Lecture 8: Construction of Expanders

Size: px
Start display at page:

Download "Lecture 8: Construction of Expanders"

Transcription

1 Spectral Graph Theory and Applications WS 0/0 Lecture 8: Construction of Expanders Lecturer: Thomas Sauerwald & He Sun In this lecture we study the explicit constructions of expander graphs. Although we can construct expanders probabilistically, this does not suffice for many applications. One applications of expander graphs is for reducing the randomness complexity of algorithms (cmp. Lecture 6), thus constructing the graph itself randomly does not sere this purpose. Sometimes we may een need expanders of exponential size. In this case, we cannot store the whole description of the graph. Hence we need a more explicit ersion of expanders. We call a family of expander graphs explicitly constructible if the construction satisfies the following properties:. We can construct the whole graph in time poly(n), where n is the number of ertices in a graph.. For any ertex and integer i {,, d}, we can find the i-th neighbor of in time poly(log n, log d).. For any ertices and u, we can determine if they are adjacent in time poly(log n). Let G = (V, E) be a d-regular graph. For each ertex V, we label the edges adjacent to and let [i] be the i-th edge of. Define a rotation map Rot G : V [d] V [d] by Rot G (u, i) = (, j) where is the i-th neighbor of u and u is the j-th neighbor of. Example: For the graph shown in Figure, we hae Rot(a, ) = (h, ). Figure : Rotation Map

2 Lecture 8: Construction of Expanders Graph Powering We know that if G is an (N, d, λ)-graph, then G k, the k-th powering of the adjacency matrix of G, represents an (N, d k, λ k )-graph. From the rotation map s perspectie, if G is a d-regular graph with rotation map Rot G, then the k-th powering of G is a d k -regular graph whose rotation map is gien by Rot G k( 0, (a,, a k )) = ( k, (b k,, b )), where the alues b,, b k and k are computed ia the rule ( i, b i ) = Rot G ( i, a i ). Replacement Product For a D-regular graph G with N ertices and a d-regular graph H with D ertices, the replacement product, denoted as G r H, is a (d + )-regular graph with N D ertices. Each ertex in G is replaced by a graph H, called a cloud. Moreoer, Rot G r H ((u, k), i) = ((, l), j) if and only if u = and Rot H (k, i) = (l, j), or i = j = d + and Rot G (u, k) = (, l). Figure : Replacement Product Some comments: Replacement product depends on the arbitrary labels for the ertices and the edges. Replacement product reduces the (relatie) ertex degree without losing the connectiity. For seeral problems in graph theory it can be shown that it suffices to sole them for graphs obtained by the Replacement product. Zig-Zag Product Based on rotation maps, the zig-zag product is defined as follows. Definition 8.. [RVW00] Let G be a D-regular graph on [N] with rotation map Rot G and H be a d-regular graph on [D] with rotation map Rot H. Then their zig-zag product G z H is defined to be the d -regular graph on [N] [D] whose rotation map Rot G z H is as follows:. Let (a, i ) = Rot H (a, i). Let (w, b ) = Rot G (, a ). Let (b, j ) = Rot H (b, j) 4. Output ((w, b), (j, i )) as the alue of Rot G z H ((, a), (i, j)). Example: Let G and H be two graphs shown in Figure. Then Rot G z H ((C, z), (, )) = ((F, z), (, )).

3 Lecture 8: Construction of Expanders A F B E C D (C,z) Figure : An example of the zig-zag product u Figure 4: Intuition behind the zig-zag product The intuition behind the zig-zag product is shown in Figure 4. The zig-zag product corresponds to -step walks on the replacement product graph, where the first and the last steps are along the inner-cloud edges and the middle step is along an inter-cloud edge, and each ertex in the cloud corresponds to an edge starting from the ertex which the cloud represents. Theorem 8.. Suppose that G is an (N, d, λ )-expander and H is a (d, d, λ )-expander. Then G z H is an (N d, d, f(λ, λ ))-expander, where f(λ, λ ) λ + λ + λ. Proof. The number of ertices and degree of G z H are obtained directly from the definition of the zig-zag product and we only need to analyze the spectral expansion of G z H. Let M be the normalized adjacency matrix of G z H. It suffices to show that for any α N d, α R N d, it holds that Mα, α f(λ, λ ) α, α. Let α R N d with the property that α N d. For any ertex [N ], define α R d by (α ) k = α k. Also, let C : R N d R N be a linear mapping such that (Cα) = d k= α k. Then we can express α as α = e α. [N ]

4 Lecture 8: Construction of Expanders 4 Let α = α + α where α d. Then α = ( ) e α + ( ) e α := α + α. That is, α is uniform within any gien cloud and can be expressed as α = Cα d d. Let A and B be the normalized adjacency matrices of G and H, respectiely. Let B = I N B and à be the permutation matrix corresponding to Rot G, i. e. an N d N d matrix where { if RotG (u, i) = Rot G (, j) à (u,i)(,j) = 0 otherwise. Then M = Bà B. Since B is real symmetric, we hae Mα, α = Bà Bα, α = à Bα, Bα. On the other hand, we hae Bα = B(α + α ) = α + Bα. Thus ( Mα, α = à α + Bα ), (α + Bα ) = Ãα, α + Ãα, Bα + à Bα, α + à Bα, Bα and Mα, α Ãα, α + Ãα Bα + à Bα α + à Bα Bα = Ãα, α + α Bα + Bα, () where the last equality holds as à is a permutation and Ãx = x for any x NN d. Notice that ( ) Bα = B e α = e Bα = Bα λ α λ α. () So we only need to bound Ãα, α. Ãα, α = Ãα, Cα d /d = CÃα, Cα /d = ACα, Cα /d

5 Lecture 8: Construction of Expanders 5 and Ãα, α λ Cα, Cα /d = λ Cα d, Cα d /d = λ α, α α = λ. () Combining equation () and equation (), we hae α Mα, α λ α + λ α + λ α. By taking p = α α and q = α α, we hae p + q =. Therefore Mα, α α, α λ p + λ pq + λ q λ + λ + λ, which completes the proof. Some comments on the zig-zag product. The edge labels in G z H are just pairs of edges labeled in the small graph. By taking a product of a large graph with a small graph, the resulting graph inherits (roughly) its size from the large one, its degree from the small one and its expansion properties from both. This was the key to creating arbitrary large graphs with bounded degree. 4 Construction of Expanders In this section we use the zig-zag product to construct expander graphs. Theorem 8.. Let H be a (d 4, d, λ 0 ) graph for some λ 0 /5. Define G = H and G t+ = G t z H for t. Then for all t, G t is a (d 4t, d, λ)-expander with λ /5. Proof. We proe the theorem by induction. When t =, it is straightforward to see that G is a (d 4, d, λ 0 )-expander. Assume that G t is a (d 4(t ), d, λ)-expander for λ /5. By Definition 8., the number of ertices in G t is d 4t. So it suffices to show the spectral expansion of G t. By Theorem 8., the spectral expansion of G t is λ(g t ) λ(g t ) + λ(h) + λ(h ) ( ) = = 5. Remark. search. Since H is a graph of constant-size, we can find it in constant time by brute-force Generalization.

6 Lecture 8: Construction of Expanders 6 References [RVW00] Omer Reingold, Salil P. Vadhan, and Ai Wigderson. Entropy waes, the zig-zag graph product, and new constant-degree expanders and extractors. In FOCS, pages, 000.

The Simplest Construction of Expanders

The Simplest Construction of Expanders Spectral Graph Theory Lecture 14 The Simplest Construction of Expanders Daniel A. Spielman October 16, 2009 14.1 Overview I am going to present the simplest construction of expanders that I have been able

More information

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line CHAPTER 6 : VECTORS 6. Lines in Space 6.. Angle between Two Lines 6.. Intersection of Two lines 6..3 Shortest Distance from a Point to a Line 6. Planes in Space 6.. Intersection of Two Planes 6.. Angle

More information

Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors

Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors Omer Reingold Ý Salil Vadhan Þ Avi Wigderson Ü February 23, 2001 Abstract The main contribution of this work is

More information

Lecture 12: Constant Degree Lossless Expanders

Lecture 12: Constant Degree Lossless Expanders Lecture : Constant Degree Lossless Expanders Topics in Complexity Theory and Pseudorandomness (Spring 03) Rutgers University Swastik Kopparty Scribes: Meng Li, Yun Kuen Cheung Overview In this lecture,

More information

NP and NP-Completeness

NP and NP-Completeness 0/2/206 Algorithms NP-Completeness 7- Algorithms NP-Completeness 7-2 Efficient Certification NP and NP-Completeness By a solution of a decision problem X we understand a certificate witnessing that an

More information

An Elementary Construction of Constant-Degree Expanders

An Elementary Construction of Constant-Degree Expanders An Elementary Construction of Constant-Degree Expanders Noga Alon Oded Schwartz Asaf Shapira Abstract We describe a short and easy to analyze construction of constant-degree expanders. The construction

More information

The adjacent vertex-distinguishing total chromatic number of 1-tree

The adjacent vertex-distinguishing total chromatic number of 1-tree The adjacent ertex-distinguishing total chromatic number of 1-tree Haiying Wang The School of Information Engineering China Uniersity of Geosciences(Beijing) Beijing 100083, P.R.China Abstract Let G =

More information

Lecture J. 10 Counting subgraphs Kirchhoff s Matrix-Tree Theorem.

Lecture J. 10 Counting subgraphs Kirchhoff s Matrix-Tree Theorem. Lecture J jacques@ucsd.edu Notation: Let [n] [n] := [n] 2. A weighted digraph is a function W : [n] 2 R. An arborescence is, loosely speaking, a digraph which consists in orienting eery edge of a rooted

More information

Laplacian Energy of Graphs

Laplacian Energy of Graphs Laplacian Energy of Graphs Sigma Xi Research Exhibition Claire T. Carney Library Uniersity of Massachusetts Dartmouth April 28 th & 29 th, 2009 Leanne R. Silia & Gary E. Dais Department of Mathematics

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Recitation 13 10/31/2008. Markov Chains

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Recitation 13 10/31/2008. Markov Chains MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/5.085J Fall 008 Recitation 3 0/3/008 Marko Chains Problem 9 from Poisson process exercises in [BT] Fact: If there is a single recurrent class, the frequency

More information

Random Walk and Expander

Random Walk and Expander Random Walk and Expander We have seen some major results based on the assumption that certain random/hard objects exist. We will see what we can achieve unconditionally using explicit constructions of

More information

Notes for Lecture 14

Notes for Lecture 14 U.C. Berkeley CS278: Computational Complexity Handout N4 Professor Luca Trevisan 3/3/2008 Notes for Lecture 4 In the last lecture, we saw how a series of alternated squaring and zig-zag products can turn

More information

Expander and Derandomization

Expander and Derandomization Expander and Derandomization Many derandomization results are based on the assumption that certain random/hard objects exist. Some unconditional derandomization can be achieved using explicit constructions

More information

A spectral Turán theorem

A spectral Turán theorem A spectral Turán theorem Fan Chung Abstract If all nonzero eigenalues of the (normalized) Laplacian of a graph G are close to, then G is t-turán in the sense that any subgraph of G containing no K t+ contains

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

CS294: PCP and Hardness of Approximation January 25, Notes for Lecture 3

CS294: PCP and Hardness of Approximation January 25, Notes for Lecture 3 U.C. Berkeley Handout N3 CS294: PCP and Hardness of Approximation January 25, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 3 These notes are based on my survey paper [6]. L.T. Some

More information

THE MINIMUM MATCHING ENERGY OF BICYCLIC GRAPHS WITH GIVEN GIRTH

THE MINIMUM MATCHING ENERGY OF BICYCLIC GRAPHS WITH GIVEN GIRTH ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 46, Number 4, 2016 THE MINIMUM MATCHING ENERGY OF BICYCLIC GRAPHS WITH GIVEN GIRTH HONG-HAI LI AND LI ZOU ABSTRACT. The matching energy of a graph was introduced

More information

be ye transformed by the renewing of your mind Romans 12:2

be ye transformed by the renewing of your mind Romans 12:2 Lecture 12: Coordinate Free Formulas for Affine and rojectie Transformations be ye transformed by the reing of your mind Romans 12:2 1. Transformations for 3-Dimensional Computer Graphics Computer Graphics

More information

Affine extractors over large fields with exponential error

Affine extractors over large fields with exponential error Affine extractors over large fields with exponential error Jean Bourgain Zeev Dvir Ethan Leeman Abstract We describe a construction of explicit affine extractors over large finite fields with exponentially

More information

G 2(X) X SOLVABILITY OF GRAPH INEQUALITIES. 1. A simple graph inequality. Consider the diagram in Figure 1.

G 2(X) X SOLVABILITY OF GRAPH INEQUALITIES. 1. A simple graph inequality. Consider the diagram in Figure 1. SOLVABILITY OF GRAPH INEQUALITIES MARCUS SCHAEFER AND DANIEL ŠTEFANKOVIČ Abstract. We inestigate a new type of graph inequality (in the tradition of Cetkoić and Simić [Contributions to Graph Theory and

More information

Improved Bounds on the L(2, 1)-Number of Direct and Strong Products of Graphs

Improved Bounds on the L(2, 1)-Number of Direct and Strong Products of Graphs IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR AERS VOL. ***, NO. ***, *** 2007 Improed Bounds on the L(2, )-Number of Direct and Strong roducts of Graphs Zhendong Shao, Sandi Klažar, Daid Zhang,

More information

Chords in Graphs. Department of Mathematics Texas State University-San Marcos San Marcos, TX Haidong Wu

Chords in Graphs. Department of Mathematics Texas State University-San Marcos San Marcos, TX Haidong Wu AUSTRALASIAN JOURNAL OF COMBINATORICS Volme 32 (2005), Pages 117 124 Chords in Graphs Weizhen G Xingde Jia Department of Mathematics Texas State Uniersity-San Marcos San Marcos, TX 78666 Haidong W Department

More information

Lecture 3: Randomness in Computation

Lecture 3: Randomness in Computation Great Ideas in Theoretical Computer Science Summer 2013 Lecture 3: Randomness in Computation Lecturer: Kurt Mehlhorn & He Sun Randomness is one of basic resources and appears everywhere. In computer science,

More information

Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors

Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors Omer Reingold Salil Vadhan Avi Wigderson February 23, 200 Abstract The main contribution of this work is a new

More information

F 2k 1 = F 2n. for all positive integers n.

F 2k 1 = F 2n. for all positive integers n. Question 1 (Fibonacci Identity, 15 points). Recall that the Fibonacci numbers are defined by F 1 = F 2 = 1 and F n+2 = F n+1 + F n for all n 0. Prove that for all positive integers n. n F 2k 1 = F 2n We

More information

Frank Ruskey Carla Savage y. Abstract. Let C(k n0 n 1 ::: n t) denote the set of all k-element combinations of the

Frank Ruskey Carla Savage y. Abstract. Let C(k n0 n 1 ::: n t) denote the set of all k-element combinations of the A Gray Code for Combinations of a Multiset Frank Ruskey Carla Saage y Department of Computer Science Uniersity of Victoria Victoria, B.C., V8W 36, Canada Department of Computer Science North Carolina State

More information

Expander Construction in VNC 1

Expander Construction in VNC 1 Expander Construction in VNC 1 Sam Buss joint work with Valentine Kabanets, Antonina Kolokolova & Michal Koucký Prague Workshop on Bounded Arithmetic November 2-3, 2017 Talk outline I. Combinatorial construction

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solving in Math (Math 43900) Fall 203 Week six (October ) problems recurrences Instructor: David Galvin Definition of a recurrence relation We met recurrences in the induction hand-out. Sometimes

More information

IN this paper we consider simple, finite, connected and

IN this paper we consider simple, finite, connected and INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: -5), VOL., NO., -Eqitable Labeling for Some Star and Bistar Related Graphs S.K. Vaidya and N.H. Shah Abstract In this paper we proe

More information

CSC 5170: Theory of Computational Complexity Lecture 13 The Chinese University of Hong Kong 19 April 2010

CSC 5170: Theory of Computational Complexity Lecture 13 The Chinese University of Hong Kong 19 April 2010 CSC 5170: Theory of Computational Complexity Lecture 13 The Chinese University of Hong Kong 19 April 2010 Recall the definition of probabilistically checkable proofs (PCP) from last time. We say L has

More information

PRGs for space-bounded computation: INW, Nisan

PRGs for space-bounded computation: INW, Nisan 0368-4283: Space-Bounded Computation 15/5/2018 Lecture 9 PRGs for space-bounded computation: INW, Nisan Amnon Ta-Shma and Dean Doron 1 PRGs Definition 1. Let C be a collection of functions C : Σ n {0,

More information

Lecture 6: Random Walks versus Independent Sampling

Lecture 6: Random Walks versus Independent Sampling Spectral Graph Theory and Applications WS 011/01 Lecture 6: Random Walks versus Independent Sampling Lecturer: Thomas Sauerwald & He Sun For many problems it is necessary to draw samples from some distribution

More information

On (a, d)-vertex-antimagic total labeling of Harary graphs

On (a, d)-vertex-antimagic total labeling of Harary graphs On (a, d)-ertex-antimagic total labeling of Harary graphs M. Hussain 1, Kashif Ali 1, M. T. Rahim, Edy Tri Baskoro 3 1 COMSATS Institute of Information Technology, Lahore Campus, Pakistan {muhammad.hussain,kashif.ali}@ciitlahore.edu.pk

More information

A Geometric Review of Linear Algebra

A Geometric Review of Linear Algebra A Geometric Reiew of Linear Algebra The following is a compact reiew of the primary concepts of linear algebra. The order of presentation is unconentional, with emphasis on geometric intuition rather than

More information

DECOMPOSING 4-REGULAR GRAPHS INTO TRIANGLE-FREE 2-FACTORS

DECOMPOSING 4-REGULAR GRAPHS INTO TRIANGLE-FREE 2-FACTORS SIAMJ.DISCRETE MATH. c 1997 Society for Industrial and Applied Mathematics Vol. 10, No. 2, pp. 309 317, May 1997 011 DECOMPOSING 4-REGULAR GRAPHS INTO TRIANGLE-FREE 2-FACTORS EDWARD BERTRAM AND PETER HORÁK

More information

Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability

Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability Salil Vadhan September 20, 2012 Reading: Sipser, 1.3 and The Diagonalization Method, pages 174 178 (from just before Definition

More information

The optimal pebbling number of the complete m-ary tree

The optimal pebbling number of the complete m-ary tree Discrete Mathematics 222 (2000) 89 00 www.elseier.com/locate/disc The optimal pebbling number of the complete m-ary tree Hung-Lin Fu, Chin-Lin Shiue Department of Applied Mathematics, National Chiao Tung

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 ISSN Nullity of Expanded Smith graphs

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 ISSN Nullity of Expanded Smith graphs 85 Nullity of Expanded Smith graphs Usha Sharma and Renu Naresh Department of Mathematics and Statistics, Banasthali Uniersity, Banasthali Rajasthan : usha.sharma94@yahoo.com, : renunaresh@gmail.com Abstract

More information

A COMBINATORIAL CONSTRUCTION OF ALMOST-RAMANUJAN GRAPHS USING THE ZIG-ZAG PRODUCT

A COMBINATORIAL CONSTRUCTION OF ALMOST-RAMANUJAN GRAPHS USING THE ZIG-ZAG PRODUCT SIAM J. COMPUT. Vol. 40, No., pp. 67 90 c 0 Society for Industrial and Applied Mathematics A COMBINATORIAL CONSTRUCTION OF ALMOST-RAMANUJAN GRAPHS USING THE ZIG-ZAG PRODUCT AVRAHAM BEN-AROYA AND AMNON

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Math 130 www.timetodare.com Section 3.1 Quadratic Functions and Models Quadratic Function: ( ) f x = ax + bx+ c ( a 0) The graph of a quadratic function is called a parabola. Graphing Parabolas: Special

More information

The Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost

The Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost The Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost Christina Büsing Sarah Kirchner Arie Koster Annika Thome October 6, 2015 Abstract The budgeted minimum cost flow problem (BMCF(K)) with unit

More information

Rapidly mixing Markov chains

Rapidly mixing Markov chains Randomized and Approximation Algorithms Leonard Schulman Scribe: Rajneesh Hegde Georgia Tech, Fall 997 Dec., 997 Rapidly mixing Marko chains Goal: To sample from interesting probability distributions.

More information

Bounded Arithmetic, Expanders, and Monotone Propositional Proofs

Bounded Arithmetic, Expanders, and Monotone Propositional Proofs Bounded Arithmetic, Expanders, and Monotone Propositional Proofs joint work with Valentine Kabanets, Antonina Kolokolova & Michal Koucký Takeuti Symposium on Advances in Logic Kobe, Japan September 20,

More information

Connectivity and Menger s theorems

Connectivity and Menger s theorems Connectiity and Menger s theorems We hae seen a measre of connectiity that is based on inlnerability to deletions (be it tcs or edges). There is another reasonable measre of connectiity based on the mltiplicity

More information

Isoperimetric problems

Isoperimetric problems CHAPTER 2 Isoperimetric problems 2.1. History One of the earliest problems in geometry was the isoperimetric problem, which was considered by the ancient Greeks. The problem is to find, among all closed

More information

arxiv: v1 [math.co] 10 Jun 2018

arxiv: v1 [math.co] 10 Jun 2018 Some Mixed Graphs Determined by arxi:1806.036341 [math.co] 10 Jun 2018 Their Spectrum S. Akbari a, A. Ghafari a, M. Nahi b and M.A. Nematollahi a a Department of Mathematical Sciences, Sharif Uniersity

More information

Dynamic potentials and the field of the moving charges

Dynamic potentials and the field of the moving charges Dynamic potentials and the field of the moing charges F. F. Mende http://fmnauka.narod.ru/works.html mende_fedor@mail.ru Abstract Is deeloped the concept of scalar-ector potential, in which within the

More information

Problem Set 2. Assigned: Mon. November. 23, 2015

Problem Set 2. Assigned: Mon. November. 23, 2015 Pseudorandomness Prof. Salil Vadhan Problem Set 2 Assigned: Mon. November. 23, 2015 Chi-Ning Chou Index Problem Progress 1 SchwartzZippel lemma 1/1 2 Robustness of the model 1/1 3 Zero error versus 1-sided

More information

arxiv: v1 [math.co] 25 Apr 2016

arxiv: v1 [math.co] 25 Apr 2016 On the zone complexity of a ertex Shira Zerbib arxi:604.07268 [math.co] 25 Apr 206 April 26, 206 Abstract Let L be a set of n lines in the real projectie plane in general position. We show that there exists

More information

arxiv: v1 [math.co] 16 Apr 2014

arxiv: v1 [math.co] 16 Apr 2014 CONNECTEDNESS AND ISOMORPHISM PROPERTIES OF THE ZIG-ZAG PRODUCT OF GRAPHS DANIELE D ANGELI, ALFREDO DONNO, AND ECATERINA SAVA-HUSS arxiv:1404.4342v1 [math.co] 16 Apr 2014 Abstract. In this paper we investigate

More information

6.3 Vectors in a Plane

6.3 Vectors in a Plane 6.3 Vectors in a Plane Plan: Represent ectors as directed line segments. Write the component form of ectors. Perform basic ector operations and represent ectors graphically. Find the direction angles of

More information

On Some Distance-Based Indices of Trees With a Given Matching Number

On Some Distance-Based Indices of Trees With a Given Matching Number Applied Mathematical Sciences, Vol. 8, 204, no. 22, 6093-602 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.204.48656 On Some Distance-Based Indices of Trees With a Gien Matching Number Shu

More information

The cover pebbling theorem

The cover pebbling theorem The coer pebbling theorem Jonas Sjöstrand Department of Mathematics KTH, SE-100 44 Stockholm, Sweden jonass@kth.se Submitted: Oct 21, 2004; Accepted: No 4, 2005; Published: No 15, 2005 Mathematics Subject

More information

Lecture 1. 1 Overview. 2 Maximum Flow. COMPSCI 532: Design and Analysis of Algorithms August 26, 2015

Lecture 1. 1 Overview. 2 Maximum Flow. COMPSCI 532: Design and Analysis of Algorithms August 26, 2015 COMPSCI 532: Design and Analysis of Algorithms August 26, 205 Lecture Lecturer: Debmalya Panigrahi Scribe: Allen Xiao Oeriew In this lecture, we will define the maximum flow problem and discuss two algorithms

More information

Sampling Binary Contingency Tables with a Greedy Start

Sampling Binary Contingency Tables with a Greedy Start Sampling Binary Contingency Tables with a Greedy Start Iona Bezákoá Nayantara Bhatnagar Eric Vigoda Abstract We study the problem of counting and randomly sampling binary contingency tables. For gien row

More information

Scalar multiplication and algebraic direction of a vector

Scalar multiplication and algebraic direction of a vector Roberto s Notes on Linear Algebra Chapter 1: Geometric ectors Section 5 Scalar multiplication and algebraic direction of a ector What you need to know already: of a geometric ectors. Length and geometric

More information

Chapter 6: Operational Amplifiers

Chapter 6: Operational Amplifiers Chapter 6: Operational Amplifiers Circuit symbol and nomenclature: An op amp is a circuit element that behaes as a VCVS: The controlling oltage is in = and the controlled oltage is such that 5 5 A where

More information

Antonina Kolokolova Memorial University of Newfoundland

Antonina Kolokolova Memorial University of Newfoundland 6 0 1 5 2 4 3 Antonina Kolokolova Memorial University of Newfoundland Understanding limits of proof techniques: Diagonalization Algebrization (limits of arithmetization technique) Natural proofs Power

More information

Near-Optimal Expanding Generator Sets for Solvable Permutation Groups

Near-Optimal Expanding Generator Sets for Solvable Permutation Groups Near-Optimal Expanding Generator Sets for Solvable Permutation Groups V. Arvind 1, Partha Muhopadhyay, Prajata Nimbhorar, Yadu Vasudev 1 1 The Institute of Mathematical Sciences, Chennai, India {arvind,yadu}@imsc.res.in

More information

5. Biconnected Components of A Graph

5. Biconnected Components of A Graph 5. Biconnected Components of A Graph If one city s airport is closed by bad eather, can you still fly beteen any other pair of cities? If one computer in a netork goes don, can a message be sent beteen

More information

Undirected ST-Connectivity in Log-Space. Omer Reingold. Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010

Undirected ST-Connectivity in Log-Space. Omer Reingold. Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010 Undirected ST-Connectivity in Log-Space Omer Reingold Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010 Undirected s-t connectivity(ustcon) Is t reachable from s in a undirected graph

More information

Hypergraph expanders of all uniformities from Cayley graphs

Hypergraph expanders of all uniformities from Cayley graphs Hypergraph expanders of all uniformities from Cayley graphs David Conlon Jonathan Tidor Yufei Zhao Abstract Hypergraph expanders are hypergraphs with surprising, non-intuitive expansion properties. In

More information

1169T2/2001. Question 1 ( marks)

1169T2/2001. Question 1 ( marks) 1169T2/2001 1 Question 1 ( marks) a) Write the equations of two traelling waes, y 1 (x,t) and y 2 (x,t), which, when they superpose, produce a standing wae. State the amplitude, waelength and frequency

More information

Additive Combinatorics and Computational Complexity

Additive Combinatorics and Computational Complexity Additive Combinatorics and Computational Complexity Luca Trevisan U.C. Berkeley Ongoing joint work with Omer Reingold, Madhur Tulsiani, Salil Vadhan Combinatorics: Studies: Graphs, hypergraphs, set systems

More information

1 Review of Vertex Cover

1 Review of Vertex Cover CS266: Parameterized Algorithms and Complexity Stanford University Lecture 3 Tuesday, April 9 Scribe: Huacheng Yu Spring 2013 1 Review of Vertex Cover In the last lecture, we discussed FPT algorithms for

More information

Two new Fuzzy Models Using Fuzzy Cognitive Maps Model and Kosko Hamming Distance

Two new Fuzzy Models Using Fuzzy Cognitive Maps Model and Kosko Hamming Distance Ultra Scientist Vol (1)B, 43- (01) Two new Fuzzy Models Using Fuzzy ognitie Maps Model and Kosko Hamming Distance K THULUKKANAM 1 and RVASUKI (Acceptance Date th April, 01) Abstract In this paper for the

More information

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007 Graphs and Networks Lectre 5 PageRank Lectrer: Daniel A. Spielman September 20, 2007 5.1 Intro to PageRank PageRank, the algorithm reportedly sed by Google, assigns a nmerical rank to eery web page. More

More information

ACYCLIC WEAK CONVEX DOMINATION IN GRAPHS

ACYCLIC WEAK CONVEX DOMINATION IN GRAPHS International Journal of Mathematics & Engineering with Computers Vol 2, No -2, pp 65-72, January-December 20 ACYCLIC WEAK CONVEX DOMINATION IN GRAPHS TN Janakiraman, and PJA Alphonse ABSTRACT: In a graph

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

The Random Edge Rule on Three-Dimensional Linear Programs 1 (extended abstract)

The Random Edge Rule on Three-Dimensional Linear Programs 1 (extended abstract) arxi:math/03010761 [math.co] 9 Jan 2003 The Random Edge Rule on Three-Dimensional Linear Programs 1 (extended abstract) Volker Kaibel 2 Rafael Mechtel 2 Micha Sharir 3 Günter M. Ziegler 2 October 10, 2017

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

arxiv: v1 [cs.dm] 21 Oct 2017

arxiv: v1 [cs.dm] 21 Oct 2017 Eliminating Odd Cycles by Remoing a Matching Carlos V.G.C. Lima 1,, Dieter Rautenbach 2,, Uéerton S. Souza 3,, and Jayme L. Szwarcfiter 4 1 Departament of Coputer Science, Federal Uniersity of Minas Gerais,

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Eigenvalues, random walks and Ramanujan graphs

Eigenvalues, random walks and Ramanujan graphs Eigenvalues, random walks and Ramanujan graphs David Ellis 1 The Expander Mixing lemma We have seen that a bounded-degree graph is a good edge-expander if and only if if has large spectral gap If G = (V,

More information

arxiv: v2 [math.co] 12 Jul 2009

arxiv: v2 [math.co] 12 Jul 2009 A Proof of the Molecular Conjecture Naoki Katoh and Shin-ichi Tanigawa arxi:0902.02362 [math.co] 12 Jul 2009 Department of Architecture and Architectural Engineering, Kyoto Uniersity, Kyoto Daigaku Katsura,

More information

arxiv: v1 [math.gt] 2 Nov 2010

arxiv: v1 [math.gt] 2 Nov 2010 CONSTRUCTING UNIVERSAL ABELIAN COVERS OF GRAPH MANIFOLDS HELGE MØLLER PEDERSEN arxi:101105551 [mathgt] 2 No 2010 Abstract To a rational homology sphere graph manifold one can associate a weighted tree

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

Algorithms and Data Structures 2014 Exercises and Solutions Week 14

Algorithms and Data Structures 2014 Exercises and Solutions Week 14 lgorithms and ata tructures 0 xercises and s Week Linear programming. onsider the following linear program. maximize x y 0 x + y 7 x x 0 y 0 x + 3y Plot the feasible region and identify the optimal solution.

More information

Quantum expanders from any classical Cayley graph expander

Quantum expanders from any classical Cayley graph expander Quantum expanders from any classical Cayley graph expander arxiv:0709.1142 Aram Harrow (Bristol) QIP 08 19 Dec 2007 outline Main result. Definitions. Proof of main result. Applying the recipe: examples

More information

Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis Chapter 4: Methods of Analysis When SCT are not applicable, it s because the circuit is neither in series or parallel. There exist extremely powerful mathematical methods that use KVL & KCL as its basis

More information

Lecture 11: Generalized Lovász Local Lemma. Lovász Local Lemma

Lecture 11: Generalized Lovász Local Lemma. Lovász Local Lemma Lecture 11: Generalized Recall We design an experiment with independent random variables X 1,..., X m We define bad events A 1,..., A n where) the bad event A i depends on the variables (X k1,..., X kni

More information

On the Linear Threshold Model for Diffusion of Innovations in Multiplex Social Networks

On the Linear Threshold Model for Diffusion of Innovations in Multiplex Social Networks On the Linear Threshold Model for Diffusion of Innoations in Multiplex Social Networks Yaofeng Desmond Zhong 1, Vaibha Sriastaa 2 and Naomi Ehrich Leonard 1 Abstract Diffusion of innoations in social networks

More information

Optimization Problems in Multiple Subtree Graphs

Optimization Problems in Multiple Subtree Graphs Optimization Problems in Multiple Subtree Graphs Danny Hermelin Dror Rawitz February 28, 2010 Abstract We study arious optimization problems in t-subtree graphs, the intersection graphs of t- subtrees,

More information

Notes on Linear Minimum Mean Square Error Estimators

Notes on Linear Minimum Mean Square Error Estimators Notes on Linear Minimum Mean Square Error Estimators Ça gatay Candan January, 0 Abstract Some connections between linear minimum mean square error estimators, maximum output SNR filters and the least square

More information

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities General Lorentz Boost Transformations, Acting on Some Important Physical Quantities We are interested in transforming measurements made in a reference frame O into measurements of the same quantities as

More information

Residual migration in VTI media using anisotropy continuation

Residual migration in VTI media using anisotropy continuation Stanford Exploration Project, Report SERGEY, Noember 9, 2000, pages 671?? Residual migration in VTI media using anisotropy continuation Tariq Alkhalifah Sergey Fomel 1 ABSTRACT We introduce anisotropy

More information

A Regularization Framework for Learning from Graph Data

A Regularization Framework for Learning from Graph Data A Regularization Framework for Learning from Graph Data Dengyong Zhou Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7076 Tuebingen, Germany Bernhard Schölkopf Max Planck Institute for

More information

Measure and Conquer: A Simple O( n ) Independent Set Algorithm

Measure and Conquer: A Simple O( n ) Independent Set Algorithm Measure and Conquer: A Simple O(2 0.288n ) Independent Set Algorithm Fedor V. Fomin 1, Fabrizio Grandoni 2, and Dieter Kratsch 3 1 Department of Informatics, Uniersity of Bergen, N-5020 Bergen, Norway,

More information

Iterative construction of Cayley Expander graphs

Iterative construction of Cayley Expander graphs Iterative construction of Cayley Expander graphs Eyal Rozenman Aner Shalev Avi Wigderson. Abstract We construct a sequence of groups G n, and explicit sets of generators Y n G n, such that all generating

More information

Topics in Probabilistic Combinatorics and Algorithms Winter, 2016

Topics in Probabilistic Combinatorics and Algorithms Winter, 2016 Topics in Probabilistic Combinatorics and Algorithms Winter, 06 4. Epander Graphs Review: verte boundary δ() = {v, v u }. edge boundary () = {{u, v} E, u, v / }. Remark. Of special interset are (, β) epander,

More information

EIGENVALUES AND EIGENVECTORS

EIGENVALUES AND EIGENVECTORS CHAPTER 6 EIGENVALUES AND EIGENVECTORS SECTION 6. INTRODUCTION TO EIGENVALUES In each of Problems we first list the characteristic polynomial p( λ) A λi of the gien matrix A and then the roots of p( λ

More information

Distributed Weighted Vertex Cover via Maximal Matchings

Distributed Weighted Vertex Cover via Maximal Matchings 839 Distributed Weighted Vertex Coer ia Maximal Matchings Fabrizio Grandoni 1, Jochen Könemann 2, and Alessandro Panconesi 1 1 Dipartimento di Informatica, Uniersità di Roma La Sapienza Via Salaria 113,

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

2 trees T 1,T 2,...,T

2 trees T 1,T 2,...,T Volume 3, pp 95-305, March 0 http://mathtechnionacil/iic/ela ORDERING TREES BY THE MINIMAL ENTRIES OF THEIR DOUBLY STOCHASTIC GRAPH MATRICES SHUCHAO LI AND QIN ZHAO Abstract Gien an n-ertex graph G, the

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

IMPROVING THE ALPHABET-SIZE IN EXPANDER BASED CODE CONSTRUCTIONS

IMPROVING THE ALPHABET-SIZE IN EXPANDER BASED CODE CONSTRUCTIONS IMPROVING THE ALPHABET-SIZE IN EXPANDER BASED CODE CONSTRUCTIONS 1 Abstract Various code constructions use expander graphs to improve the error resilience. Often the use of expanding graphs comes at the

More information

Lecture 5: Derandomization (Part II)

Lecture 5: Derandomization (Part II) CS369E: Expanders May 1, 005 Lecture 5: Derandomization (Part II) Lecturer: Prahladh Harsha Scribe: Adam Barth Today we will use expanders to derandomize the algorithm for linearity test. Before presenting

More information