Physics 216 Spring The Optical Theorem

Size: px
Start display at page:

Download "Physics 216 Spring The Optical Theorem"

Transcription

1 Physics 6 Spring 0 The Optical Theorem. The probability currents In the quantum theory of scattering, the optical theorem is a consequence of the conservation of probability. As usual, we define ρ(x,t) Ψ(x,t), The conservation of probability is expressed by i j(x,t) = Ψ (x,t) Ψ(x,t) Ψ(x,t) Ψ (x,t). () m j + ρ t = 0. For a stationary state solution, Ψ(x,t) is independent of time, in which case, ρ/ t = 0. Hence, it follows that j = 0. Integrating this equation over the volume of a sphere (centered at the origin) of radius R r 0, where r 0 is the range of the potential, it follows that jd 3 x = j ˆrda = r j ˆrdΩ = 0, () V S where S is the surface of a sphere of radius R centered at the origin. In scattering theory, the asymptotic form for the wave function is a stationary state that represents the incoming plane wave an an outgoing (scattered) spherical wave, In spherical coordinates, we have, Ψ k (x) = e i k x +f(θ,φ) ei r = ˆr ( ) r +O. r S, as r. (3) Inserting eq. (3) into the definition of the probability current eq. (), it follows that j = f(θ,φ) k+kˆr + m r j int, (4) where jint = k mr (ˆk+ ˆr) f(θ,φ)e i(k x ) +f (θ,φ)e i( k x ) (5) is the contribution to the probability current due to the interference between the incoming plane wave and the outgoing (scattered) spherical wave.

2 . Evaluation of r e i k x To compute the cross section, we need the asymptotic forms for the probability currents given in eqs. (4) and (5). In particular, we need to make sense of r ei k x, where r x. (6) Strictly speaking, the above it does not exist. However, this it does exist in the sense of distributions. This is not surprising, since plane waves are an idealization of the initial state of the scattering process. In reality, the initial state is more realistically represented by a wave packet with some spread of initial momenta k. Employing the plane wave simplifies the mathematical analysis, although with a price of dealing with certain quantities such as eq. (6) that must be carefully treated. To evaluate the it in eq. (6), we begin with the well-known expansion of the plane wave in terms of spherical waves, e i k x = 4π i l j l ()Y lm (ˆk)Y lm (ˆr), (7) where Y lm (ˆr) Y lm (θ r,φ r ) and Y lm (ˆk) Y lm (θ k,φ k ). That is, the unit vectors ˆr and ˆk are specified by polar and azimuthal angles (θ r,φ r ) and (θ k,φ k ), respectively. Asymptotically, we have as r, j l () = sin( lπ) Inserting this result into eq. (7) yields r ei k x = 4π after using ( ) +O = ( ) sincos( r lπ) cossin(lπ) +O. r { sin = 4π i l sincos( lπ) cossin(lπ) Y lm (ˆk)Y lm (ˆr) l even m= l sin( lπ) = { i l, for odd l, 0 for even l, Y lm (ˆk)Y lm (ˆr) icos l odd m= l } Ylm (ˆk)Y lm (ˆr), (8) cos( lπ) = { 0, for odd l, i l for even l. To evaluate the sums in eq. (8), we consider the completeness relation, Y lm (ˆk)Y lm (ˆr) = δ(ˆk ˆr), (9) The it r really means that we take the dimensionless quantity.

3 where the delta function above means δ(ˆk ˆr) = δ(ω k Ω r ) = δ(cosθ k cosθ r )δ(φ k φ r ), so that Noting that dω k δ(ˆk ˆr) =. it follows that Y lm ( ˆr) = Y lm (π θ r, φ r +π) = ( ) l Y lm (θ r,φ r ) = ( ) l Y lm (ˆr), Adding and subtracting eqs. (9) and (0) then yields l even m= l l odd m= l ( ) l Ylm(ˆk)Y lm (ˆr) = δ(ˆk+ ˆr). (0) Ylm(ˆk)Y lm (ˆr) = δ(ˆk ˆr)+δ(ˆk+ ˆr), Ylm (ˆk)Y lm (ˆr) = δ(ˆk ˆr) δ(ˆk+ ˆr). Using the above results to evaluate eq. (8), we end up with r ei k x = πi e i δ(ˆk+ ˆr) e i δ(ˆk ˆr). () Thatis, r e i k x canbeunderstoodasadistribution(oftencalledageneralizedfunction) that can be expressed in terms of delta functions. Distributions acquire meaning when multiplied by a smooth function and integrated over an appropriate region. In principle, one can derive the entire asymptotic series for e i k x as r by employing the full asymptotic series for j l () in eq. (7). Eq. () can also be viewed as a particular generalization of the Riemann-Lebesgue lemma. 3. Derivation of the Optical Theorem We can now compute the large r behavior of eq. (5). Using eq. (), r ei( k x ) = πi e i δ(ˆk+ ˆr) δ(ˆk ˆr). Hence, it follows that (ˆk+ ˆr)e i(k x ) = 4πi r ˆkδ(ˆk ˆr), after employing the identities, (ˆk+ ˆr)δ(ˆk+ ˆr) = 0 and (ˆk+ ˆr)δ(ˆk ˆr) = ˆkδ(ˆk ˆr). 3

4 Consequently, jint = k mr 4πi ˆkδ(ˆk ˆr)f (θ,φ) f(θ,φ) = 4π mr ˆkδ(ˆk ˆr)Imf(θ,φ). () Theeffect oftheδ(ˆk ˆr)ineq. ()istosetθ = 0(thecorresponding valueofφisirrelevant). Hence, eqs. (4) and (5) yield ( k j = ˆk 4π m δ(ˆk ˆr)Imf(θ = 0) )+ ˆrr ( ) f(θ,φ) +O. (3) r 3 Using eq. (), we must evaluate the following integrals, ˆk ˆrdΩ = cosθdω = 0, ˆk ˆrδ(ˆk ˆr)dΩ = ˆk ˆr =, ˆr=ˆk f(θ,φ) dω = σ T, (4) where σ T is the total cross-section for scattering. Therefore, eqs. () and (3) yield which is the celebrated optical theorem, 4π k Imf(θ = 0)+σ T = 0, Imf(θ = 0) = k 4π σ T. (5) The derivations presented in Sections 3 above were inspired by Askold M. Perelomov and Yakov B. Zel dovich, Quantum Mechanics: Selected Topics (World Scientific Publishing Company, Singapore, 998), Chapter Another derivation of the Optical Theorem It is instructive to present a second proof of eq. (5) using the abstract formulation of scattering theory. In abstract scattering theory, the integral equation for scattering is represented by the Lippmann-Schwinger equation, Ψ (+) = k + E H 0 +iǫ V Ψ(+), (6) Recall that the definition of the cross-section is dσ = j sc ˆrr dω/j inc, where j sc = kˆr f(θ,φ) /(mr ) and j inc = k/m. It follows that dσ/dω = f(θ,φ). 4

5 where the (+) superscript (which corresponds to the sign of the iǫ) indicates that the scattered wave corresponds to outgoing spherical waves, and H 0 is the free-particle Hamiltonian (in absence of the scattering potential V). The states k are eigenstates of H 0 with corresponding eigenvalues E = k /(m). The transition operator T is then defined by T k = V Ψ (+). (7) The scattering amplitude f(θ,φ) is related to the matrix elements of the transition operator, f(θ,φ) = 4π m k T k, (8) where (θ,φ) are the polar and azimuthal angles of the vector k in a coordinate system in which k = kẑ. Setting k = k is equivalent to setting θ = 0; thus the forward scattering amplitude is f(θ = 0) = 4π m k T k. Using eqs. (6) and (7), it follows that k T k = k V Ψ (+) = Ψ (+) V Ψ (+) Ψ (+) V E H 0 iǫ V Ψ(+). (9) We now employ the formal operator identity, E H 0 iǫ = P +iπδ(e H 0 ), (0) E H 0 where P is the principal value. Under the assumption that V is hermitian, Im Ψ (+) V Ψ (+) = Im Ψ (+) V V Ψ (+) = 0, E H 0 since the diagonal elements of hermitian operators are real. Hence, eqs. (7) (0) yield Im k T k = π Ψ (+) V δ(e H 0 )V Ψ (+) = π k T δ(e H 0 )T k. To evaluate the above matrix element, we insert a complete set of eigenstates of H 0. Then, when δ(e H 0 ) acts on k, it yields the eigenvalue δ ( E k /(m) ). That is, the operator delta-function is replaced by a c-number delta-function. Hence, ) Im k T k = π d 3 k k T k k T k δ (E k. () m Since k k and k k are both positive, the following identity can be used, ) ( ) δ (E k = δ m m (k k ) = m k δ(k k ) δ(k +k ) = m k δ(k k ), after noting that δ(k+k ) = 0 since its argument can never be zero. Thus, the integral given in eq. () can be evaluated by writing d 3 k = k dk dω using the delta-function to perform the integration over k. The end result is given by Im k T k = πmk dω k T k Finally, using eqs. (4) and (8) we recover the optical theorem given by eq. (5). 5

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler April, 20 Lecture 2. Scattering Theory Reviewed Remember what we have covered so far for scattering theory. We separated the Hamiltonian similar to the way in

More information

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010 Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010 1. (a) Consider the Born approximation as the first term of the Born series. Show that: (i) the Born approximation for the forward scattering amplitude

More information

from which follow by application of chain rule relations y = y (4) ˆL z = i h by constructing θ , find also ˆL x ˆL y and

from which follow by application of chain rule relations y = y (4) ˆL z = i h by constructing θ , find also ˆL x ˆL y and 9 Scattering Theory II 9.1 Partial wave analysis Expand ψ in spherical harmonics Y lm (θ, φ), derive 1D differential equations for expansion coefficients. Spherical coordinates: x = r sin θ cos φ (1) y

More information

Physics 580: Quantum Mechanics I Department of Physics, UIUC Fall Semester 2017 Professor Eduardo Fradkin

Physics 580: Quantum Mechanics I Department of Physics, UIUC Fall Semester 2017 Professor Eduardo Fradkin Physics 58: Quantum Mechanics I Department of Physics, UIUC Fall Semester 7 Professor Eduardo Fradkin Problem Set No. 5 Bound States and Scattering Theory Due Date: November 7, 7 Square Well in Three Dimensions

More information

Scattering Theory. In quantum mechanics the basic observable is the probability

Scattering Theory. In quantum mechanics the basic observable is the probability Scattering Theory In quantum mechanics the basic observable is the probability P = ψ + t ψ t 2, for a transition from and initial state, ψ t, to a final state, ψ + t. Since time evolution is unitary this

More information

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr Scattering Theory Consider scattering of two particles in the center of mass frame, or equivalently scattering of a single particle from a potential V (r), which becomes zero suciently fast as r. The initial

More information

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one.

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one. Scattering Classical model As a model for the classical approach to collision, consider the case of a billiard ball colliding with a stationary one. The scattering direction quite clearly depends rather

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

Phys 622 Problems Chapter 6

Phys 622 Problems Chapter 6 1 Problem 1 Elastic scattering Phys 622 Problems Chapter 6 A heavy scatterer interacts with a fast electron with a potential V (r) = V e r/r. (a) Find the differential cross section dσ dω = f(θ) 2 in the

More information

221B Lecture Notes Scattering Theory II

221B Lecture Notes Scattering Theory II 22B Lecture Notes Scattering Theory II Born Approximation Lippmann Schwinger equation ψ = φ + V ψ, () E H 0 + iɛ is an exact equation for the scattering problem, but it still is an equation to be solved

More information

Non-relativistic scattering

Non-relativistic scattering Non-relativistic scattering Contents Scattering theory 2. Scattering amplitudes......................... 3.2 The Born approximation........................ 5 2 Virtual Particles 5 3 The Yukawa Potential

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Chapter 10: QUANTUM SCATTERING

Chapter 10: QUANTUM SCATTERING Chapter : QUANTUM SCATTERING Scattering is an extremely important tool to investigate particle structures and the interaction between the target particle and the scattering particle. For example, Rutherford

More information

Physics 221B Spring 2019 Notes 37 The Lippmann-Schwinger Equation and Formal Scattering Theory

Physics 221B Spring 2019 Notes 37 The Lippmann-Schwinger Equation and Formal Scattering Theory Copyright c 208 by Robert G. Littlejohn Physics 22B Spring 209 Notes 37 The Lippmann-Schwinger Equation and Formal Scattering Theory. Introduction In earlier lectures we studied the scattering of spinless

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Lecture 6. 1 Normalization and time evolution 1. 2 The Wavefunction as a Probability Amplitude 3. 3 The Probability Current 5

Lecture 6. 1 Normalization and time evolution 1. 2 The Wavefunction as a Probability Amplitude 3. 3 The Probability Current 5 Lecture 6 B. Zwiebach February 23, 2016 Contents 1 Normalization and time evolution 1 2 The Wavefunction as a Probability Amplitude 3 3 The Probability Current 5 4 Probability current in 3D and current

More information

Scattering is perhaps the most important experimental technique for exploring the structure of matter.

Scattering is perhaps the most important experimental technique for exploring the structure of matter. .2. SCATTERING February 4, 205 Lecture VII.2 Scattering Scattering is perhaps the most important experimental technique for exploring the structure of matter. From Rutherford s measurement that informed

More information

Spring /2/ pts 1 point per minute

Spring /2/ pts 1 point per minute Physics 519 MIDTERM Name: Spring 014 6//14 80 pts 1 point per minute Exam procedures. Please write your name above. Please sit away from other students. If you have a question about the exam, please ask.

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

University of Illinois at Chicago Department of Physics. Quantum Mechanics Qualifying Examination. January 7, 2013 (Tuesday) 9:00 am - 12:00 noon

University of Illinois at Chicago Department of Physics. Quantum Mechanics Qualifying Examination. January 7, 2013 (Tuesday) 9:00 am - 12:00 noon University of Illinois at Chicago Department of Physics Quantum Mechanics Qualifying Examination January 7, 13 Tuesday 9: am - 1: noon Full credit can be achieved from completely correct answers to 4 questions

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect Copyright c 2018 by Robert G. Littlejohn Physics 221B Spring 2018 Notes 34 The Photoelectric Effect 1. Introduction In these notes we consider the ejection of an atomic electron by an incident photon,

More information

Physics 216 Spring The Variational Computation of the Ground State Energy of Helium

Physics 216 Spring The Variational Computation of the Ground State Energy of Helium Physics 26 Spring 22 The Variational Computation of the Ground State Energy of Helium I. Introduction to the variational computation where The Hamiltonian for the two-electron system of the helium atom

More information

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1 Solutions to exam 6--6: FA35 Quantum Mechanics hp Problem (4 p): (a) Define the concept of unitary operator and show that the operator e ipa/ is unitary (p is the momentum operator in one dimension) (b)

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Chapter 18: Scattering in one dimension. 1 Scattering in One Dimension Time Delay An Example... 5

Chapter 18: Scattering in one dimension. 1 Scattering in One Dimension Time Delay An Example... 5 Chapter 18: Scattering in one dimension B. Zwiebach April 26, 2016 Contents 1 Scattering in One Dimension 1 1.1 Time Delay.......................................... 4 1.2 An Example..........................................

More information

Scattering Cross Sections, Classical and QM Methods

Scattering Cross Sections, Classical and QM Methods Scattering Cross Sections, Classical and QM Methods Jean-Sébastian Tempel Department of Physics and Technology University of Bergen 9. Juni 2007 phys264 - Environmental Optics and Transport of Light and

More information

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Physics 28. Quantum Field Theory. Professor Dine Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Field Theory in a Box Consider a real scalar field, with lagrangian L = 2 ( µφ)

More information

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0)

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0) Phys46.nb 89 on the same quantum state. i.e., if we have initial condition ψ(t ) χ n (t ) (5.41) then at later time ψ(t) e i ϕ(t) χ n (t) (5.4) This phase ϕ contains two parts ϕ(t) - E n(t) t + ϕ B (t)

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

Errata for Quantum Mechanics by Ernest Abers August 1, 2004

Errata for Quantum Mechanics by Ernest Abers August 1, 2004 Errata for Quantum Mechanics by Ernest Abers August, 004 Preface Page xv: Add a sentence at the end of the next-to-last paragraph: Rudaz (University of Minnesota, and several anonymous reviewers. My special

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II August 23, 208 9:00 a.m. :00 p.m. Do any four problems. Each problem is worth 25 points.

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherical Bessel Functions We would like to solve the free Schrödinger equation [ h d l(l + ) r R(r) = h k R(r). () m r dr r m R(r) is the radial wave function ψ( x)

More information

Scattering. March 20, 2016

Scattering. March 20, 2016 Scattering March 0, 06 The scattering of waves of any kind, by a compact object, has applications on all scales, from the scattering of light from the early universe by intervening galaxies, to the scattering

More information

Fermi s Golden Rule and Simple Feynman Rules

Fermi s Golden Rule and Simple Feynman Rules Fermi s Golden Rule and Simple Feynman Rules ; December 5, 2013 Outline Golden Rule 1 Golden Rule 2 Recipe For the Golden Rule For both decays rates and cross sections we need: The invariant amplitude

More information

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

Physics 139B Solutions to Homework Set 5 Fall 2009

Physics 139B Solutions to Homework Set 5 Fall 2009 Physics 39B Solutions to Homework Set 5 Fall 9 Liboff, problem 35 on pages 749 75 A one-dimensional harmonic oscillator of charge-to-mass ratio e/m, and spring constant K oscillates parallel to the x-axis

More information

Quantum Mechanics I - Session 9

Quantum Mechanics I - Session 9 Quantum Mechanics I - Session 9 May 5, 15 1 Infinite potential well In class, you discussed the infinite potential well, i.e. { if < x < V (x) = else (1) You found the permitted energies are discrete:

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012 Time dependent perturbation theory D. E. Soper University of Oregon May 0 offer here some background for Chapter 5 of J. J. Sakurai, Modern Quantum Mechanics. The problem Let the hamiltonian for a system

More information

Inverse Problems in Quantum Optics

Inverse Problems in Quantum Optics Inverse Problems in Quantum Optics John C Schotland Department of Mathematics University of Michigan Ann Arbor, MI schotland@umich.edu Motivation Inverse problems of optical imaging are based on classical

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Implications of Time-Reversal Symmetry in Quantum Mechanics

Implications of Time-Reversal Symmetry in Quantum Mechanics Physics 215 Winter 2018 Implications of Time-Reversal Symmetry in Quantum Mechanics 1. The time reversal operator is antiunitary In quantum mechanics, the time reversal operator Θ acting on a state produces

More information

Introduction to Multiple Scattering Theory

Introduction to Multiple Scattering Theory Introduction to Multiple Scattering Theory László Szunyogh Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary and Center for Computational Materials Science,

More information

Physics 221B Spring 2018 Notes 33 Time-Dependent Perturbation Theory. H = H 0 +H 1 (t), (1)

Physics 221B Spring 2018 Notes 33 Time-Dependent Perturbation Theory. H = H 0 +H 1 (t), (1) Copyright c 218 by Robert G. Littlejohn Physics 221B Spring 218 Notes 33 Time-Dependent Perturbation Theory 1. Introduction Time-dependent perturbation theory applies to Hamiltonians of the form H = H

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

Multipole Expansion for Radiation;Vector Spherical Harmonics

Multipole Expansion for Radiation;Vector Spherical Harmonics Multipole Expansion for Radiation;Vector Spherical Harmonics Michael Dine Department of Physics University of California, Santa Cruz February 2013 We seek a more systematic treatment of the multipole expansion

More information

Topics covered: Green s function, Lippman-Schwinger Eq., T-matrix, Born Series.

Topics covered: Green s function, Lippman-Schwinger Eq., T-matrix, Born Series. PHYS85 Quantum Mechanics II, Sprin 00 HOMEWORK ASSIGNMENT 0 Topics covered: Green s function, Lippman-Schwiner Eq., T-matrix, Born Series.. T-matrix approach to one-dimensional scatterin: In this problem,

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Critical Behavior of Electron Impact Ionization of Atoms

Critical Behavior of Electron Impact Ionization of Atoms Critical Behavior of Electron Impact Ionization of Atoms IMAD LADADWA, 1,2 SABRE KAIS 1 1 Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 2 Department of Physics, University of

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 2 Fall 2018 Semester Prof. Matthew Jones Cross Sections Reaction rate: R = L σ The cross section is proportional to the probability of

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator.

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. PHYS208 spring 2008 Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. 07.02.2008 Adapted from the text Light - Atom Interaction PHYS261 autumn 2007 Go to list of topics

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Quantum Physics III (8.06) Spring 2008 Assignment 10

Quantum Physics III (8.06) Spring 2008 Assignment 10 May 5, 2008 Quantum Physics III (8.06) Spring 2008 Assignment 10 You do not need to hand this pset in. The solutions will be provided after Friday May 9th. Your FINAL EXAM is MONDAY MAY 19, 1:30PM-4:30PM,

More information

Electron Atom Scattering

Electron Atom Scattering SOCRATES Intensive Programme Calculating Atomic Data for Astrophysics using New Technologies Electron Atom Scattering Kevin Dunseath Mariko Dunseath-Terao Laboratoire de Physique des Atomes, Lasers, Molécules

More information

Quantum Mechanics II SS Roser Valentí Institut für Theoretische Physik Universität Frankfurt

Quantum Mechanics II SS Roser Valentí Institut für Theoretische Physik Universität Frankfurt Quantum Mechanics II SS 2014 Roser Valentí Institut für Theoretische Physik Universität Frankfurt Contents 1 Scattering theory 1 1.1 Importance of collision experiments...................... 1 1.2 Elastic

More information

Physics Dec The Maxwell Velocity Distribution

Physics Dec The Maxwell Velocity Distribution Physics 301 7-Dec-2005 29-1 The Maxwell Velocity Distribution The beginning of chapter 14 covers some things we ve already discussed. Way back in lecture 6, we calculated the pressure for an ideal gas

More information

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering)

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering) Scattering 1 Classical scattering of a charged particle (Rutherford Scattering) Begin by considering radiation when charged particles collide. The classical scattering equation for this process is called

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

POSTULATES OF QUANTUM MECHANICS

POSTULATES OF QUANTUM MECHANICS POSTULATES OF QUANTUM MECHANICS Quantum-mechanical states - In the coordinate representation, the state of a quantum-mechanical system is described by the wave function ψ(q, t) = ψ(q 1,..., q f, t) (in

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts:

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts: Primary CMB anisotropies We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts: CMB power spectrum formalism. Radiative transfer:

More information

Decays, resonances and scattering

Decays, resonances and scattering Structure of matter and energy scales Subatomic physics deals with objects of the size of the atomic nucleus and smaller. We cannot see subatomic particles directly, but we may obtain knowledge of their

More information

Sample Problems on Quantum Dynamics for PHYS301

Sample Problems on Quantum Dynamics for PHYS301 MACQUARIE UNIVERSITY Department of Physics Division of ICS Sample Problems on Quantum Dynamics for PHYS30 The negative oxygen molecule ion O consists of a pair of oxygen atoms separated by a distance a

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination January 20, 2015, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information

Quantum Physics I (8.04) Spring 2016 Assignment 9

Quantum Physics I (8.04) Spring 2016 Assignment 9 Quantum Physics I (8.04) Spring 016 Assignment 9 MIT Physics Department Due Friday April 9, 016 April 1, 016 1:00 noon Reading: Griffiths: section 4.1. Problem Set 9 1. A numerical test of stationary phase.

More information

Printed from file Manuscripts/Stark/stark.tex on February 24, 2014 Stark Effect

Printed from file Manuscripts/Stark/stark.tex on February 24, 2014 Stark Effect Printed from file Manuscripts/Stark/stark.tex on February 4, 4 Stark Effect Robert Gilmore Physics Department, Drexel University, Philadelphia, PA 94 February 4, 4 Abstract An external electric field E

More information

Lecture 11 March 1, 2010

Lecture 11 March 1, 2010 Physics 54, Spring 21 Lecture 11 March 1, 21 Last time we mentioned scattering removes power from beam. Today we treat this more generally, to find the optical theorem: the relationship of the index of

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

The first order formalism and the transition to the

The first order formalism and the transition to the Problem 1. Hamiltonian The first order formalism and the transition to the This problem uses the notion of Lagrange multipliers and Legendre transforms to understand the action in the Hamiltonian formalism.

More information

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing Quantum Mechanics: A Paradigms Approach David H. McIntyre 7 July 6 Corrections to the st printing page xxi, last paragraph before "The End", nd line: Change "become" to "became". page, first line after

More information

= k, (2) p = h λ. x o = f1/2 o a. +vt (4)

= k, (2) p = h λ. x o = f1/2 o a. +vt (4) Traveling Functions, Traveling Waves, and the Uncertainty Principle R.M. Suter Department of Physics, Carnegie Mellon University Experimental observations have indicated that all quanta have a wave-like

More information

Lorentz invariant scattering cross section and phase space

Lorentz invariant scattering cross section and phase space Chapter 3 Lorentz invariant scattering cross section and phase space In particle physics, there are basically two observable quantities : Decay rates, Scattering cross-sections. Decay: p p 2 i a f p n

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Module I: Electromagnetic waves

Module I: Electromagnetic waves Module I: Electromagnetic waves Lectures 10-11: Multipole radiation Amol Dighe TIFR, Mumbai Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

16. Elastic Scattering Michael Fowler

16. Elastic Scattering Michael Fowler 6 Elastic Scattering Michael Fowler Billiard Balls Elastic means no internal energy modes of the scatterer or of the scatteree are excited so total kinetic energy is conserved As a simple first exercise,

More information

Calculation of Scattering Intensities for the Interaction of Light with a Cluster of Dielectric Objects

Calculation of Scattering Intensities for the Interaction of Light with a Cluster of Dielectric Objects Calculation of Scattering Intensities for the Interaction of Light with a Cluster of Dielectric Objects Emilie Huffman Department of Physics Union University University of Washington REU Program, 2011

More information

Scattering Tutorial. Erich Mueller. August 12, 2002

Scattering Tutorial. Erich Mueller. August 12, 2002 Scattering Tutorial Erich Mueller August 2, 2002 This tutorial is derived from an appendix to my thesis (http;//www.physics. ohio-state.edu/~emueller/thesis). It covers the standard physics of lowenergy

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue

More information

Physics 139B Solutions to Homework Set 4 Fall 2009

Physics 139B Solutions to Homework Set 4 Fall 2009 Physics 139B Solutions to Homework Set 4 Fall 9 1. Liboff, problem 1.16 on page 594 595. Consider an atom whose electrons are L S coupled so that the good quantum numbers are j l s m j and eigenstates

More information

QFT. Unit 11: Cross Sections and Decay Rates

QFT. Unit 11: Cross Sections and Decay Rates QFT Unit 11: Cross Sections and Decay Rates Decays and Collisions n When it comes to elementary particles, there are only two things that ever really happen: One particle decays into stuff Two particles

More information

(b) Show that the charged induced on the hemisphere is: Q = E o a 2 3π (1)

(b) Show that the charged induced on the hemisphere is: Q = E o a 2 3π (1) Problem. Defects This problem will study defects in parallel plate capacitors. A parallel plate capacitor has area, A, and separation, D, and is maintained at the potential difference, V = E o D. There

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation

Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation 22.101 Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation References -- R. M. Eisberg, Fundamentals of Modern Physics (Wiley & Sons, New York, 1961). R. L. Liboff, Introductory

More information

Physics 221B Spring 2012 Notes 42 Scattering of Radiation by Matter

Physics 221B Spring 2012 Notes 42 Scattering of Radiation by Matter Physics 221B Spring 2012 Notes 42 Scattering of Radiation by Matter 1. Introduction In the previous set of Notes we treated the emission and absorption of radiation by matter. In these Notes we turn to

More information

Physics 115C Homework 2

Physics 115C Homework 2 Physics 5C Homework Problem Our full Hamiltonian is H = p m + mω x +βx 4 = H +H where the unperturbed Hamiltonian is our usual and the perturbation is H = p m + mω x H = βx 4 Assuming β is small, the perturbation

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

Scattering amplitude and partial waves. f(θ) = (2l + 1)f l P l (cos(θ)) (3)

Scattering amplitude and partial waves. f(θ) = (2l + 1)f l P l (cos(θ)) (3) Scattering amplitude and partial waves In assignment 4 you are asked to simulate a scattering experiment. Your simulation will need to have some random error in the data. Before we discuss how to produce

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April 18 2012 Exam 2 Last Name: First Name: Check Recitation Instructor Time R01 Barton Zwiebach 10:00 R02

More information

16. GAUGE THEORY AND THE CREATION OF PHOTONS

16. GAUGE THEORY AND THE CREATION OF PHOTONS 6. GAUGE THEORY AD THE CREATIO OF PHOTOS In the previous chapter the existence of a gauge theory allowed the electromagnetic field to be described in an invariant manner. Although the existence of this

More information

1.2 Partial Wave Analysis

1.2 Partial Wave Analysis February, 205 Lecture X.2 Partia Wave Anaysis We have described scattering in terms of an incoming pane wave, a momentum eigenet, and and outgoing spherica wave, aso with definite momentum. We now consider

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information