Microfiltration,Ultrafiltration, and

Size: px
Start display at page:

Download "Microfiltration,Ultrafiltration, and"

Transcription

1 HATER 3 Microfiltration,Ultrafiltration, and Nanofiltration ti Models for redicting Flux for MF, UF and NF 1) apillary Model 2) Film Theory Model 3) Flux aradox (back-transport) 4) Resistance in series Model

2 BAKGROUND ON MODELLING - Model flux is predicted d as a function of system operation parameters ( pressure, flow rate, etc.) and physicochemical properties (viscosity, density, charge, diffusivity, etc.). - Although h the operating techniques of MF, UF, NF, and RO are similar, the separation mechanisms should be different : i) MF and UF have most frequently been visualized as sieve filtration. ii) NF and RO are almost certainly not merely separation by size, but by other parameters (charge, solubility, diffusivity, i it size, etc.)

3 BAKGROUND ON MODELLING A number of mathematical models are available that attempt to describe the mechanism of transport through membrane None are wholly satisfactory : i) The major problem appears to be an inability to precisely model the phenomenon occurring near the membrane surface. ii) The contribution and importance of the chemical nature of the membrane to membrane processes is still not clearly identified.

4 1) apillary Model - The best description of fluid flow through microporous membrane in an ideal situation : i) uniformly distributed evenly sized pores in the membrane, ii) no fouling, iii) negligible concentration polarization, etc. - redicting Flux from pore statistics using Hagen-oiseuille Equation. J = f ( dp, ε, ΔT, η, Δx ) Feed F Δx skin Membrane d p Void Sublayer ermeate

5 1) apillary Model Hagen-oiseuille Model for Laminar flow through channels: J 2 d ΔT 2 = ε ( l / h m ) 32Δx η d : ore diameter ε : Surface porosity (total open area of pores per unit membrane surface) Δ T : Transmembrane pressure (Δ T = F ) η : Viscosity of solvent (usually water) Δ x : Thickness of membrane skin

6 1) apillary Model J = f ( dp, ε, ΔT, η, Δx ) J = 2 ε d Δ 32Δx η T ( l / h m 2 ) Feed F Δx skin Membrane d p Void Sublayer ermeate

7 Example of capillary model Example) Membrane ; XM 100A UF (Amicon) dp ; Mean pore diameter = 175 A N ; Number of pores/cm 2 = 3 x 10 9 Δ x ; Skin thickness = 0.2μmμ [Δ T = 100ka = 106g /cm sec2] [η = 1 centipoise = 10-2 g/cm sec ] What is the water flux, J( l/m 2 h ) through this membrane?

8 Direct microscopic observation of membrane surface

9 Example of capillary model Answer ) porosity(ε) = N (π/4) dp 2 = 3 x 10 9 x (π/4) x (175x10-8 ) 2 = x 10-3 cm 2 /cm % of the membrane surface is occupied by pores. J = x 10-3 x (175 x 10-8 ) 2 cm 2 x 10 6 g/cm sec 2 32 x 0.2 x 10-4 cm x 10-2 g/cm sec = 3.45 x 10-3 cm/sec = 3.45 x 10-3 cm/sec x (m/100cm) x (1000L/m 3 ) x (3600sec/hr) = L/m 2 h (LMH)

10 omparison of experimental flux with calculated flux

11 Remark: - Several factors causing the discrepancy between calculated and experimental flux: 1) Hagen oiseuille Equation assumes all pores are right circular cylinders, which is highly unlikely with those membranes. A tortuosity (actual pore length/cylinder length )factor should have been included in the equation. J ( l / h τ : m 2 pore ) 2 ε d ΔT = 32ΔxΔ η τ tortuosity 2) As the pores get smaller in diameter, the number of pores in various sizes increases, which makes estimation of pore size distribution and pore density more difficult. 3) Smaller pores could be more tortuous. t 4) The number of dead end pore can not be accounted for. 5) The contribution of the chemical nature of the membrane material is not taken into account.

12 Remark: - According to this model, flux is proportional to T, but inversely proportional to η J ( l / h m 2 2 As is controlled by Temp. and feed concentration, increasing T or Temp. increases flux. Δ ε d Δ T ) = 32Δx η τ Δ η - This equation is applicable under restricted conditions, where concentration polarization effects are negligible. The following conditions are required: ΔT i) should be low, ii) Feed concentration should be low, iii) Flow velocity should be high. η If not, concentration polarization develops and Hagen-oiseuille equation no longer adequately describes the MF/UF process and mass-transfer limited model should be used.

13 Remark: - ore size and Flow distribution For a single capillary of diameter dpi, the flow rate, d d J h L q T p i i Δ = π π ) / ( d d x d p T p i i Δ Δ = π η / If fi is the number fraction of pores with diameter dpi, x p d t pi Δ Δ = η π 128 / 4 the fraction of solvent passing through the pores, Fi, is 4 p i i d f = max 4 dp p i p i i i i d f d f F min dp

14 Remark: From Fig. 3.5 & Fig. 3.7 The flow is strongly biased to the larger pores, with 50% of the solvent flow passing through 20-50% of the pores. Membrane permeability will be very sensitive to the population of large pores, and their loss by plugging g or obstruction. referred flow through h a minority it of larger pores will produce heterogeneous flow patterns normal to the membrane.

15 Direct microscopic observation of membrane surface

16 Distribution of pore size and volume throughput

17 2) Film-Theory (Mass transfer) Model Fig.1 Schematic of the film-theory model permeate membrane boundary layer bulk solution J V J S w differential element v.c d D dy b As solution is filtered, solute is brought to the membrane surface by convective transport which results in concentration gradient (or concentration polarization). The resulting concentration gradient causes the solute to be transported back The resulting concentration gradient causes the solute to be transported back into the bulk of solution due to diffusional effects. δ O y

18 2) Film-Theory (Mass transfer) Model i) Longitudinal mass transport within the boundary layer is assumed negligible (mass transfer within the film is one dimensional) J V D( d/ dx) ii) At steady state, the solute flux is constant throughout the film [ ] and equal to the solute flux through the membrane [ J ]. V A material balance for the solute in a different element gives the equation. J S = J V = J V D( d / dx) Boundary ondition ; = b at x=0 W at x= δ b : bulk solute concentration ti δ : thickness of the boundary layer : permeate solute concentration w : solute concentration at the membrane surface D : diffusion coefficient of solute

19 Derivation of the equation ) ( = V J dx d D ) ln( 0 = = V b w V J D dx J d D dx w δ δ ln ln 0 = = w S w V b k D J b δ 0) ( ln = = w S V b b if k J δ b D/δ = k S k f ffi i k s : mass-transfer coefficient - If w g ) ( ln lim Model polarization Gel k J g S = b g : Gel oncentration J lim : limiting flux

20 2) Film-Theory (Mass transfer)model

21 Retention and oncentration olarization Observed retention ; S = 1 - p / b, p True retention ; R = 1 - p / w oncentration polarization ; M = w / b = 1 S + S exp(j V /k s ) So M can be calculated from the measurement of the retention and So, M can be calculated from the measurement of the retention and the permeate flux, when k s is known.

22 orrelation between operating parameters and flux D 0) ( ln ln = = p for k D J b w S b w V δ

23 Effect of feed velocity, temperature and bulk concentartion on flux

24 Film theory model for macromolecular solutions

25 Experiment vs. Theory : Flux aradox -For colloidal suspensions: Experimental flux values are often one to two orders of magnitude higher than those indicated by the Lévéque and Dittus-Boelter relationships. But the reason is not clear.

26 Film theory model for colloidal suspensions

27 Experiment vs. Theory : Flux aradox -In colloidal suspensions, the diffusion coefficient calculated from the ultrafiltrate flux using the Lévéque or Dittus-Boelter equations generally from one to three orders of magnitude higher than the theoretical Stokes-Einstein diffusivity. -Minor adjustments in molecular parameters such as diffusivity (D), kinematic Minor adjustments in molecular parameters such as diffusivity (D), kinematic viscosity (ν), or gel concentration ( g ) are incapable of resolving order of magnitude discrepancies.

28 Experiment vs. Theory : Flux aradox - Back-diffusive transport of colloidal particles away from the membrane surface into the bulk stream (D / x) is substantially augmented over that predicted by the Lévéque and Dittus-Boelter relationships. - For colloidal suspensions, mass transfer from the membrane into the bulk stream is driven by some force other than the concentration gradient. - M.. orter s opinion (1972) : Tubular inch Effect is responsible for this augmented mass transfer.

29 How to solve the flux paradox? harge repulsion Inertial lift Shear induced diffusion Diffusion Axial velocity profile Drag torque ermeation drag Sedimentation Axial drag van der Waals attraction Semipermeable membrane J J J Fig.Ⅳ-1. Forces and torques acting on a charged, spherical particle suspended in a viscous fluid undergoing laminar flow in the proximity of a flat porous surface.[modified from Wiesner(1992)]

30 Forces acting on particles in a viscos flow undergoing laminar flow

31 Back transport velocity of particles under laminar flow Back transport velocity = diffusion + shear induced diffusion + lateral migration

32 Back transport velocity of particles under laminar flow Back transport velocity = Diffusion + shear induced diffusion + lateral migration + interaction induced k transport ( m/sec ) Bac Total Interaction induced Shear induced Diffusion Lateral migration Back tr ransport ( L/m 2 /hr ) article size ( μm ) Fig. omparison of different models explaining a critical flux over a range of particle size.

33 Back transport velocity as a function of particle size and fluid velocity

34 article size distributions deposited on the membrane surface = f ( size, flux) 14 Initial size distribution article size ( μm ) Fig. Ⅳ-5. Depositing particle size distribution for each flux condition. Size distribution when flux is infinite means the initial particle size distribution measured experimentally (T = 298 K, Ψ 0 = 50 mv, A = 3.4 x J).

35 Remark on the back transport velocity 1) rossflow MF/UF are occasionally operated in the turbulent regime, whereas all of the models described are restricted to laminar flow. 2) Brownian and shear-induced diffusion may be considered simultaneously by adding the diffusion coefficients, although recent simulations have shown that the diffusion coefficients are not strictly additive. 3) The models described are based on idealized suspensions of equisized spheres, which do not irreversibly stick to the membrane or cake surfaces but rather are free to diffuse or lift away. Further experiments and models are needed to study Brownian, shear induced diffusion, and inertial lift in real suspensions of non-spherical, deformable particles having both narrow and broad size distributions.

36 Remark on the back transport velocity 4) onsiderable experimental and theoretical research remains to complete our understanding of crossflow microfiltration. For example, issues of direct membrane fouling by the attachment of particles and precipitates to the membrane pores and surface have not been adequately addressed. d

37 Definitions of various Fluxes Flux (J) i ) ritical Flux (J c ) ii ) Limiting Flux (J lim ) iii ) Steady-state Flux (J ss ) i) J ii ) J J c J lim iii ) J Δ c Δ Δ t J ss Δ c : critical transmembrane pressure time(t)

38 4 ) Resistance in series Model J = Δ T μ ( R + m R s ) (1) if R s J >> R m, Δ T = μ Rs (2 )

39 4 ) Resistance in series Model - If the solute is thought of as a cake of deposited particles, the gel(cake, deposit, etc) resistance can be obtained from conventional filtration theory. J R S = Δ T ( R m + R S α V ) η = b m / A m = α m s / A (1) (2) R s : solute resistance (1/m) R m : membrane resistance (1/m) V : cumulative solvent volume (m 3 ) b : Bulk solute concentration (kg/m 3 ) A m : membrane area (m 2 ) m s : mass of solute (kg) α : specific resistance (m/kg)

40 4 ) Resistance in series Model For unstirred conditions R s grows and combining equation (1) with (2) gives, (3) ) / ( 1 ) ( + Δ = = A V R dt dv A t J m b m m T η α (4 ).( 3) + = dv V dv R dt eqn From V b t V m m η α η (4 ) Δ + Δ = dv A dv A dt m m T T At constant pressure, integration of eqn. (4) gives, p, g q ( ) g, 2 m b V V R t + = η α η / 2 b m m m A V A R V t A A T T Δ + Δ = Δ Δ η α η (well-known filtration equation) 2 m m A A T T Δ Δ

41 t / V = R Δ m T η A m + α V 2 Δ T b η 2 A m t/v slope = = α b η 2 Δ T A Modified d m 2 Fouling Id Index (MFI) T V From a plot of t/v vs. V, α is obtained experimentally. If R m is negligible, gg V 2 = ( 2 ΔpT A 2 m / b α η ) t (5) Which predicts that filtrate (permeate) accumulates according to t 1/2

42 arman-kozeny eqn. for α - α, the specific resistance of the deposit can be related to article properties by the arman-kozeny relationship. ( 1 ε ) 180 α = (6 ) 2 3 ρ s d s ε ε : voidage (or porosity) ρ s : solute density D s : solute particle diameter - The effect of pressure on α is frequently expressed by the relationship, α = α o Δ s o α o : constant s : compressibility factor For compressible solids, typical values of s = 0.2~0.7

43 α, alculated vs. Experimental - omparison the values of α obtained from the arman-kozeny eqn. (eq.6) with those measured experimentally. Bovine Serum Albumine colloidal l silica calculated α = 3.0~7.0 x (m/kg) α = 3.0~6.0 x (depending on ε) experimental α = 1.0~7.0 x (m/kg) α = 5.0~15.0 x (depending di on Δ) - The similarity between calculated and experimental α values for these particulate solutes supports the use of a conventional filtration model for MF/UF.

44 5) Rejection Mechanisms in Nanofiltration During the last few decades, the drinking water industry has become increasingly concerned about the occurrence of microorganic pollutants in the source waters for the drinking water supply s : pesticides in surface waters. : Approach to tackle the problem 1) developing alternatives for the use of pesticides 2) implementing activated carbon filtration 3) installing NF/RO 1990 s : Endocrine disrupting compounds (EDs) and pharmaceutically active compounds (has) having negative effect on the hormonal system of human and animal life <example; Estradiol, NDMA (N-nitrosodimethylamine)> : The polar compound, NDMA can not be removed by activated carbon : New approach to tackle the problem 1) installing NF/RO -

45 5) Rejection Mechanisms in Nanofiltration - Three major solute membrane interactions affecting removal efficiency of organic pollutants in Nanofiltartion : 1) Steric Hindrance (Sieving effect) 2) Electrostatic repulsion 3) Hydrophobic-hydrophobic/ adsorptive interactions - These solute - membrane properties are determined by i) solute properties: molecular l weight/ size, charge, hydrophobicity (expressed by low K ow Values) ii) membrane properties: molecular weight cutoff (MWO)/pore size, surface charge (zeta-potential)) hydrophobicity (contact angle) iii) Operating conditions : pressure, flux, recovery iv) feed water composition: ph, temperature, t DO, inorganic i balance

46 Three major solute membrane interactions in NF 1) Steric Hindrance (Sieving effect) - It is mainly determined by the size of solute and the size of the membrane pores. - It generally leads to a typical S-shaped curve in function of the molecular weight. (rejection vs. molecular weight of solute). - Solutes with a molecular weight higher than the MWO of membrane are well rejected. S l i h l l i h l h h MWO f b il - Solutes with a molecular weight lower than the MWO of membrane can easily permeate through the membrane.

47 Three major solute membrane interactions in NF 2) Electrostatic repulsion - In the presence of electrostatic repulsion in NF, the flux may be described by extended Nernst-lanck equation. According to this eqation, the flux of charged solutes (or ions) through a charged membrane governed by several factors: i) onvection ii) Diffusion iii) Donnan potential -The effect of Donnan potential is to repel the co-ion having same charge of the fixed charge in the membrane) from th emmebrane, and because of elctroneutrality requirements, the counter-ion having opposite in charge of the fixed charge in the emnbrane) is also rejected. - This equation predicts that the solute rejection is a function of feed concentration and charge of the ion, but the equation includes the effects of convective and diffusional i fluxes.

48 Three major solute membrane interactions in NF 3) Hydrophobic-hydrophobic/ y p adsorptive interactions - These interactions are important factors in the rejection of uncharged organic molecules. - Log K ow ; logarithm of the octanol-water partition coefficient log K ow <1 hydrophilic, 1 < log K ow < 2 intermediate, log K ow > 2 hydrophobic - Hydrophobic solutes adsorb more to the membrane and are thus more easily dissolved in the membrane matrix. As a result, solution and consecutive diffusion of hydrophobic solutes in the membrane matrix leads to higher permeation. - Hydrophilic molecules are better rejected compared to hydrophobic molecules of similar molecular weight. It might be explained by hydration of hydrophil molecules. When a hydrophilic is hydrated, the effective molecular size might be larger compared to a less hydrated hydrophobic molecule of the same molecular size.

49

50

51

52

CHAPTER 3 Microfiltration,Ultrafiltration Models for Predicting Flux for MF, UF

CHAPTER 3 Microfiltration,Ultrafiltration Models for Predicting Flux for MF, UF HAPTER 3 Microfiltration,Ultrafiltration Models for Predicting Flux for MF, UF 1) apillary Model 2) Fil Theory Model 3) Flux Paradox (back-transport) 4) Resistance in series Model BAKGROUND ON MODELLING

More information

Chapter 3 Membrane Processes for Water Production

Chapter 3 Membrane Processes for Water Production Chapter 3 Membrane Processes for Water Production Application of Membrane Processes in Water Environment Fusion Tech Hydrology Molecular biology Surface Chem Nano particles Biofilm CFD Catalyst Space station

More information

CENG 5210 Advanced Separation Processes. Reverse osmosis

CENG 5210 Advanced Separation Processes. Reverse osmosis Reverse osmosis CENG 510 Advanced Separation Processes In osmosis, solvent transports from a dilute solute or salt solution to a concentrated solute or salt solution across a semipermeable membrane hich

More information

Membrane for water reuse: effect of pre-coagulation on fouling and selectivity

Membrane for water reuse: effect of pre-coagulation on fouling and selectivity Membrane for water reuse: effect of pre-coagulation on fouling and selectivity Y. Soffer*, R. Ben Aim** and A. Adin* *Division of Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem 91904,

More information

Impact of protein interactions and transmembrane pressure on physical properties of filter cakes formed during filtrations of skim milk

Impact of protein interactions and transmembrane pressure on physical properties of filter cakes formed during filtrations of skim milk Impact of protein interactions and transmembrane pressure on physical properties of filter cakes formed during filtrations of skim milk Tim Steinhauer a, Wolfgang Kühnl a, Ulrich Kulozik a a Chair for

More information

Estimate the extent of concentration polarization in crossflow filtration Select filtration unit operations to meet product requirements, consistent

Estimate the extent of concentration polarization in crossflow filtration Select filtration unit operations to meet product requirements, consistent Membrane Separation Process Objectives Estimate the extent of concentration polarization in crossflow filtration Select filtration unit operations to meet product requirements, consistent with product

More information

Lecture 10. Membrane Separation Materials and Modules

Lecture 10. Membrane Separation Materials and Modules ecture 10. Membrane Separation Materials and Modules Membrane Separation Types of Membrane Membrane Separation Operations - Microporous membrane - Dense membrane Membrane Materials Asymmetric Polymer Membrane

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t) - F dt d - 1 4 2 3 πr3

More information

CONCENTRATION POLARIZATION

CONCENTRATION POLARIZATION CONCENTRATION POLARIZATION Smart Membrane Products. More Water. Less Cost. www.waterplanet.com CONCENTRATION POLARIZATION: EARLY THEORIES Subir Bhattacharjee, Ph.D. Founder & CTO Water Planet, Inc. OVERVIEW

More information

ULTRAFLITRATION OF WASTEWATER WITH PRETREATMENT: EVALUATION OF FLUX DECLINE MODELS

ULTRAFLITRATION OF WASTEWATER WITH PRETREATMENT: EVALUATION OF FLUX DECLINE MODELS ULTRAFLITRATION OF WASTEWATER WITH PRETREATMENT: EVALUATION OF FLUX DECLINE MODELS H. K. Shon, S. Vigneswaran,* J. Kandasamy and W.G. Shim 2 Faculty of Engineering, University of Technology, Sydney, P.O.

More information

COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS

COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS Prashant Tiwari 1, Steven P. Antal 1,2, Michael Z. Podowski 1,2 * 1 Department of Mechanical, Aerospace and Nuclear Engineering,

More information

Membrane processes selective hydromechanical diffusion-based porous nonporous

Membrane processes selective hydromechanical diffusion-based porous nonporous Membrane processes Separation of liquid or gaseous mixtures by mass transport through membrane (= permeation). Membrane is selective, i.e. it has different permeability for different components. Conditions

More information

Applicability Assessment of Subcritical Flux Operation in Crossflow Microfiltration with a Concentration Polarization Model

Applicability Assessment of Subcritical Flux Operation in Crossflow Microfiltration with a Concentration Polarization Model Applicability Assessment of Subcritical Flux Operation in Crossflow Microfiltration with a Concentration Polarization Model Suhan Kim 1 and Heekyung Park 2 Abstract: In the process of crossflow microfiltration,

More information

Controlling membrane pore blocking and filter cake build-up in side-stream MBR systems

Controlling membrane pore blocking and filter cake build-up in side-stream MBR systems 1 Controlling membrane pore blocking and filter cake build-up in side-stream MBR systems T. Jiang 1,a,2,b*#, M.D. Kennedy 1,c, W.G.J. van der Meer 3,d, P.A. Vanrolleghem 2,e, J.C. Schippers 1,f 1 International

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer Diffusion 051333 Unit operation in gro-industry III Department of Biotechnology, Faculty of gro-industry Kasetsart University Lecturer: Kittipong Rattanaporn 1 Outline Definition and mechanism Theory of

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

CEE 697z Organic Compounds in Water and Wastewater

CEE 697z Organic Compounds in Water and Wastewater Print version CEE 697z Organic Compounds in Water and Wastewater NOM Characterization Ran Zhao Lecture #6 Dave Reckhow - Organics In W & WW Outline Introduction of NOM Water treatment processes for NOM

More information

Some physico-chemical data can be found at the web page (E-Tables):

Some physico-chemical data can be found at the web page (E-Tables): Reminiscences 1 Physical data have been supplied to Problem_#4. Some physico-chemical data can be found at the web page (E-Tables): http://uchi.vscht.cz/index.php/en/studium/navody-a-pomucky/e-tabulky

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Investigating the effect of graphene oxide on scaling in thin-film composite polyamide reverse osmosis membranes

Investigating the effect of graphene oxide on scaling in thin-film composite polyamide reverse osmosis membranes Investigating the effect of graphene oxide on scaling in thin-film composite polyamide reverse osmosis membranes Ali Ansari, Bo Cao, Xinyi Yi, Yandi Hu, and Debora Rodrigues Civil and Environmental Engineering,

More information

Membrane Performance Forecast

Membrane Performance Forecast Membrane Performance Forecast Interested in Membranes? Liquid Selectivity in s ea cr Zeta potential analysis with SurPASS 3 from Anton Paar opens up new possibilities in the characterization of membranes

More information

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored First let s just consider fluid flow, where the fluid

More information

1 Introduction to membrane filtration of liquids

1 Introduction to membrane filtration of liquids 1 Introduction to membrane filtration of liquids 1.1 Introduction This book is largely concerned with solving process problems in the membrane filtration of liquids. In that sense, it is more a chemical

More information

LIQUID/SOLID SEPARATIONS Filtration, Sedimentation, Centrifuges Ron Zevenhoven ÅA Thermal and Flow Engineering

LIQUID/SOLID SEPARATIONS Filtration, Sedimentation, Centrifuges Ron Zevenhoven ÅA Thermal and Flow Engineering 7 ÅA 44514 / 010 / 016 Fluid and Particulate systems 44514 /016 LIQUID/SOLID SEPARATIONS Filtration, Sedimentation, Centrifuges Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 7.1

More information

M.A. Javeed 1, K. Chinu 1, H.K. Shon 1 and S. Vigneswaran 1,* Abstract

M.A. Javeed 1, K. Chinu 1, H.K. Shon 1 and S. Vigneswaran 1,* Abstract The effect of pre-treatment on the fouling propensity of the feed as depicted by modified fouling index (MFI) and cross-flow sampler modified fouling index (CFS-MFI) M.A. Javeed 1, K. Chinu 1, H.K. Shon

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

/05/ MAIK Nauka /Interperiodica

/05/ MAIK Nauka /Interperiodica Theoretical Foundations of Chemical Engineering, Vol. 39, No. 4, 5, pp. 4 46. Translated from Teoreticheskie Osnovy Khimicheskoi Tekhnologii, Vol. 39, No. 4, 5, pp. 46 43. Original Russian Text Copyright

More information

PERMEATION OF SUPERCRITICAL CARBON DIOXIDE ACROSS POLYMERIC HOLLOW FIBER MEMBRANES

PERMEATION OF SUPERCRITICAL CARBON DIOXIDE ACROSS POLYMERIC HOLLOW FIBER MEMBRANES PERMEATION OF SUPERCRITICAL CARBON DIOXIDE ACROSS POLYMERIC HOLLOW FIBER MEMBRANES V. E. Patil* 1, L. J. P. van den Broeke 1, F. Vercauteren and J.T.F. Keurentjes 1 1 Department of Chemistry and Chemical

More information

Fluid Flow Fluid Flow and Permeability

Fluid Flow Fluid Flow and Permeability and Permeability 215 Viscosity describes the shear stresses that develop in a flowing fluid. V z Stationary Fluid Velocity Profile x Shear stress in the fluid is proportional to the fluid velocity gradient.

More information

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION Dipl.-Ing. Johannes Lindner*, Dipl.-Ing. Katharina Menzel, Prof. Dr.-Ing. Hermann Nirschl Institute of Mechanical Process Engineering and Mechanics

More information

Membrane Filtration 111 CAMBRIDGE. A Problem Solving Approach with MATLAB GREG FOLEY UNIVERSITY PRESS. Dublin City University

Membrane Filtration 111 CAMBRIDGE. A Problem Solving Approach with MATLAB GREG FOLEY UNIVERSITY PRESS. Dublin City University Membrane Filtration A Problem Solving Approach with MATLAB GREG FOLEY Dublin City University 111 CAMBRIDGE UNIVERSITY PRESS Contents Preface Abbreviations page xv xviii 1 Introduction to membrane filtration

More information

Effect of flocculation conditions on membrane permeability in coagulation microfiltration

Effect of flocculation conditions on membrane permeability in coagulation microfiltration Desalination 191 (2006) 386 396 Effect of flocculation conditions on membrane permeability in coagulation microfiltration Min-Ho Cho a, Chung-Hak Lee a*, Sangho Lee b a School of Chemical and Biological

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

Sanitary Engineering. Coagulation and Flocculation. Week 3

Sanitary Engineering. Coagulation and Flocculation. Week 3 Sanitary Engineering Coagulation and Flocculation Week 3 1 Coagulation and Flocculation Colloidal particles are too small to be removed by sedimentation or by sand filtration processes. Coagulation: Destabilization

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

2 THEORY OF TRANSPORT IN MEMBRANES

2 THEORY OF TRANSPORT IN MEMBRANES 2 THEORY OF TRANSPORT IN MEMBRANES 2.1 Driving forces for transport mechanisms A membrane process is a separation process that covers a broad range of problems from particles to molecules and a wide variety

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 33-41 CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE Sharmina Hussain Department of Mathematics and Natural Science BRAC University,

More information

Beneficial Effect of Particle Adsorption in UF/MF Outside-In Hollow Fiber Filters. Yuriy Polyakov USPolyResearch, New Jersey Institute of Technology

Beneficial Effect of Particle Adsorption in UF/MF Outside-In Hollow Fiber Filters. Yuriy Polyakov USPolyResearch, New Jersey Institute of Technology Beneficial Effect of Particle Adsorption in UF/MF Outside-In Hollow Fiber Filters Yuriy Polyakov USPolyResearch, New Jersey Institute of Technology NAMS 2005 BENEFICIAL EFFECT OF PARTICLE ADSORPTION Slide

More information

Overview. Lecture 5 Colloidal Dispersions

Overview. Lecture 5 Colloidal Dispersions Physical Pharmacy Lecture 5 Colloidal Dispersions Assistant Lecturer in Pharmaceutics Overview Dispersed Systems Classification Colloidal Systems Properties of Colloids Optical Properties Kinetic Properties

More information

Patrice Bacchin, Djaffar Si-Hassen, Victor Starov, Michael Clifton, Pierre Aimar. To cite this version:

Patrice Bacchin, Djaffar Si-Hassen, Victor Starov, Michael Clifton, Pierre Aimar. To cite this version: A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions Patrice Bacchin, Djaffar Si-Hassen, Victor Starov,

More information

Dynamics of osmotic flows

Dynamics of osmotic flows Cite as : Bacchin, P. (2017). Colloid-interface interactions initiate osmotic flow dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi.org/10.1016/j.colsurfa.2017.08.034 Dynamics

More information

CHAPTER 9: MEMBRANE SEPARATION PROCESS

CHAPTER 9: MEMBRANE SEPARATION PROCESS CHAPTER 9: MEMBRANE SEPARATION PROCESS MOHAMAD FAHRURRAZI TOMPANG Sem 2 2011/2012 ERT 313 BIOSEPARATION ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T)

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

The relevance of fouling models to crossflow microfiltration

The relevance of fouling models to crossflow microfiltration Loughborough University Institutional Repository The relevance of fouling models to crossflow microfiltration This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ APPENDIX B FLUID DYNAMICS This section is a brief introduction to fluid dynamics. Historically, a simplified concept of the boundary layer, the unstirred water layer, has been operationally used in the

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

Research Article Performance of Single and Double Shaft Disk Separators

Research Article Performance of Single and Double Shaft Disk Separators Hindawi Publishing Corporation Physical Separation in Science and Engineering Volume 8, Article ID 58617, 5 pages doi:1.1155/8/58617 Research Article Performance of Single and Double Shaft Disk Separators

More information

Membrane Clean In Place Recipe Optimization

Membrane Clean In Place Recipe Optimization Membrane Clean In Place Recipe Optimization Surface Water Treatment Workshop May 2, 2018 Matt Erickson, PE Outline Introduction UF/RO Background Pretreatment Optimization UF/RO CIP Optimization Case Studies

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

NOA DRIE

NOA DRIE Table of Contents CHAPTER 1... 6 Introduction... 6 1.1 Challenges in membrane processes and fouling control... 8 1.1.1 Generalities on membrane processes... 8 1.1.2 Technical challenges in Membrane Processes...

More information

Separation Processes: Filtration

Separation Processes: Filtration Separation Processes: Filtration ChE 4M3 Kevin Dunn, 2014 kevin.dunn@mcmaster.ca http://learnche.mcmaster.ca/4m3 Overall revision number: 305 (September 2014) 1 Copyright, sharing, and attribution notice

More information

INPHAZE HiRes-EIS High Resolution Electrical Impedance Spectroscopy. HiRes-EIS for Characterization of Membranes & Membrane Fouling

INPHAZE HiRes-EIS High Resolution Electrical Impedance Spectroscopy. HiRes-EIS for Characterization of Membranes & Membrane Fouling INPHAZE HiRes-EIS High Resolution Electrical Impedance Spectroscopy Abstract HiRes-EIS for Characterization of Membranes & Membrane Fouling Separation membranes typically have a thin skin layer supported

More information

Chemical Product and Process Modeling

Chemical Product and Process Modeling Chemical Product and Process Modeling Volume 4, Issue 4 2009 Article 5 CHEMPOR 2008 Determination of the Wall Shear Stress by Numerical Simulation: Membrane Process Applications Fanny Springer Rémy Ghidossi

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

Viscometry. - neglect Brownian motion. CHEM 305

Viscometry. - neglect Brownian motion. CHEM 305 Viscometry When a macromolecule moves in solution (e.g. of water), it induces net motions of the individual solvent molecules, i.e. the solvent molecules will feel a force. - neglect Brownian motion. To

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Effect of physicochemical conditions on crossflow microfiltration of mineral dispersions using ceramic

Effect of physicochemical conditions on crossflow microfiltration of mineral dispersions using ceramic Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16- September 7 Effect of physicochemical conditions on crossflow microfiltration of mineral dispersions using ceramic P. Mikulášek,

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

v ( ) x (b) Using Navier-Stokes equations, derive an expression

v ( ) x (b) Using Navier-Stokes equations, derive an expression Problem 1: Microscopic Momentum Balance In sweep flow filtration (see Figure below), a pressure drop forces fluid containing particles between two porous plates and there is a transverse (cross) flow that

More information

EQ121 - Membrane Processes and Technologies

EQ121 - Membrane Processes and Technologies Coordinating unit: 295 - EEBE - Barcelona East School of Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: 2018 Degree: ECTS credits: 6 Teaching languages: English

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Mass Transfer and Fluid Hydrodynamics in Sealed End Hydrophobic Hollow Fiber Membrane Gas-liquid Contactors

Mass Transfer and Fluid Hydrodynamics in Sealed End Hydrophobic Hollow Fiber Membrane Gas-liquid Contactors J. Applied Membrane Science & Technology, Vol.2, Dec. 2005, 1 12 Mass Transfer and Fluid Hydrodynamics in Sealed End Hydrophobic Hollow Fiber 1 Universiti Teknologi Malaysia Mass Transfer and Fluid Hydrodynamics

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important Mats Larsson 1, Adrian Hill 2, and John Duffy 2 1 Malvern

More information

Supporting Information. Technique for real-time measurements of endothelial permeability in a

Supporting Information. Technique for real-time measurements of endothelial permeability in a Supporting Information Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection Edmond W.K. Young a,b,, Michael W.L. Watson

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Simulation of Soot Filtration on the Nano-, Micro- and Meso-scale

Simulation of Soot Filtration on the Nano-, Micro- and Meso-scale Simulation of Soot Filtration on the Nano-, Micro- and Meso-scale L. Cheng 1, S. Rief 1, A. Wiegmann 1, J. Adler 2, L. Mammitzsch 2 and U. Petasch 2 1 Fraunhofer-Institut Techno- und Wirtschaftsmathematik,

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Flow and Transport. c(s, t)s ds,

Flow and Transport. c(s, t)s ds, Flow and Transport 1. The Transport Equation We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity ν through a long thin tube G with uniform cross section

More information

Supplementary Figure 1. Characterization of the effectiveness of ion transport in CNT aerogel sheets. (a)

Supplementary Figure 1. Characterization of the effectiveness of ion transport in CNT aerogel sheets. (a) Supplementary Figures Supplementary Figure 1. Characterization of the effectiveness of ion transport in CNT aerogel sheets. (a) Schematic drawing of experimental setup for measuring mass transfer coefficient.

More information

PREDICTION OF NANOFILTRATION MEMBRANE PERFORMANCE: ANALYSIS OF ION TRANSPORT MECHANISMS

PREDICTION OF NANOFILTRATION MEMBRANE PERFORMANCE: ANALYSIS OF ION TRANSPORT MECHANISMS PREDICTION OF NANOFILTRATION MEMBRANE PERFORMANCE: ANALYSIS OF ION TRANSPORT MECHANISMS Norhaslina Mohd Sidek 1, Sarifah Fauziah Syed Draman 1, Nora aini Ali 2 and Ilyani Abdullah 3 1 Faculty of Chemical

More information

INTRODUCTION OBJECTIVES

INTRODUCTION OBJECTIVES INTRODUCTION The transport of particles in laminar and turbulent flows has numerous applications in engineering, biological and environmental systems. The deposition of aerosol particles in channels and

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Accepted Manuscript. Paul M. Boyle, Brent C. Houchens, Albert S. Kim

Accepted Manuscript. Paul M. Boyle, Brent C. Houchens, Albert S. Kim Accepted Manuscript Simulation of Colloidal Fouling by Coupling a Dynamically Updating Velocity Profile and Electric Field Interactions with Force Bias Monte Carlo Methods for Membrane Filtration Paul

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FLOWS WITH NON-SPHERICAL PARTICLES Berend van Wachem Thermofluids Division, Department of Mechanical Engineering Imperial College London Exhibition Road, London,

More information

Investigation of cake deposition on various parts of the surface of microfiltration membrane due to fouling

Investigation of cake deposition on various parts of the surface of microfiltration membrane due to fouling Korean J. Chem. Eng., 27(1), 206-213 (2010) DOI: 10.1007/s11814-009-0299-z RAPID COMMUNICATION Investigation of cake deposition on various parts of the surface of microfiltration membrane due to fouling

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 05 Clay particle-water interaction & Index properties Electrical nature of clay particles a) Electrical charges i) The two faces of all platy particles have a negative charge. Resulting due to isomorphous

More information

WATER-OIL SEPARATION PROCESS USING A CONCENTRIC TUBULAR CERAMIC MEMBRANE MODULE: A NUMERICAL INVESTIGATION

WATER-OIL SEPARATION PROCESS USING A CONCENTRIC TUBULAR CERAMIC MEMBRANE MODULE: A NUMERICAL INVESTIGATION WATER-OIL SEPARATION PROCESS USING A CONCENTRIC TUBULAR CERAMIC MEMBRANE MODULE: A NUMERICAL INVESTIGATION a Cunha, A. L. 1 ; b Farias Neto, S. R.; c Lima, A. G. B.; c Barbosa, E. S.; a Santos, J. P. L.;

More information