Rank-Deficient Nonlinear Least Squares Problems and Subset Selection

Size: px
Start display at page:

Download "Rank-Deficient Nonlinear Least Squares Problems and Subset Selection"

Transcription

1 Rank-Deficient Nonlinear Least Squares Problems and Subset Selection Ilse Ipsen North Carolina State University Raleigh, NC, USA Joint work with: Tim Kelley and Scott Pope

2 Motivating Application Overview Modeling cardiovascular systems Extract biomarkers: Nonlinear parameter estimation Nonlinear dependencies among parameters Computation Solution of nonlinear least squares problem by Levenberg-Marquardt trust region algorithm Rank deficient Jacobians Errors in Jacobian evaluation How to regularize the Jacobian? Truncated SVD: NO Column subset selection: YES

3 Modeling Cardiovascular Systems Goal: Identify parameters that regulate blood flow Cardiovascular system = lumped 5-compartment model Blood flow, volume, pressure, resistance, compliance Vvc Veins Cer Veins qacp Arteries Cer Art Vac Cvc pvc Racp pac Cac Rvc qvc Vvs Sys Veins pvs Cvs qmv Rmv Left Ventricle Vlv plv Clv(t) qav Rav qac Rac Sys Art Vas pas Cas qasp Rasp [Pope, Olufsen, Ellwein, Novak, Kelley]

4 Computation System of 5 ODEs with N = 16 parameters Parameter vector p R N y = F(t,y;p) y(0) = y 0 Observations d j at M time points t j M N Nonlinear residual y(t 1,p) d 1 R(p) =. y(t M,p) d M Identify parameters p that minimize difference between measured and computed quantities min p R(p) T R(p)/2

5 Nonlinear Least Squares Problem min p R(p) T R(p)/2 Jacobian J n R (p n ) at current iterate p n Levenberg-Marquardt trust region algorithm For n = 0,1,2... ( ) 1 p n+1 = p n ν n I +Jn T J n J T n R(p n ) ν n = 0 and J n full column rank: Gauss Newton Here: ν n 0 and J n rank deficient

6 Levenberg-Marquardt Algorithm Inside a Levenberg-Marquardt Step: While iterate has not changed Trial step s = ( ν n I +J T n J n ) 1J T n R(p n ) Trial iterate p t = p n +s if p t good enough then p n+1 = p t, ν n+1 keep or decrease ν n else ν n+1 increase ν n Ideally: ν n 0, or at least ν n bounded p n converge to minimizer, or at least stationary point But here: Poor convergence (Levenberg-Marquardt stagnates) Gradient at solution not small Accuracy of solution???

7 Convergence Analysis Near solution manifold Assuming exact arithmetic Nonlinear iterations with rank deficient Jacobians: Ben-Israel 1966, Boggs 1976, Deuflhard & Heindl 1979, Schaback 1985

8 Behavior of Levenberg-Marquardt Iterates Assumptions Initial iterate p 0 close enough to a solution p J(p) Lipschitz continuous R(p ) small but not necessarily zero Then we can show Levenberg-Marquardt parameters ν n remain bounded Iterates p n approach solution manifold If p n converge then they converge to some solution (Cauchy sequence) Still need to show that p n converge

9 Convergence of Levenberg-Marquardt Iterates Model nonlinear dependence among parameters: R(p) = R (B(p)) B : R M R K If K = N then Jacobian J has full column rank Assumptions: Sufficiently close to a solution p R and B uniformly Lipschitz continuously differentiable All K singular values of B uniformly bounded away from 0 All K singular values of R uniformly bounded away from 0 R(b) T R(b)/2 has unique minimizer Then: p n converge to a solution r-linearly

10 Summary: Convergence Analysis Assumptions: Near solution manifold Initial iterate p 0 sufficiently close to a solution p Nonlinear residual R(p ) small but not necessarily zero Dependence among parameters: R(p) = R (B(p)) B : R M R K Jacobians B and R have rank K All Jacobians sufficiently smooth Then: Iterates p n converge to some solution But this assumes exact arithmetic! What happens in finite precision?

11 Finite Precision Issues Computation of trial step Effect of errors in computed Jacobian Regularization of Jacobian: Truncated SVD subset selection Singular vector perturbations: Stewart 1973

12 Computation of Trial Step p n+1 = p n +s Trial step ( J s = νi +J J) T T R Works for ν = 0 and rank deficient J Computed as minimum norm solution to linear least squares problem min x Ax b A = ( ) J νi b = ( ) R 0 Illconditioned or illposed if ν small, J rank deficient

13 Full Rank Jacobian J has full column rank: s = ( νi +J T J ) 1 J T R Condition number κ ν (J) := ( νi +J T J ) 1 J T J J = J +E has full column rank, E ǫ J ( T J) 1 JT s = νi + J R Relative error in trial step s s s κ ν (J) ( 1+ R ) ǫ J s Error in J amplified by conditioning of J and nonlinear residual R

14 Rank Deficient Jacobian: Regularization Exact trial step s = ( νi +J T J ) J T R Truncate SVD of J: Truncated Jacobian J t has singular values σ 1 σ K > σ K+1 = = σ N = 0 Truncated trial step is ( J s t = νi +Jt t) T J T t R Computed as minimum norm solution of min x A t x b A t = ( ) Jt νi b = ( ) R 0 Linear least squares problem still ill-conditioned or ill-posed

15 Truncated SVD: Errors in Jacobian SVD of exact Jacobian: J = UΣV T Nonzero singular values σ 1 σ K > 0 κ ν (J) := σ 1 max σ K σ σ 1 rank(j) = K σ ν +σ 2 SVD of perturbed Jacobian: J+E = Ũ ΣṼT, E F ǫ J Ũ, Ṽ rotations of U, V by angles θ J t truncated SVD of J +E rank( J t ) = K Trial step of truncated perturbed Jacobian ( s t = νi + J t T J ) t J t T R

16 Relative Error for Truncated SVD For ǫ sufficiently small s t s s t κ ν (J) [ ] R 1+(1+2 J tanθ) ǫ+o(ǫ 2 ) J s t tanθ: Accuracy of singular vectors of truncated Jacobian J t Error in J t amplified by Conditioning of J Inaccuracy of singular vectors Nonlinear residual R Trial step from truncated SVD not accurate if J close to matrix of rank K 1: κ ν (J) 1 Singular vectors have low accuracy: tanθ 0 Nonlinear residual R large

17 Alternative Regularization: Subset Selection Choose K very linearly independent columns J 1 from J J = ( J 1 J 2 ) Trial step ( ) 1J ŝ = νi +J1 T T J 1 1 R Computed as solution of min x A 1 x b A 1 = ( ) J1 νi b = ( ) R 0 Linear least squares problem now well-conditioned

18 Subset Selection: Errors in Jacobian J 1 selected by strong RRQR [Gu & Eisenstat 1996] σ j 1+K(N K) σ j (J 1 ) σ j 1 j K Singular values of J 1 close to largest singular values of J Perturbed Jacobian J = J +E rank(j +E) K, E ǫ J Select same columns for J 1 and J 1 : ( J1 J2 ) ( s = νi + J 1 T J ) 1 1 JT 1 R

19 Subset Selection: Relative Error Condition number κ ν (J 1 ) = σ 1 max σ K σ σ 1 σ ν +σ 2 σ K = σ K / 1+K(N K) Relative error in subset selection trial step s ŝ s κ ν (J 1 ) ( 1+ R ) J s ǫ Error in J amplified by conditioning of J 1 and nonlinear residual R Same as full rank bound applied to J 1

20 Numerical Experiments Goal: Design simplest possible setting to reproduce failures from truncated SVD observed in cardiovascular model

21 Numerical Experiments Driven harmonic oscillator ( δ)y +(c 1 +c 2 )y +k y = 2sin(5t) y(0) = y 0, y (0) = y 0 4 parameters p = ( δ c 1 c 2 k ) T Numerical solution ỹ(t j ) from Matlab ode15s Nonlinear residual ỹ(t 1 ) d 1 R(p) =. ỹ(t M ) d M Estimate p by solving nonlinear least squares problem min p R(p) T R(p)/2

22 Numerical Experiments: Assumptions ( δ)y +(c 1 +c 2 )y +k y = 2sin(5t) Highly accurate Jacobians: Compute columns of J from sensitivities y/ p Zero residual: Data d from exact parameters p = ( ) T Initial guess p 0 = ( ) T Singular values of initial Jacobian: One zero singular value by design: Need to recover c 1 +c 2 = 1 R c 1 = R c 2

23 Numerical Experiments: Zero Residual Assumptions for subset selection: Rank K = 3 of Jacobian is known Subset selection applied only to initial Jacobian All Levenberg-Marquardt iterations work with same K columns Parameters corresponding to N K = 1 non-selected columns set to nominal values Exact parameters p = ( ) T Truncated SVD: p = ( ) T Subset selection: p = ( ) T A little more accurate

24 Convergence History: Zero Residual Truncated SVD Gradient Norm Least Squares Error Subset selection Iterations Iterations Subset selection converges faster and slightly more accurate than truncated SVD

25 Numerical Experiments: Non-Zero Residual ( δ)y +(c 1 +c 2 )y +k 0 y = 2sin(5t) Non-zero residual Componentwise relative perturbation of data d by 10 4 Singular values of Jacobian have not changed: Exact parameters p = ( ) T Truncated SVD: p = ( ) T δ completely wrong Subset selection: p = ( ) T Much more accurate

26 Truncated SVD Subset Selection What is really going on?

27 General Least Squares Problems min x Ax b A is M N, M N Singular values σ 1 σ K σ K+1 σ N > 0 Least squares problem with illconditioned matrix Truncated SVD Singular values σ 1 σ K σ K+1 = = σ N = 0 Least squares problem now ill-posed Subset Selection: K columns of A selected by strong RRQR Singular values σ 1 σ K / 1+K(N k) 0 Least squares problem with wellconditioned matrix

28 The Problem with Truncated SVD min x Ax b A has singular values σ 1 σ k σ r > 0 s = A b is minimal norm solution Truncated SVD: min x A t x b A t has singular values σ 1 σ k s t = A tb is minimal norm solution, residual r t = b As t Relative error s t s s t σ 1 σ r r t A s t Small residual does not imply that s t accurate Bound independent of how many singular values truncated

29 Summary Parameter estimation with nonlinear dependences Expressed as nonlinear least squares problem Solved by Levenberg-Marquardt trust region algorithm Rank deficient Jacobians Errors in Jacobian evaluation, non-zero residuals How to regularize Jacobian: Truncated SVD: NO Subset selection: Yes

Subset Selection. Ilse Ipsen. North Carolina State University, USA

Subset Selection. Ilse Ipsen. North Carolina State University, USA Subset Selection Ilse Ipsen North Carolina State University, USA Subset Selection Given: real or complex matrix A integer k Determine permutation matrix P so that AP = ( A 1 }{{} k A 2 ) Important columns

More information

c 2011 Society for Industrial and Applied Mathematics

c 2011 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 49, No. 3, pp. 1244 1266 c 2011 Society for Industrial and Applied Mathematics RANK-DEFICIENT NONLINEAR LEAST SQUARES PROBLEMS AND SUBSET SELECTION I. C. F. IPSEN, C. T. KELLEY,

More information

ESTIMATION AND IDENTIFICATION OF PARAMETERS IN A LUMPED CEREBROVASCULAR MODEL

ESTIMATION AND IDENTIFICATION OF PARAMETERS IN A LUMPED CEREBROVASCULAR MODEL MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2009.6.93 AND ENGINEERING Volume 6, Number 1, January 2009 pp. 93 115 ESTIMATION AND IDENTIFICATION OF PARAMETERS IN A LUMPED CEREBROVASCULAR MODEL Scott R. Pope

More information

Non-polynomial Least-squares fitting

Non-polynomial Least-squares fitting Applied Math 205 Last time: piecewise polynomial interpolation, least-squares fitting Today: underdetermined least squares, nonlinear least squares Homework 1 (and subsequent homeworks) have several parts

More information

The Normal Equations. For A R m n with m > n, A T A is singular if and only if A is rank-deficient. 1 Proof:

The Normal Equations. For A R m n with m > n, A T A is singular if and only if A is rank-deficient. 1 Proof: Applied Math 205 Homework 1 now posted. Due 5 PM on September 26. Last time: piecewise polynomial interpolation, least-squares fitting Today: least-squares, nonlinear least-squares The Normal Equations

More information

Subset Selection. Deterministic vs. Randomized. Ilse Ipsen. North Carolina State University. Joint work with: Stan Eisenstat, Yale

Subset Selection. Deterministic vs. Randomized. Ilse Ipsen. North Carolina State University. Joint work with: Stan Eisenstat, Yale Subset Selection Deterministic vs. Randomized Ilse Ipsen North Carolina State University Joint work with: Stan Eisenstat, Yale Mary Beth Broadbent, Martin Brown, Kevin Penner Subset Selection Given: real

More information

Least-Squares Fitting of Model Parameters to Experimental Data

Least-Squares Fitting of Model Parameters to Experimental Data Least-Squares Fitting of Model Parameters to Experimental Data Div. of Mathematical Sciences, Dept of Engineering Sciences and Mathematics, LTU, room E193 Outline of talk What about Science and Scientific

More information

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k Maria Cameron Nonlinear Least Squares Problem The nonlinear least squares problem arises when one needs to find optimal set of parameters for a nonlinear model given a large set of data The variables x,,

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Least squares problems

Least squares problems Least squares problems How to state and solve them, then evaluate their solutions Stéphane Mottelet Université de Technologie de Compiègne 30 septembre 2016 Stéphane Mottelet (UTC) Least squares 1 / 55

More information

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit I: Data Fitting Lecturer: Dr. David Knezevic Unit I: Data Fitting Chapter I.4: Nonlinear Least Squares 2 / 25 Nonlinear Least Squares So far we have looked at finding a best

More information

Discrete Ill Posed and Rank Deficient Problems. Alistair Boyle, Feb 2009, SYS5906: Directed Studies Inverse Problems 1

Discrete Ill Posed and Rank Deficient Problems. Alistair Boyle, Feb 2009, SYS5906: Directed Studies Inverse Problems 1 Discrete Ill Posed and Rank Deficient Problems Alistair Boyle, Feb 2009, SYS5906: Directed Studies Inverse Problems 1 Definitions Overview Inversion, SVD, Picard Condition, Rank Deficient, Ill-Posed Classical

More information

Trust-region methods for rectangular systems of nonlinear equations

Trust-region methods for rectangular systems of nonlinear equations Trust-region methods for rectangular systems of nonlinear equations Margherita Porcelli Dipartimento di Matematica U.Dini Università degli Studi di Firenze Joint work with Maria Macconi and Benedetta Morini

More information

2 Nonlinear least squares algorithms

2 Nonlinear least squares algorithms 1 Introduction Notes for 2017-05-01 We briefly discussed nonlinear least squares problems in a previous lecture, when we described the historical path leading to trust region methods starting from the

More information

17 Solution of Nonlinear Systems

17 Solution of Nonlinear Systems 17 Solution of Nonlinear Systems We now discuss the solution of systems of nonlinear equations. An important ingredient will be the multivariate Taylor theorem. Theorem 17.1 Let D = {x 1, x 2,..., x m

More information

YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL

YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL Journal of Comput. & Applied Mathematics 139(2001), 197 213 DIRECT APPROACH TO CALCULUS OF VARIATIONS VIA NEWTON-RAPHSON METHOD YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL Abstract. Consider m functions

More information

SUBSET SELECTION ALGORITHMS: RANDOMIZED VS. DETERMINISTIC

SUBSET SELECTION ALGORITHMS: RANDOMIZED VS. DETERMINISTIC SUBSET SELECTION ALGORITHMS: RANDOMIZED VS. DETERMINISTIC MARY E. BROADBENT, MARTIN BROWN, AND KEVIN PENNER Advisors: Ilse Ipsen 1 and Rizwana Rehman 2 Abstract. Subset selection is a method for selecting

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Why the QR Factorization can be more Accurate than the SVD

Why the QR Factorization can be more Accurate than the SVD Why the QR Factorization can be more Accurate than the SVD Leslie V. Foster Department of Mathematics San Jose State University San Jose, CA 95192 foster@math.sjsu.edu May 10, 2004 Problem: or Ax = b for

More information

x 2 x n r n J(x + t(x x ))(x x )dt. For warming-up we start with methods for solving a single equation of one variable.

x 2 x n r n J(x + t(x x ))(x x )dt. For warming-up we start with methods for solving a single equation of one variable. Maria Cameron 1. Fixed point methods for solving nonlinear equations We address the problem of solving an equation of the form (1) r(x) = 0, where F (x) : R n R n is a vector-function. Eq. (1) can be written

More information

Numerical solution of Least Squares Problems 1/32

Numerical solution of Least Squares Problems 1/32 Numerical solution of Least Squares Problems 1/32 Linear Least Squares Problems Suppose that we have a matrix A of the size m n and the vector b of the size m 1. The linear least square problem is to find

More information

Applied Numerical Linear Algebra. Lecture 8

Applied Numerical Linear Algebra. Lecture 8 Applied Numerical Linear Algebra. Lecture 8 1/ 45 Perturbation Theory for the Least Squares Problem When A is not square, we define its condition number with respect to the 2-norm to be k 2 (A) σ max (A)/σ

More information

Numerical Methods. Elena loli Piccolomini. Civil Engeneering. piccolom. Metodi Numerici M p. 1/??

Numerical Methods. Elena loli Piccolomini. Civil Engeneering.  piccolom. Metodi Numerici M p. 1/?? Metodi Numerici M p. 1/?? Numerical Methods Elena loli Piccolomini Civil Engeneering http://www.dm.unibo.it/ piccolom elena.loli@unibo.it Metodi Numerici M p. 2/?? Least Squares Data Fitting Measurement

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

GLOBALLY CONVERGENT GAUSS-NEWTON METHODS

GLOBALLY CONVERGENT GAUSS-NEWTON METHODS GLOBALLY CONVERGENT GAUSS-NEWTON METHODS by C. Fraley TECHNICAL REPORT No. 200 March 1991 Department of Statistics, GN-22 University of Washington Seattle, Washington 98195 USA Globally Convergent Gauss-Newton

More information

An Inexact Newton Method for Nonlinear Constrained Optimization

An Inexact Newton Method for Nonlinear Constrained Optimization An Inexact Newton Method for Nonlinear Constrained Optimization Frank E. Curtis Numerical Analysis Seminar, January 23, 2009 Outline Motivation and background Algorithm development and theoretical results

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT -09 Computational and Sensitivity Aspects of Eigenvalue-Based Methods for the Large-Scale Trust-Region Subproblem Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug

More information

Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna

Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna Inverse Theory COST WaVaCS Winterschool Venice, February 2011 Stefan Buehler Luleå University of Technology Kiruna Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3

More information

Review Questions REVIEW QUESTIONS 71

Review Questions REVIEW QUESTIONS 71 REVIEW QUESTIONS 71 MATLAB, is [42]. For a comprehensive treatment of error analysis and perturbation theory for linear systems and many other problems in linear algebra, see [126, 241]. An overview of

More information

Numerical Methods for Separable Nonlinear Inverse Problems with Constraint and Low Rank

Numerical Methods for Separable Nonlinear Inverse Problems with Constraint and Low Rank Numerical Methods for Separable Nonlinear Inverse Problems with Constraint and Low Rank Taewon Cho Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

Least squares: the big idea

Least squares: the big idea Notes for 2016-02-22 Least squares: the big idea Least squares problems are a special sort of minimization problem. Suppose A R m n where m > n. In general, we cannot solve the overdetermined system Ax

More information

Inverse Singular Value Problems

Inverse Singular Value Problems Chapter 8 Inverse Singular Value Problems IEP versus ISVP Existence question A continuous approach An iterative method for the IEP An iterative method for the ISVP 139 140 Lecture 8 IEP versus ISVP Inverse

More information

7.3 The Jacobi and Gauss-Siedel Iterative Techniques. Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP.

7.3 The Jacobi and Gauss-Siedel Iterative Techniques. Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP. 7.3 The Jacobi and Gauss-Siedel Iterative Techniques Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP. 7.3 The Jacobi and Gauss-Siedel Iterative Techniques

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Lars Eldén Department of Mathematics, Linköping University 1 April 2005 ERCIM April 2005 Multi-Linear

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Rank revealing factorizations, and low rank approximations

Rank revealing factorizations, and low rank approximations Rank revealing factorizations, and low rank approximations L. Grigori Inria Paris, UPMC January 2018 Plan Low rank matrix approximation Rank revealing QR factorization LU CRTP: Truncated LU factorization

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

High Performance Nonlinear Solvers

High Performance Nonlinear Solvers What is a nonlinear system? High Performance Nonlinear Solvers Michael McCourt Division Argonne National Laboratory IIT Meshfree Seminar September 19, 2011 Every nonlinear system of equations can be described

More information

KKT Conditions for Rank-Deficient Nonlinear Least-Square Problems with Rank-Deficient Nonlinear Constraints1

KKT Conditions for Rank-Deficient Nonlinear Least-Square Problems with Rank-Deficient Nonlinear Constraints1 JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 100, No. 1. pp. 145-160, JANUARY 1999 KKT Conditions for Rank-Deficient Nonlinear Least-Square Problems with Rank-Deficient Nonlinear Constraints1

More information

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Zuoqiang Shi Mathematical Sciences Center, Tsinghua University Joint wor with Prof. Thomas Y. Hou and Sparsity, Jan 9,

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Sensitivity and Reliability Analysis of Nonlinear Frame Structures Sensitivity and Reliability Analysis of Nonlinear Frame Structures Michael H. Scott Associate Professor School of Civil and Construction Engineering Applied Mathematics and Computation Seminar April 8,

More information

Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition

Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition Roger Behling 1, Douglas S. Gonçalves 2, and Sandra A.

More information

Error Bounds for Iterative Refinement in Three Precisions

Error Bounds for Iterative Refinement in Three Precisions Error Bounds for Iterative Refinement in Three Precisions Erin C. Carson, New York University Nicholas J. Higham, University of Manchester SIAM Annual Meeting Portland, Oregon July 13, 018 Hardware Support

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit Augmented Reality VU numerical optimization algorithms Prof. Vincent Lepetit P3P: can exploit only 3 correspondences; DLT: difficult to exploit the knowledge of the internal parameters correctly, and the

More information

Tikhonov Regularization in General Form 8.1

Tikhonov Regularization in General Form 8.1 Tikhonov Regularization in General Form 8.1 To introduce a more general formulation, let us return to the continuous formulation of the first-kind Fredholm integral equation. In this setting, the residual

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for At a high level, there are two pieces to solving a least squares problem:

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for At a high level, there are two pieces to solving a least squares problem: 1 Trouble points Notes for 2016-09-28 At a high level, there are two pieces to solving a least squares problem: 1. Project b onto the span of A. 2. Solve a linear system so that Ax equals the projected

More information

Interior-Point Methods as Inexact Newton Methods. Silvia Bonettini Università di Modena e Reggio Emilia Italy

Interior-Point Methods as Inexact Newton Methods. Silvia Bonettini Università di Modena e Reggio Emilia Italy InteriorPoint Methods as Inexact Newton Methods Silvia Bonettini Università di Modena e Reggio Emilia Italy Valeria Ruggiero Università di Ferrara Emanuele Galligani Università di Modena e Reggio Emilia

More information

Inverse Problems and Optimal Design in Electricity and Magnetism

Inverse Problems and Optimal Design in Electricity and Magnetism Inverse Problems and Optimal Design in Electricity and Magnetism P. Neittaanmäki Department of Mathematics, University of Jyväskylä M. Rudnicki Institute of Electrical Engineering, Warsaw and A. Savini

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Iterative regularization of nonlinear ill-posed problems in Banach space

Iterative regularization of nonlinear ill-posed problems in Banach space Iterative regularization of nonlinear ill-posed problems in Banach space Barbara Kaltenbacher, University of Klagenfurt joint work with Bernd Hofmann, Technical University of Chemnitz, Frank Schöpfer and

More information

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005 3 Numerical Solution of Nonlinear Equations and Systems 3.1 Fixed point iteration Reamrk 3.1 Problem Given a function F : lr n lr n, compute x lr n such that ( ) F(x ) = 0. In this chapter, we consider

More information

Levenberg-Marquardt Method for Solving the Inverse Heat Transfer Problems

Levenberg-Marquardt Method for Solving the Inverse Heat Transfer Problems Journal of mathematics and computer science 13 (2014), 300-310 Levenberg-Marquardt Method for Solving the Inverse Heat Transfer Problems Nasibeh Asa Golsorkhi, Hojat Ahsani Tehrani Department of mathematics,

More information

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS Ulrike Baur joint work with Peter Benner Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology

More information

COMPUTATIONAL ISSUES RELATING TO INVERSION OF PRACTICAL DATA: WHERE IS THE UNCERTAINTY? CAN WE SOLVE Ax = b?

COMPUTATIONAL ISSUES RELATING TO INVERSION OF PRACTICAL DATA: WHERE IS THE UNCERTAINTY? CAN WE SOLVE Ax = b? COMPUTATIONAL ISSUES RELATING TO INVERSION OF PRACTICAL DATA: WHERE IS THE UNCERTAINTY? CAN WE SOLVE Ax = b? Rosemary Renaut http://math.asu.edu/ rosie BRIDGING THE GAP? OCT 2, 2012 Discussion Yuen: Solve

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods Department of Statistical Sciences and Operations Research Virginia Commonwealth University Sept 25, 2013 (Lecture 9) Nonlinear Optimization

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG Abstract. In this paper, we present the approaches we took to recover the conductances of an electrical

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

Newton s Method and Efficient, Robust Variants

Newton s Method and Efficient, Robust Variants Newton s Method and Efficient, Robust Variants Philipp Birken University of Kassel (SFB/TRR 30) Soon: University of Lund October 7th 2013 Efficient solution of large systems of non-linear PDEs in science

More information

Receding horizon controller for the baroreceptor loop in a model for the cardiovascular system

Receding horizon controller for the baroreceptor loop in a model for the cardiovascular system SpezialForschungsBereich F 32 Karl Franzens Universität Graz Technische Universität Graz Medizinische Universität Graz Receding horizon controller for the baroreceptor loop in a model for the cardiovascular

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Nonlinear Regression. Chapter 2 of Bates and Watts. Dave Campbell 2009

Nonlinear Regression. Chapter 2 of Bates and Watts. Dave Campbell 2009 Nonlinear Regression Chapter 2 of Bates and Watts Dave Campbell 2009 So far we ve considered linear models Here the expectation surface is a plane spanning a subspace of the observation space. Our expectation

More information

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008 Robotics & Automation Lecture 17 Manipulability Ellipsoid, Singularities of Serial Arm John T. Wen October 14, 2008 Jacobian Singularity rank(j) = dimension of manipulability ellipsoid = # of independent

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

1 Error analysis for linear systems

1 Error analysis for linear systems Notes for 2016-09-16 1 Error analysis for linear systems We now discuss the sensitivity of linear systems to perturbations. This is relevant for two reasons: 1. Our standard recipe for getting an error

More information

MA 580; Iterative Methods for Nonlinear Equations

MA 580; Iterative Methods for Nonlinear Equations MA 580; Iterative Methods for Nonlinear Equations C. T. Kelley NC State University tim kelley@ncsu.edu Version of November 2, 2016 Read Chapter 4 sections 5.1--5.4 of the Red book NCSU, Fall 2016 Part

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

1. Introduction. We consider linear discrete ill-posed problems of the form

1. Introduction. We consider linear discrete ill-posed problems of the form AN EXTRAPOLATED TSVD METHOD FOR LINEAR DISCRETE ILL-POSED PROBLEMS WITH KRONECKER STRUCTURE A. BOUHAMIDI, K. JBILOU, L. REICHEL, AND H. SADOK Abstract. This paper describes a new numerical method for the

More information

Data Fitting and Uncertainty

Data Fitting and Uncertainty TiloStrutz Data Fitting and Uncertainty A practical introduction to weighted least squares and beyond With 124 figures, 23 tables and 71 test questions and examples VIEWEG+ TEUBNER IX Contents I Framework

More information

Justify all your answers and write down all important steps. Unsupported answers will be disregarded.

Justify all your answers and write down all important steps. Unsupported answers will be disregarded. Numerical Analysis FMN011 10058 The exam lasts 4 hours and has 13 questions. A minimum of 35 points out of the total 70 are required to get a passing grade. These points will be added to those you obtained

More information

nonlinear simultaneous equations of type (1)

nonlinear simultaneous equations of type (1) Module 5 : Solving Nonlinear Algebraic Equations Section 1 : Introduction 1 Introduction Consider set of nonlinear simultaneous equations of type -------(1) -------(2) where and represents a function vector.

More information

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Lars Eldén Department of Mathematics Linköping University, Sweden Joint work with Valeria Simoncini February 21 Lars Eldén

More information

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class ODE Homework Due Wed. 9 August 2009; At the beginning of the class. (a) Solve Lẏ + Ry = E sin(ωt) with y(0) = k () L, R, E, ω are positive constants. (b) What is the limit of the solution as ω 0? (c) Is

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation Prof. om Overbye Dept. of Electrical and Computer Engineering exas A&M University overbye@tamu.edu Announcements

More information

Inexact Newton Methods Applied to Under Determined Systems. Joseph P. Simonis. A Dissertation. Submitted to the Faculty

Inexact Newton Methods Applied to Under Determined Systems. Joseph P. Simonis. A Dissertation. Submitted to the Faculty Inexact Newton Methods Applied to Under Determined Systems by Joseph P. Simonis A Dissertation Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in Partial Fulfillment of the Requirements for

More information

Levenberg-Marquardt methods based on probabilistic gradient models and inexact subproblem solution, with application to data assimilation

Levenberg-Marquardt methods based on probabilistic gradient models and inexact subproblem solution, with application to data assimilation Levenberg-Marquardt methods based on probabilistic gradient models and inexact subproblem solution, with application to data assimilation E. Bergou S. Gratton L. N. Vicente June 26, 204 Abstract The Levenberg-Marquardt

More information

Recovering any low-rank matrix, provably

Recovering any low-rank matrix, provably Recovering any low-rank matrix, provably Rachel Ward University of Texas at Austin October, 2014 Joint work with Yudong Chen (U.C. Berkeley), Srinadh Bhojanapalli and Sujay Sanghavi (U.T. Austin) Matrix

More information

Notes on Conditioning

Notes on Conditioning Notes on Conditioning Robert A. van de Geijn The University of Texas Austin, TX 7872 October 6, 204 NOTE: I have not thoroughly proof-read these notes!!! Motivation Correctness in the presence of error

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 10-12 Large-Scale Eigenvalue Problems in Trust-Region Calculations Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug ISSN 1389-6520 Reports of the Department of

More information

1.1.1 Introduction. SLAC-PUB June 2009

1.1.1 Introduction. SLAC-PUB June 2009 LOCO with constraints and improved fitting technique Xiaobiao Huang, James Safranek Mail to: xiahuang@slac.stanford.edu Stanford Linear Accelerator Center, Menlo Park, CA 9405, USA Greg Portmann Lawrence

More information

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental

More information

Math 671: Tensor Train decomposition methods II

Math 671: Tensor Train decomposition methods II Math 671: Tensor Train decomposition methods II Eduardo Corona 1 1 University of Michigan at Ann Arbor December 13, 2016 Table of Contents 1 What we ve talked about so far: 2 The Tensor Train decomposition

More information

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1 53 17. Lecture 17 Nonlinear Equations Essentially, the only way that one can solve nonlinear equations is by iteration. The quadratic formula enables one to compute the roots of p(x) = 0 when p P. Formulas

More information

Statistics 580 Optimization Methods

Statistics 580 Optimization Methods Statistics 580 Optimization Methods Introduction Let fx be a given real-valued function on R p. The general optimization problem is to find an x ɛ R p at which fx attain a maximum or a minimum. It is of

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Sparsity in system identification and data-driven control

Sparsity in system identification and data-driven control 1 / 40 Sparsity in system identification and data-driven control Ivan Markovsky This signal is not sparse in the "time domain" 2 / 40 But it is sparse in the "frequency domain" (it is weighted sum of six

More information

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems Z. Akbari 1, R. Yousefpour 2, M. R. Peyghami 3 1 Department of Mathematics, K.N. Toosi University of Technology,

More information