchanged Genetic Algorithm - Top 50 % of networks percentile rank 10%: probability of1/30 for change of every parameter: 1/2top, 1/2 arithmetic mean 10% percentile rank < 20% probability of 1/15 for change of every parameter: 1/2top, 1/2 arithmetic mean 20% percentile rank < 30%: probability of 2/15 for change of every parameter: 1/2top, 1/2 arithmetic mean 30 % percentile rank < 50 % probability of1/3 for change of every parameter: 1/2top, 1/2 arithmetic mean Point mutation (+/- 1) with probability 1/10 - Bottom 50 % of networks With probability 1/3: all parameters: 1/2top, 1/2 arithmetic mean With probability 1/3: all parameters: 1/2 2nd best, 1/2 arithmetic mean With probability 1/3: all parameters: 1/2 3rd best, 1/2 arithmetic mean Point mutation (any value) with probability 1/10

41 Parameter Optimization Simulate 20 generations of 50 networks Use genetic algorithm to optimize for winner-take-all selection and novelty detection TeO Ipc Imc

42 Convergence of Genetic Algorithm Score of best three networks vs. generation #

43 Predicting Parameter Relations Measured Delays: Meyer et al. (submitted)

44 Summary Variational Resummation Synchrony from asymmetric delays Delays and WTA Parameter optimization through genetic algorithm

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Dileep George a,b Friedrich T. Sommer b a Dept. of Electrical Engineering, Stanford University 350 Serra Mall, Stanford,

More information

arxiv:physics/ v2 [physics.bio-ph] 21 Feb 2007

arxiv:physics/ v2 [physics.bio-ph] 21 Feb 2007 Variational calculation of the limit cycle and its frequency in a two-neuron model with delay Sebastian F. Brandt, 1, Axel Pelster, 2, and Ralf Wessel 1 1 Department of Physics, Campus Box 115, Washington

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons

Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons Simon Fugmann Humboldt University Berlin 13/02/06 Outline The Most Probable Escape Path (MPEP) Motivation General

More information

Localized Excitations in Networks of Spiking Neurons

Localized Excitations in Networks of Spiking Neurons Localized Excitations in Networks of Spiking Neurons Hecke Schrobsdorff Bernstein Center for Computational Neuroscience Göttingen Max Planck Institute for Dynamics and Self-Organization Seminar: Irreversible

More information

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS Letters International Journal of Bifurcation and Chaos, Vol. 8, No. 8 (1998) 1733 1738 c World Scientific Publishing Company DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS I. P.

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single Input

Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single Input ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 11, No., 016, pp.083-09 Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

A Mathematical Study of Electrical Bursting in Pituitary Cells

A Mathematical Study of Electrical Bursting in Pituitary Cells A Mathematical Study of Electrical Bursting in Pituitary Cells Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Collaborators on

More information

Entrainment and Chaos in the Hodgkin-Huxley Oscillator

Entrainment and Chaos in the Hodgkin-Huxley Oscillator Entrainment and Chaos in the Hodgkin-Huxley Oscillator Kevin K. Lin http://www.cims.nyu.edu/ klin Courant Institute, New York University Mostly Biomath - 2005.4.5 p.1/42 Overview (1) Goal: Show that the

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable Printed from the Mathematica Help Browser 1 1 of 10 Phase Locking A neuron phase-locks to a periodic input it spikes at a fixed delay [Izhikevich07]. The PRC's amplitude determines which frequencies a

More information

Modelling biological oscillations

Modelling biological oscillations Modelling biological oscillations Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Van der Pol equation Van

More information

Phase Response Properties and Phase-Locking in Neural Systems with Delayed Negative-Feedback. Carter L. Johnson

Phase Response Properties and Phase-Locking in Neural Systems with Delayed Negative-Feedback. Carter L. Johnson Phase Response Properties and Phase-Locking in Neural Systems with Delayed Negative-Feedback Carter L. Johnson Faculty Mentor: Professor Timothy J. Lewis University of California, Davis Abstract Oscillatory

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Dendritic computation

Dendritic computation Dendritic computation Dendrites as computational elements: Passive contributions to computation Active contributions to computation Examples Geometry matters: the isopotential cell Injecting current I

More information

Lecture IV: LTI models of physical systems

Lecture IV: LTI models of physical systems BME 171: Signals and Systems Duke University September 5, 2008 This lecture Plan for the lecture: 1 Interconnections of linear systems 2 Differential equation models of LTI systems 3 eview of linear circuit

More information

Synchrony in Stochastic Pulse-coupled Neuronal Network Models

Synchrony in Stochastic Pulse-coupled Neuronal Network Models Synchrony in Stochastic Pulse-coupled Neuronal Network Models Katie Newhall Gregor Kovačič and Peter Kramer Aaditya Rangan and David Cai 2 Rensselaer Polytechnic Institute, Troy, New York 2 Courant Institute,

More information

High-conductance states in a mean-eld cortical network model

High-conductance states in a mean-eld cortical network model Neurocomputing 58 60 (2004) 935 940 www.elsevier.com/locate/neucom High-conductance states in a mean-eld cortical network model Alexander Lerchner a;, Mandana Ahmadi b, John Hertz b a Oersted-DTU, Technical

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Balance of Electric and Diffusion Forces

Balance of Electric and Diffusion Forces Balance of Electric and Diffusion Forces Ions flow into and out of the neuron under the forces of electricity and concentration gradients (diffusion). The net result is a electric potential difference

More information

Plasticity and learning in a network of coupled phase oscillators

Plasticity and learning in a network of coupled phase oscillators PHYSICAL REVIEW E, VOLUME 65, 041906 Plasticity and learning in a network of coupled phase oscillators Philip Seliger, Stephen C. Young, and Lev S. Tsimring Institute for onlinear Science, University of

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 part 5: Nonlinear Integrate-and-Fire Model 4.1 From Hodgkin-Huxley to 2D Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 Recing detail: Two-dimensional neuron models Wulfram

More information

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar Mathematical Model of Neuron Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar 09-10-2015 Review -- One Basic Circuit By Kirchhoff's Current Law 0 = I C + I R + I L I ext By Kirchhoff s Voltage

More information

Mathematical Analysis of Bursting Electrical Activity in Nerve and Endocrine Cells

Mathematical Analysis of Bursting Electrical Activity in Nerve and Endocrine Cells Mathematical Analysis of Bursting Electrical Activity in Nerve and Endocrine Cells Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University

More information

Analysis of Neural Networks with Chaotic Dynamics

Analysis of Neural Networks with Chaotic Dynamics Chaos, Solitonr & Fructals Vol. 3, No. 2, pp. 133-139, 1993 Printed in Great Britain @60-0779/93$6.00 + 40 0 1993 Pergamon Press Ltd Analysis of Neural Networks with Chaotic Dynamics FRANCOIS CHAPEAU-BLONDEAU

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations

Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations Haili Wang, Yuanhua Qiao, Lijuan Duan, Faming Fang, Jun Miao 3, and Bingpeng Ma 3 College of Applied Science, Beijing University

More information

Recursive calculation of effective potential and variational resummation

Recursive calculation of effective potential and variational resummation JOURNAL OF MATHEMATICAL PHYSICS 46, 032101 2005 Recursive calculation of effective potential and variational resummation Sebastian F. Brandt and Hagen Kleinert Freie Universität Berlin, Institut für Theoretische

More information

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability Journal of Physics: Conference Series PAPER OPEN ACCESS Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability To cite this article: Anastasiya V Pimenova and Denis S Goldobin 2016

More information

Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line

Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line Steven M. Anlage, Vassili Demergis, Renato Moraes, Edward Ott, Thomas Antonsen Thanks to Alexander Glasser, Marshal

More information

RF Upset and Chaos in Circuits: Basic Investigations. Steven M. Anlage, Vassili Demergis, Ed Ott, Tom Antonsen

RF Upset and Chaos in Circuits: Basic Investigations. Steven M. Anlage, Vassili Demergis, Ed Ott, Tom Antonsen RF Upset and Chaos in Circuits: Basic Investigations Steven M. Anlage, Vassili Demergis, Ed Ott, Tom Antonsen AFOSR Presentation Research funded by the AFOSR-MURI and DURIP programs OVERVIEW HPM Effects

More information

Stability and bifurcation of a simple neural network with multiple time delays.

Stability and bifurcation of a simple neural network with multiple time delays. Fields Institute Communications Volume, 999 Stability and bifurcation of a simple neural network with multiple time delays. Sue Ann Campbell Department of Applied Mathematics University of Waterloo Waterloo

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999 Odor recognition and segmentation by coupled olfactory bulb and cortical networks arxiv:physics/9902052v1 [physics.bioph] 19 Feb 1999 Abstract Zhaoping Li a,1 John Hertz b a CBCL, MIT, Cambridge MA 02139

More information

M. Dechesne R. Sepulchre

M. Dechesne R. Sepulchre Systems and models in chronobiology A delay model for the circadian rhythm M. Dechesne R. Sepulchre Department of Electrical Engineering and Computer Science Monteore Institute University of Liège 24th

More information

Sparse Coding as a Generative Model

Sparse Coding as a Generative Model Sparse Coding as a Generative Model image vector neural activity (sparse) feature vector other stuff Find activations by descending E Coefficients via gradient descent Driving input (excitation) Lateral

More information

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Wolfgang Maass, Robert Legenstein, Nils Bertschinger Institute for Theoretical Computer Science Technische

More information

Self-Excited Vibration

Self-Excited Vibration Wenjing Ding Self-Excited Vibration Theory, Paradigms, and Research Methods With 228 figures Ö Springer Contents Chapter 1 Introduction 1 1.1 Main Features of Self-Excited Vibration 1 1.1.1 Natural Vibration

More information

Electrophysiology of the neuron

Electrophysiology of the neuron School of Mathematical Sciences G4TNS Theoretical Neuroscience Electrophysiology of the neuron Electrophysiology is the study of ionic currents and electrical activity in cells and tissues. The work of

More information

Phase Response. 1 of of 11. Synaptic input advances (excitatory) or delays (inhibitory) spiking

Phase Response. 1 of of 11. Synaptic input advances (excitatory) or delays (inhibitory) spiking Printed from the Mathematica Help Browser 1 1 of 11 Phase Response Inward current-pulses decrease a cortical neuron's period (Cat, Layer V). [Fetz93] Synaptic input advances (excitatory) or delays (inhibitory)

More information

Nonlinear Dynamics of Neural Firing

Nonlinear Dynamics of Neural Firing Nonlinear Dynamics of Neural Firing BENG/BGGN 260 Neurodynamics University of California, San Diego Week 3 BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 1 / 16 Reading Materials

More information

Lecture 2: Analysis of Biomolecular Circuits

Lecture 2: Analysis of Biomolecular Circuits Lecture 2: Analysis of Biomolecular Circuits Richard M. Murray Caltech CDS/BE Goals: Give a short overview of the control techniques applied to biology - uncertainty management - system identification

More information

Firefly Synchronization. Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff

Firefly Synchronization. Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff Firefly Synchronization Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff Biological Inspiration Why do fireflies flash? Mating purposes Males flash to attract the attention of nearby females Why

More information

Introduction. Previous work has shown that AER can also be used to construct largescale networks with arbitrary, configurable synaptic connectivity.

Introduction. Previous work has shown that AER can also be used to construct largescale networks with arbitrary, configurable synaptic connectivity. Introduction The goal of neuromorphic engineering is to design and implement microelectronic systems that emulate the structure and function of the brain. Address-event representation (AER) is a communication

More information

Stochastic resonance in the absence and presence of external signals for a chemical reaction

Stochastic resonance in the absence and presence of external signals for a chemical reaction JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 7 15 FEBRUARY 1999 Stochastic resonance in the absence and presence of external signals for a chemical reaction Lingfa Yang, Zhonghuai Hou, and Houwen Xin

More information

Dynamical Systems in Neuroscience: Elementary Bifurcations

Dynamical Systems in Neuroscience: Elementary Bifurcations Dynamical Systems in Neuroscience: Elementary Bifurcations Foris Kuang May 2017 1 Contents 1 Introduction 3 2 Definitions 3 3 Hodgkin-Huxley Model 3 4 Morris-Lecar Model 4 5 Stability 5 5.1 Linear ODE..............................................

More information

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol 10, No 2, 2015, pp 148-153 Chaos control of hyper chaotic delay Lorenz system via back stepping method Hanping Chen 1 Xuerong

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

PULSE-COUPLED networks (PCNs) of integrate-and-fire

PULSE-COUPLED networks (PCNs) of integrate-and-fire 1018 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004 Grouping Synchronization in a Pulse-Coupled Network of Chaotic Spiking Oscillators Hidehiro Nakano, Student Member, IEEE, and Toshimichi

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

Oscillation Onset In. Neural Delayed Feedback

Oscillation Onset In. Neural Delayed Feedback Oscillation Onset In Neural Delayed Feedback Andre Longtin Complex Systems Group and Center for Nonlinear Studies Theoretical Division B213, Los Alamos National Laboratory Los Alamos, NM 87545 Abstract

More information

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai CONTROLLING CHAOS Sudeshna Sinha The Institute of Mathematical Sciences Chennai Sinha, Ramswamy and Subba Rao: Physica D, vol. 43, p. 118 Sinha, Physics Letts. A vol. 156, p. 475 Ramswamy, Sinha, Gupte:

More information

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation.

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation. 26th May 2011 Dynamic Causal Modelling Dynamic Causal Modelling is a framework studying large scale brain connectivity by fitting differential equation models to brain imaging data. DCMs differ in their

More information

A Spiking Independent Accumulator Model for Winner-Take-All Computation

A Spiking Independent Accumulator Model for Winner-Take-All Computation A Spiking Independent Accumulator Model for Winner-Take-All Computation Jan Gosmann (jgosmann@uwaterloo.ca) Aaron R. Voelker (arvoelke@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca) Centre for

More information

Chimera states in networks of biological neurons and coupled damped pendulums

Chimera states in networks of biological neurons and coupled damped pendulums in neural models in networks of pendulum-like elements in networks of biological neurons and coupled damped pendulums J. Hizanidis 1, V. Kanas 2, A. Bezerianos 3, and T. Bountis 4 1 National Center for

More information

1. Synchronization Phenomena

1. Synchronization Phenomena 1. Synchronization Phenomena In nature synchronization happens all the time. In mechanical systems, in biological systems, in epidemiology, basically everywhere. When we talk about synchronization we usually

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent Lecture 11 : Simple Neuron Models Dr Eileen Nugent Reading List Nelson, Biological Physics, Chapter 12 Phillips, PBoC, Chapter 17 Gerstner, Neuronal Dynamics: from single neurons to networks and models

More information

A More Complicated Model of Motor Neural Circuit of C. elegans

A More Complicated Model of Motor Neural Circuit of C. elegans A More Complicated Model of Motor Neural Circuit of C. elegans Overview Locomotion of C. elegans follows a nonlinear dynamics proposed in Fang-Yen et al. 2010. The dynamic equation is written as y C N

More information

Synfire Waves in Small Balanced Networks

Synfire Waves in Small Balanced Networks Synfire Waves in Small Balanced Networks Yuval Aviel 1,3, David Horn 2 and Moshe Abeles 1 1 Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel. 2 School of Physics and

More information

A Model for Real-Time Computation in Generic Neural Microcircuits

A Model for Real-Time Computation in Generic Neural Microcircuits A Model for Real-Time Computation in Generic Neural Microcircuits Wolfgang Maass, Thomas Natschläger Institute for Theoretical Computer Science Technische Universitaet Graz A-81 Graz, Austria maass, tnatschl

More information

An analysis of how coupling parameters influence nonlinear oscillator synchronization

An analysis of how coupling parameters influence nonlinear oscillator synchronization An analysis of how coupling parameters influence nonlinear oscillator synchronization Morris Huang, 1 Ben McInroe, 2 Mark Kingsbury, 2 and Will Wagstaff 3 1) School of Mechanical Engineering, Georgia Institute

More information

Asynchronous oscillations due to antigenic variation in Malaria Pf

Asynchronous oscillations due to antigenic variation in Malaria Pf Asynchronous oscillations due to antigenic variation in Malaria Pf Jonathan L. Mitchell and Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX SIAM LS, Pittsburgh, 21 Outline

More information

Controlling Chaos in a State-Dependent Nonlinear System

Controlling Chaos in a State-Dependent Nonlinear System Electronic version of an article published as International Journal of Bifurcation and Chaos Vol. 12, No. 5, 2002, 1111-1119, DOI: 10.1142/S0218127402004942 World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijbc

More information

Computation with phase oscillators: an oscillatory perceptron model

Computation with phase oscillators: an oscillatory perceptron model Computation with phase oscillators: an oscillatory perceptron model Pablo Kaluza Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 495 Berlin, Germany. Abstract

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Using Artificial Neural Networks (ANN) to Control Chaos

Using Artificial Neural Networks (ANN) to Control Chaos Using Artificial Neural Networks (ANN) to Control Chaos Dr. Ibrahim Ighneiwa a *, Salwa Hamidatou a, and Fadia Ben Ismael a a Department of Electrical and Electronics Engineering, Faculty of Engineering,

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

Circular symmetry of solutions of the neural field equation

Circular symmetry of solutions of the neural field equation Neural Field Dynamics Circular symmetry of solutions of the neural field equation take 287 Hecke Dynamically Selforganized Max Punk Institute Symposium on Nonlinear Glacier Dynamics 2005 in Zermatt Neural

More information

IN THIS turorial paper we exploit the relationship between

IN THIS turorial paper we exploit the relationship between 508 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999 Weakly Pulse-Coupled Oscillators, FM Interactions, Synchronization, Oscillatory Associative Memory Eugene M. Izhikevich Abstract We study

More information

Nature-inspired Analog Computing on Silicon

Nature-inspired Analog Computing on Silicon Nature-inspired Analog Computing on Silicon Tetsuya ASAI and Yoshihito AMEMIYA Division of Electronics and Information Engineering Hokkaido University Abstract We propose CMOS analog circuits that emulate

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

Modeling and Results for a Mach-Zehnder Chaotic System

Modeling and Results for a Mach-Zehnder Chaotic System Modeling and Results for a Mach-Zehnder Chaotic System Karl Schmitt Jim Yorke, Rajarshi Roy, and Tom Murphy,Adam Cohen, Bhargava Ravoori, University of Maryland April 3, 9 / 4 Motivation Why bother? Reduce

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Chapter 14 Semiconductor Laser Networks: Synchrony, Consistency, and Analogy of Synaptic Neurons

Chapter 14 Semiconductor Laser Networks: Synchrony, Consistency, and Analogy of Synaptic Neurons Chapter 4 Semiconductor Laser Networks: Synchrony, Consistency, and Analogy of Synaptic Neurons Abstract Synchronization among coupled elements is universally observed in nonlinear systems, such as in

More information

Predicting Synchrony in Heterogeneous Pulse Coupled Oscillators

Predicting Synchrony in Heterogeneous Pulse Coupled Oscillators Predicting Synchrony in Heterogeneous Pulse Coupled Oscillators Sachin S. Talathi 1, Dong-Uk Hwang 1, Abraham Miliotis 1, Paul R. Carney 1, and William L. Ditto 1 1 J Crayton Pruitt Department of Biomedical

More information

HSND-2015, IPR. Department of Physics, University of Burdwan, Burdwan, West Bengal.

HSND-2015, IPR. Department of Physics, University of Burdwan, Burdwan, West Bengal. New kind of deaths: Oscillation Death and Chimera Death HSND-2015, IPR Dr. Tanmoy Banerjee Department of Physics, University of Burdwan, Burdwan, West Bengal. Points to be discussed Oscillation suppression

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Small-signal neural models and their applications Author(s) Basu, Arindam Citation Basu, A. (01). Small-signal

More information

Single-Cell and Mean Field Neural Models

Single-Cell and Mean Field Neural Models 1 Single-Cell and Mean Field Neural Models Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 The neuron

More information

Krauskopf, B., Erzgraber, H., & Lenstra, D. (2006). Dynamics of semiconductor lasers with filtered optical feedback.

Krauskopf, B., Erzgraber, H., & Lenstra, D. (2006). Dynamics of semiconductor lasers with filtered optical feedback. Krauskopf, B, Erzgraber, H, & Lenstra, D (26) Dynamics of semiconductor lasers with filtered optical feedback Early version, also known as pre-print Link to publication record in Explore Bristol Research

More information

Dynamic Phasors in Modeling, Analysis and Control of Energy Processing Systems

Dynamic Phasors in Modeling, Analysis and Control of Energy Processing Systems Dynamic Phasors in Modeling, Analysis and Control of Energy Processing Systems 6/20/02 Alex M. Stanković Northeastern University, Boston, MA 1 Research Program Overview My research program focuses on the

More information

Single neuron models. L. Pezard Aix-Marseille University

Single neuron models. L. Pezard Aix-Marseille University Single neuron models L. Pezard Aix-Marseille University Biophysics Biological neuron Biophysics Ionic currents Passive properties Active properties Typology of models Compartmental models Differential

More information

Linearization of F-I Curves by Adaptation

Linearization of F-I Curves by Adaptation LETTER Communicated by Laurence Abbott Linearization of F-I Curves by Adaptation Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. We show that negative

More information

Assembling and Testing Physically Based Models of Observed Complex Systems

Assembling and Testing Physically Based Models of Observed Complex Systems Assembling and Testing Physically Based Models of Observed Complex Systems with Daniel Rey, Nirag Kadakia, Daniel Breen, Sasha Shirman, Eve Armstrong, Dan Margoliash, Arij Daou, Gert Cauwenberghs, J. Wang,

More information

Dynamical phase transitions in periodically driven model neurons

Dynamical phase transitions in periodically driven model neurons Dynamical phase transitions in periodically driven model neurons Jan R. Engelbrecht 1 and Renato Mirollo 2 1 Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA 2 Department

More information

Stochastic Oscillator Death in Globally Coupled Neural Systems

Stochastic Oscillator Death in Globally Coupled Neural Systems Journal of the Korean Physical Society, Vol. 52, No. 6, June 2008, pp. 19131917 Stochastic Oscillator Death in Globally Coupled Neural Systems Woochang Lim and Sang-Yoon Kim y Department of Physics, Kangwon

More information

Canonical Neural Models 1

Canonical Neural Models 1 Canonical Neural Models 1 Frank Hoppensteadt 1 and Eugene zhikevich 2 ntroduction Mathematical modeling is a powerful tool in studying fundamental principles of information processing in the brain. Unfortunately,

More information