Bipartite Continuous-Variable Entanglement. Werner Vogel Universität Rostock, Germany

Size: px
Start display at page:

Download "Bipartite Continuous-Variable Entanglement. Werner Vogel Universität Rostock, Germany"

Transcription

1 Bipartite Continuous-Variable Entanglement Werner Vogel Universität Rostock, Germany

2 Contents Introduction NPT criterion for CV entanglement Negativity of partial transposition Criteria based on moments Relation to previously known conditions Optimized entanglement conditions Entanglement witnesses General optimization Implementing entanglement test Identifying bound entanglement CV entanglement in finite spaces

3 Contents Entanglement quasi-probabilities State representation with factorized pure states Unambiguous entanglement quasi-probabilities Quantifying entanglement Universal entanglement measures The Schmidt number Operational measure and pseudo-measures Summary and conclusions

4 Introduction Early studies of entanglement EPR paradoxon 1 Schrödinger s cat 2 Entangled State: Ψ = yes cat dead + no cat alive ψ cat Φ Ra 1 Einstein, Podolsky, Rosen (1935) 2 Schrödinger (1935)

5 Introduction Nowadays: entanglement as key resource for Quantum information Quantum computation Quantum technology Applications for Quantum key distribution 3 Quantum dense coding 4 Quantum teleportation 5 3 A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991) 4 C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) 5 C. H. Bennett, G Brassard,..., Phys. Rev. Lett. 70, 1895 (1993)

6 Bipartite entanglement: Introduction A bipartite state ˆσ is called separable if it is a convex combination of factorizable ones: 6 ˆσ = p n ˆϱ (n) 1 ˆϱ (n) 2, where p n 0 and n=0 p n = 1. n=0 A bipartite state ˆϱ is called entangled if it cannot be represented in such a form: ˆϱ ˆσ For separable states classical correlations: Â1 ˆB 2 = n p n (n) Â1 ˆϱ ˆB 2 (n) 1 ˆϱ 2 6 R. F. Werner, Phys. Rev. A, 40, 4277 (1989)

7 Non-positivity of partial transposition The Peres criterion for entanglement: 7 Partial transposition: ˆϱ ˆϱ PT For any separable state partial transposition is non-negative ˆσ PT = p n ˆϱ (n) 1 ˆϱ (n)t 2 ˆσ PT 0 n=0 For ˆϱ PT 0 ˆϱ is entangled But: entangled states ˆϱ BE with positive partial transposition (PPT) exist: PPT (bound) entangled states NPT condition necessary and sufficient for entanglement: Hilbert spaces of dimension 2 2 and 2 3 Gaussian states (see later) 7 A. Peres, Phys. Rev. Lett. 77, 1413 (1996), P. Horodecki et. al, Phys. Lett. A 223, 1 (1996)

8 Non-positivity of partial transposition General form of NPT criterion for harmonic oscillators 8 Nonnegativity of an operator Â: ψ Â ψ 0, ψ Equivalent condition: ˆf ˆf = Tr( Â ˆf ˆf) 0 for all operators ˆf whose normally-ordered form exists. Normally ordered expansion: Quadratic form: ˆf = ˆf ˆf PT = + n,m,k,l=0 + n,m,k,l=0 p,q,r,s=0 c nmkl â n â mˆb kˆbl c pqrsc nmkl M pqrs,nmkl 0 where M pqrs,nmkl = â q â p â n â mˆb sˆbrˆb kˆbl PT PT moments: â q â p â n â mˆb sˆbrˆb kˆbl PT = â q â p â n â mˆb lˆbkˆb rˆbs 8 E. Shchukin and W. Vogel, Phys. Rev. Lett. 95, (2005)

9 Criteria based on moments Introducing (appropriately ordered) matrix: M 11 M M 1N M 21 M M 2N M N1 M N2... M NN where M ij = â q â p â n â mˆb lˆbkˆb rˆbs Explicit form (graded antilexicographical order): 1 â â ˆb ˆb... â â â â 2 â ˆb â ˆb... â â 2 ââ âˆb âˆb... ˆb âˆb â ˆb ˆb ˆb ˆb2... ˆb âˆb â ˆb ˆb 2 ˆbˆb...

10 Criteria based on moments Necessary and sufficient condition for nonnegative PT: 9 Notations: d k 0 Principal minors with rows and columns k 1 < < k n : d k, where k = (k 1,..., k n ) Leading principal minors: d n Necessary and sufficient condition for nonpositivity of PT (NPT): k : d k < 0 sufficient conditions for entanglement 9 E. Shchukin and W. Vogel, Phys. Rev. Lett. 95, (2005), A. Miranowicz and M. Piani, Phys. Rev. Lett 97, (2006)

11 Criteria based on moments Additional useful conditions: Identifying some of the coefficients c nmkl in the condition ˆf ˆf PT = + n,m,k,l=0 p,q,r,s=0 c pqrsc nmkl M pqrs,nmkl 0, Leads to determinants whose entries are linear combinations of original moments Example: for ˆf = c 1 +c 2 â+c 3ˆb one can put c2 = c 3, which yields ˆf = c 1 + c 2 (â + ˆb).

12 Criteria based on moments A simple condition in terms of higher-order moments: Special choice of operator ˆf: ˆf = c 1 â n â mˆb kˆbl + c 2 â p â qˆb rˆbs Separability condition: â m â n â n â mˆb lˆbkˆb kˆbl â q â p â p â qˆb sˆbrˆb rˆbs â m â n â p â qˆb sˆbrˆb kˆbl 2 ( ) Useful for characterizing non-gaussian states!

13 Relation to previous conditions Simon condition: 10 S 0, where ( ) 2 1 ) S = det A 1 det A det C Tr( A 1 JCJA 2 JC T J 1 ) (det A 1 + det A 2 0, 4 and A i = C = ( ) ( ˆxi ) 2 { ˆx i, ˆp i } { ˆx i, ˆp i } ( ˆp i 2, ( ) ˆx1 ˆx 2 ˆx 1 ˆp 2, J = ˆp 1 ˆx 2 ˆp 1 ˆp 2 ( ) Our approach: leading principal minor S d 5 10 R. Simon. Phys. Rev. Lett. 84, 2726 (2000)

14 Relation to previous conditions Duan et al. condition: 11 For any real parameter r (r 0) define operators û and ˆv: û = r ˆx 1 + r 1ˆx 2, ˆv = r ˆp 1 r 1 ˆp 2. For any separable state the inequality ( û) 2 + ( ˆv) 2 (r 2 + r 2 ) 0 holds true for all r 0. Equivalent (optimized) form â â ˆb ˆb Re 2 â ˆb 0. Our approach: principal minor 1 â ˆb d (1,2,4) = â â â â ˆb ˆb âˆb ˆb ˆb = â â ˆb ˆb â ˆb 2 11 L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

15 Relation to previous conditions Example: CV Bell-type state ( ) ψ = N (α, β) α, β α, β, Both d 5 (Simon) and d (1,2,4) (Duan et al.) fail! Principal minor: Explicit form: d (1,5,12) = 1 ˆb âˆb ˆb ˆb ˆb âˆb ˆb â ˆb â ˆb ˆb â âˆb ˆb. d (1,5,12) = α 2 β 4 coth( α 2 + β 2 ) sinh 2 ( α 2 + β 2 ), always negative (except for α = 0 or β = 0)! Experiment with non-gaussian entanglement P. H. Souto Ribeiro, S. P. Walborn, et al., in preparation

16 Relation to previous conditions Raymer et. al.: 13 ˆf = c 1 + c 2  1 + c 3 ˆB1 + c 4  2 + c 5 ˆB2 Mancini et. al.: 14 Principal minor d (1,2,4) together with: ˆf = c1 + c 2 (â + ˆb) + c 3 (â + ˆb ) Agarwal and Biswas: 15 ˆf = c 1 + c 2 âˆb + c 3 â ˆb Hillery and Zubairy: 16 Special cases of ( ) 13 M. G. Raymer, A.C. Funk, B.C. Sanders, H. de Guise, Phys. Rev. A 67, (2003) 14 S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, (2002) 15 G. S. Agarwal and A. Biswas, New J. Phys. 7, 211 (2005) 16 M. Hillery and M. Zubairy, Phys. Rev. Lett. 96, (2006)

17 Optimized entanglement conditions Entanglement witnesses: 17 Definition: Ŵ is a bounded Hermitian operator with tr(ˆσŵ ) 0 ( ˆσ separable), ˆϱ : tr(ˆϱŵ ) < 0 General test, if general form of Ŵ is known! Lemma: 18 For any entanglement witness Ŵ exists a real number λ > 0 and a positive Hermitian operator Ĉ so that Ŵ can be written as Ŵ = λˆ1 Ĉ. Proof: λ sup S(Ŵ ), the largest eigenvalue ( ) Ŵ = w d ˆP (w) = λˆ1 λˆ1 w d ˆP (w) S(Ŵ ) S(Ŵ ) = λˆ1 (λ w) d S(Ŵ ) }{{} ˆP (w) = λˆ1 Ĉ 0 17 M. Horodecki, P. Horodecki and R. Horodecki, Phys. Lett. A 223, 1 (1996) 18 J. Sperling and W. Vogel, Phys. Rev. A 79, (2009)

18 Optimized entanglement conditions Definition: Let  be a general Hermitian operator and f AB (Â) = sup{tr(ˆσâ) : ˆσ separable} = sup{ a, b  a, b : a a = b b = 1} The condition tr(ˆσŵ ) 0 for a witness (Ŵ = λˆ1 Ĉ) implies The condition is optimal, iff λ f AB (Ĉ) λ = f AB (Ĉ) Theorem: A state ˆϱ is entangled, iff there exists a positive semidefintie Hermitian operator Ĉ: f AB (Ĉ) < tr(ˆϱĉ) Alternatively: With an arbitrary Hermitian operator,  = κˆ1 + Ĉ (κ R), the condition reads as f AB (Â) < tr(ˆϱâ)

19 General Optimization The separability eigenvalue (SE) equations Sought: Extremum of g(a, b) = a, b  a, b, constraints h 1 (a) = a a 1 = 0 and h 2 (b) = b b 1 = 0 Lagrange multipliers L 1, L 2 Functional calculus: 0 = g a L h 1 1 a L h 2 2 a, 0 = g b L h 1 1 b L h 2 2 b Defining:  a = tr A [ ( a a ˆ1 B ) ], Âb = tr B [ (ˆ1 A b b ) ] SE equations:  b a = g a,  a b = g b Solution: f AB (Â) = sup {g}

20 Implementing entanglement tests General test operators: General Hermitian operator Â: a b + ic  = b ic d...., where a, b, c, d,... are real numbers. Sperical grid of operators: Choosing {Âi} i=1...n, with  :  = 1, i : Âi  < ɛ. Error ɛ of test experimental precision! Optimal entanglement witnesses: Ŵ i = f AB (Âi)ˆ1 Âi

21 Implementing entanglement tests Approximation by 6 Hermitian operators:

22 Identifying PPT bound entanglement State ˆϱ BE is PPT bound entangled (1) Ĉ = ˆf ˆf : 0 tr(ˆϱbe Ĉ PT ) (2) ˆf : inf{ a, b Ĉ a, b } > tr(ˆϱ BEĈPT )

23 CV entanglement in finite spaces Continuous Variable Entanglement in general, quantum systems given by continuous variables (CV) CV-entanglement: completely characterized in finite dimensional Hilbert spaces 19 from theory of Hilbert spaces: ˆρ has a spectral decomposition with a countable number of eigenvectors ψ i ψ i has a countable Schmidt decomposition existence of finite [ supspaces V 1, V 2, with a projected entangled state ˆPV1 ˆP [ V2] ˆρ ˆPV1 ˆP ] V2 Theorem for CV entanglement: A quantum state ˆρ is entangled, if and only if it is entangled in a finite space. 19 J. Sperling and W. Vogel, PRA 79, (2009)

24 Entanglement quasi-probabilities State representation with factorized pure states: Representation of entangled states by separable ones: 20 ˆρ = (1 + µ)ˆσ µˆσ, µ 0 Representation of any state ˆρ: ˆρ = k p k a k, b k a k, b k, P Ent = (p k ) k In general: a k, b k non-orthogonal P Ent 0 quasi-probability Problem: P Ent ambiguous Optimization: determining P Ent with minimal negativity 20 Sanpera, Tarrach, Vidal, Phys. Rev A 58, 826 (1998); Vidal, Tarrach, Phys. Rev. A 59, 141 (1999)

25 Entanglement quasi-probabilities Construction/ reconstruction of quasi-probabilities: Tomographic or local quantum state reconstruction 2. Spectral decomposition of state ˆρ: ˆρ = i p φ i φ i φ i 3. Schmidt decomposition of all states φ i with Schmidt rank r(φ i ): r(φ) φ = λ k e k, f k, k=1 φ φ = k λ 2 k e k, f k e k, f k + k>l λ k λ l ( e k, f k e l, f l + e l, f l e k, f k ) 4. Representation with factorized states: with e k, f k e l, f l + e l, f l e k, f k = 3 n=0 ( 1) n s (k,l) n, s (k,l) s (k,l) n, s (k,l) n = 1 2 ( e k + i n e l ) ( f k + i n f l ) n s (k,l) n, s (k,l) n 21 J. Sperling and W. Vogel, Phys. Rev. A 79, (2009)

26 Unambiguous quasi-probabilities Intermediate result: ˆρ in terms of factorized states ˆρ = q k x k, y k x k, y k dp Ent (a, b) a, b a, b k Possible conclusions: P Ent (a, b) 0 quantum state is separable P Ent (a, b) < 0 entangled Needed: optimization, so that P Ent (a, b) has minimal amount of negativity

27 Unambiguous quasi-probabilities Idea of optimization: Signed measures f generating the ˆ0 operator: ˆ0 = df(a, b) a, b a, b New quasi-probabilities, P Ent P Ent + f, for the given state: ˆρ ˆρ + ˆ0 : d P Ent (a, b) + f(a, b) 2 min Optimization within the convex set of separable quantum states Optimization with respect to separability norm ˆρ ˆσ sep = sup{ a, b ˆρ ˆσ a, b } min separability eigenvalue problem for the state ˆρ

28 Unambiguous quasi-probabilities Idea of optimization: ˆρ bi a i = g i a i and ˆρ ai b i = g i b i

29 Unambiguous quasi-probabilities Procedure of optimization: Solution of SE equations: SE (g j ) j = g, SE vectors a i, b i deliver G = ( a i, b i x j, y j 2 ) i,j, ˆρ = i q i x i, y i x i, y i, q = (q i ) i Linear system: a j, b j ˆρ a j, b j Yields: p P Ent = i p iδ ai,b i Final result: based on optimized P Ent ˆρ = dp Ent (a, b) a, b a, b State is entangled a, b : P Ent (a, b) < 0 State is separable a, b : P Ent (a, b) 0

30 Quantifying entanglement Entanglement measures 22 entanglement amount of separable states vanishes LOCC paradigm: Entanglement cannot increase under certain operations. Definition: entanglement measure arising questions: (i) ˆσ separable E(ˆσ) = 0 ( ) Λ(ˆρ) (ii) E(ˆρ) E trλ( ˆρ) maximally entangled states? existence of superior measure? usefull amount of entanglement? 22 C. H. Bennett et al., Phys. Rev. A 54, 3824 (1996); V. Vedral et al., Phys. Rev. Lett. 78, 2275 (1997); G. Vidal, J. Mod. Opt. 47, 355 (2000)

31 Quantifying entanglement Fundamental entanglement measure: Schmidt number 23 Pure state ψ k : r(ψ k ) Schmidt rank Mixed quantum state ˆρ = k p k ψ k ψ k : r max (ˆρ) = max k r(ψ k ) Under all possible decompositions minimal r max (ˆρ) yield Schmidt number r S : r S (ˆρ) = inf{r max (ˆρ) : ˆρ = k p k ψ k ψ k } r S (ˆσ) = 1 ˆσ separable for all separable operations Λ: ( ) Λ(ˆρ) r S (ˆρ) r S trλ( ˆρ) 23 J. Sperling and W. Vogel, arxiv: [quant-ph]

32 Quantifying entanglement Local operation and classical communication Definition of measure requires fundamental understanding of LOCCs Operations which only can make a state separable Λ via separable operations Λ(ˆρ) = i (Âi ˆB i )ˆρ(Âi ˆB i ) i tr(âi ˆB i )ˆρ(Âi ˆB i ) LOCC subset of all such operations Used devices or protocolls can perform operation Λ X All configurations of such operations, Λ 1 (Λ 2 (... Λ n (ˆρ))), define LOCCs C X

33 Quantifying entanglement Maximally entangled states Maximal amount of entanglement for ˆρ max : E(ˆρ max ) E(ˆρ) Consider maximally entangled state ˆρ max = φ φ, with a Schmidt decomposition φ = r k=1 1 r e k, f k Local invertable transform, Λ(ˆρ) = (ˆ1 A ˆT )ˆρ(ˆ1 A ˆT ), with ˆT f k = rλ k f k Transformation φ ˆ1 A ˆT φ = k λ k e k, f k ˆρ = (ˆ1 A ˆT ) φ φ (ˆ1 A ˆT ) maximally entangled for the measure E, ( E (ˆρ) def. (ˆ1 A = E ˆT 1 )ˆρ(ˆ1 A ˆT ) 1 ) tr(ˆ1 A ˆT 1 )ˆρ(ˆ1 A ˆT 1 )

34 Universal entanglement measures Observation. For any choice of Schmidt coefficients of ψ we can define measure E by local invertable operations, such that ψ is maximally entangled. Note: implementation of local invertable operation in noise-free amplification 24 Which rule play Schmidt coefficients for the amount of entanglement? No importance for universal entanglement measures Definition. A measure, which is invariant under local invertable operations, is called universal. Example: the Schmidt number r S ; generalization of the Schmidt rank to mixed quantum states 24 G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, arxiv: [quant-ph]

35 The Schmidt number Schmidt number monotones Local projections ˆP can decrease the Schmidt number, ˆP = r 1 k=1 e k e k ˆP ˆ1 B ψ r = r 1 k=1 λ k e k, f k = ψ r 1 Observation: Schmidt number monotones. Entanglement measures have a monotonic behavior with respect to the Schmidt number, E( ψ r ψ r ) E( ψ r 1 ψ r 1 ). Boundaries for the amount of entanglement of ˆρ can be given by the Schmidt number: r S (ˆρ 1 ) < r S (ˆρ) < r S (ˆρ 2 ) E(ˆρ 1 ) E(ˆρ) E(ˆρ 2 ) Schmidt coefficients are of minor, and Schmidt number of major importance for the quantification of entanglement

36 Operational- and pseudo-measures Operational entanglement measures Not every procedure can use any kind of entanglement Example: PPT entangled state no destillable entanglement Leads to pseudo-measures: (i) (i) ˆσ separable E(ˆσ) = 0 Experimental setting: ˆM denotes measured quantity Λ 1,..., Λ n X denote the separable operations, which can be performed (all configurations lead to LOCCs, C X ) f( ˆM) denotes the maximal eigenvalue of ˆM

37 Operational- and pseudo-measures Operational entanglement measures Usable entanglement for experiment with given pseudomeasure Definition: operational entanglement. ( tr Λ(ˆρ) ˆM ) tr Λ(ˆρ) f 12 ( ˆM) E ˆM(ˆρ) = sup Λ C X f( ˆM) f 12 ( ˆM) E ˆM(ˆρ) is value between one (perfect entanglement for a given experiment), and zero (no usable entanglement) For example, different types of entanglement are needed for quantum teleportation and quantum computation D. Gross, S. Flammia, J. Eisert, Phys. Rev. Lett. 102, (2009)

38 Summary and Conclusions Identification of PT entanglement Reduction of CV entanglement to finite spaces Optimized, necessary and sufficient conditions in terms of arbitrary Hermitian operators Separability eigenvalue equations Optimized quasi-distributions Universal entanglement measure: Schmidt number Operational entanglement measures

Characterization of Bipartite Entanglement

Characterization of Bipartite Entanglement Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1 Table of Contents

More information

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU) Application of Structural Physical Approximation to Partial Transpose in Teleportation Satyabrata Adhikari Delhi Technological University (DTU) Singlet fraction and its usefulness in Teleportation Singlet

More information

On PPT States in C K C M C N Composite Quantum Systems

On PPT States in C K C M C N Composite Quantum Systems Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 25 222 c International Academic Publishers Vol. 42, No. 2, August 5, 2004 On PPT States in C K C M C N Composite Quantum Systems WANG Xiao-Hong, FEI

More information

Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany

Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany Nonclassical Harmonic Oscillator Werner Vogel Universität Rostock, Germany Contents Introduction Nonclassical phase-space functions Nonclassical characteristic functions Nonclassical moments Recent experiments

More information

arxiv:quant-ph/ v3 17 Jul 2005

arxiv:quant-ph/ v3 17 Jul 2005 Quantitative measures of entanglement in pair coherent states arxiv:quant-ph/0501012v3 17 Jul 2005 G. S. Agarwal 1 and Asoka Biswas 2 1 Department of Physics, Oklahoma state University, Stillwater, OK

More information

Generalized Bell Inequality and Entanglement Witness

Generalized Bell Inequality and Entanglement Witness Nonlocal Seminar 2005 Bratislava, April 29th 2005 Reinhold A. Bertlmann Generalized Bell Inequality and Entanglement Witness Institute for Theoretical Physics University of Vienna Motivation Composite

More information

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES acta physica slovaca vol. 50 No. 3, 351 358 June 2000 ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES S. Scheel 1, L. Knöll, T. Opatrný, D.-G.Welsch Theoretisch-Physikalisches

More information

arxiv: v2 [quant-ph] 23 Jun 2015

arxiv: v2 [quant-ph] 23 Jun 2015 Convex ordering and quantification of quantumness arxiv:1004.1944v2 [quant-ph] 23 Jun 2015 J Sperling Arbeitsgruppe Theoretische Quantenoptik, Institut für Physik, Universität Rostock, D-18051 Rostock,

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN)

Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN) Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN) Satyabrata Adhikari Delhi Technological University satyabrata@dtu.ac.in December 4, 2018 Satyabrata Adhikari (DTU) Estimation

More information

Detection of photonic Bell states

Detection of photonic Bell states LECTURE 3 Detection of photonic Bell states d a c Beam-splitter transformation: b ˆB ˆB EXERCISE 10: Derive these three relations V a H a ˆB Detection: or V b H b or Two photons detected in H a, H b, V

More information

Quantum Entanglement: Detection, Classification, and Quantification

Quantum Entanglement: Detection, Classification, and Quantification Quantum Entanglement: Detection, Classification, and Quantification Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Philipp

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

Quantum Correlations as Necessary Precondition for Secure Communication

Quantum Correlations as Necessary Precondition for Secure Communication Quantum Correlations as Necessary Precondition for Secure Communication Phys. Rev. Lett. 92, 217903 (2004) quant-ph/0307151 Marcos Curty 1, Maciej Lewenstein 2, Norbert Lütkenhaus 1 1 Institut für Theoretische

More information

Characterization of Multipartite Entanglement

Characterization of Multipartite Entanglement Characterization of Multipartite Entanglement Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften des Fachbereichs Physik der Universität Dortmund vorgelegt von Bo Chong Juni 2006

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

Theory of Quantum Entanglement

Theory of Quantum Entanglement Theory of Quantum Entanglement Shao-Ming Fei Capital Normal University, Beijing Universität Bonn, Bonn Richard Feynman 1980 Certain quantum mechanical effects cannot be simulated efficiently on a classical

More information

Boundary of the Set of Separable States

Boundary of the Set of Separable States Boundary of the Set of Separale States Mingjun Shi, Jiangfeng Du Laoratory of Quantum Communication and Quantum Computation, Department of Modern Physics, University of Science and Technology of China,

More information

Permutations and quantum entanglement

Permutations and quantum entanglement Journal of Physics: Conference Series Permutations and quantum entanglement To cite this article: D Chruciski and A Kossakowski 2008 J. Phys.: Conf. Ser. 104 012002 View the article online for updates

More information

Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser

Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser Cent. Eur. J. Phys. 12(10) 2014 737-743 DOI: 10.2478/s11534-014-0510-7 Central European Journal of Physics Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom

More information

Entanglement Criteria for. Continuous-Variable States

Entanglement Criteria for. Continuous-Variable States Imperial College London Entanglement Criteria for Continuous-Variable States Tanapat Deesuwan 24 September 2010 Submitted in partial fulfilment of the requirements for the degree of Master of Science of

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

arxiv:quant-ph/ v4 16 Dec 2003

arxiv:quant-ph/ v4 16 Dec 2003 Symplectic invariants, entropic measures and correlations of Gaussian states Alessio Serafini, Fabrizio Illuminati and Silvio De Siena Dipartimento di Fisica E. R. Caianiello, Università di Salerno, INFM

More information

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states G. Tóth 1,2,3 Collaboration: Entanglement th.: G. Vitagliano 1, I. Apellaniz 1, I.L. Egusquiza

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Distinguishing different classes of entanglement for three qubit pure states

Distinguishing different classes of entanglement for three qubit pure states Distinguishing different classes of entanglement for three qubit pure states Chandan Datta Institute of Physics, Bhubaneswar chandan@iopb.res.in YouQu-2017, HRI Chandan Datta (IOP) Tripartite Entanglement

More information

Geometry of Entanglement

Geometry of Entanglement Geometry of Entanglement Bachelor Thesis Group of Quantum Optics, Quantum Nanophysics and Quantum Information University of Vienna WS 21 2659 SE Seminar Quantenphysik I Supervising Professor: Ao. Univ.-Prof.

More information

Entanglement or Separability an introduction

Entanglement or Separability an introduction Bachelor Thesis Entanglement or Separability an introduction Lukas Schneiderbauer December 22, 2012 Quantum entanglement is a huge and active research field these days. Not only the philosophical aspects

More information

DYNAMICS OF ENTANGLEMENT OF THREE-MODE GAUSSIAN STATES IN THE THREE-RESERVOIR MODEL

DYNAMICS OF ENTANGLEMENT OF THREE-MODE GAUSSIAN STATES IN THE THREE-RESERVOIR MODEL DYNAMICS OF ENTANGLEMENT OF THREE-MODE GAUSSIAN STATES IN THE THREE-RESERVOIR MODEL HODA ALIJANZADEH BOURA 1,,a, AURELIAN ISAR,b, YAHYA AKBARI KOURBOLAGH 1,c 1 Department of Physics, Azarbaijan Shahid

More information

Entanglement: Definition, Purification and measures

Entanglement: Definition, Purification and measures Entanglement: Definition, Purification and measures Seminar in Quantum Information processing 3683 Gili Bisker Physics Department Technion Spring 006 Gili Bisker Physics Department, Technion Introduction

More information

Generalized conditions for genuine multipartite continuous-variable entanglement

Generalized conditions for genuine multipartite continuous-variable entanglement Generalized conditions for genuine multipartite continuous-variable entanglement E. Shchukin and P. van Loock Johannes-Gutenberg University of Mainz, Institute of Physics, Staudingerweg 7, 55128 Mainz

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

arxiv: v3 [quant-ph] 27 Feb 2009

arxiv: v3 [quant-ph] 27 Feb 2009 arxiv:0811.803v3 [quant-ph] 7 Feb 009 Entanglement detection Otfried Gühne Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 1A, A-600 Innsbruck,

More information

Entanglement witnesses

Entanglement witnesses 1 / 45 Entanglement witnesses Géza Tóth 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 3 Wigner Research Centre

More information

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/ PARTICLES S. Ghosh, G. Kar, and A. Roy Physics and Applied Mathematics Unit Indian Statistical Institute 03, B. T. Road Calcutta 700 035 India. E

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

arxiv: v2 [quant-ph] 5 Nov 2010

arxiv: v2 [quant-ph] 5 Nov 2010 Optimal Gaussian Entanglement Swapping Jason Hoelscher-Obermaier and Peter van Loock 1 Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1/Bau

More information

arxiv:quant-ph/ v1 27 Jul 2005

arxiv:quant-ph/ v1 27 Jul 2005 Negativity and Concurrence for two qutrits arxiv:quant-ph/57263v 27 Jul 25 Suranjana Rai and Jagdish R. Luthra ( ) Raitech, Tuscaloosa, AL 3545 ( ) Departamento de Física, Universidad de los Andes, A.A.

More information

Quantum correlations and decoherence in systems of interest for the quantum information processing

Quantum correlations and decoherence in systems of interest for the quantum information processing Universita' degli Studi di Milano Physics, Astrophysics and Applied Physics PhD School: 1 st Year-Student Mini-Workshop Quantum correlations and decoherence in systems of interest for the quantum information

More information

Quantum Theory Group

Quantum Theory Group Quantum Theory Group Dipartimento di Fisica E.R. Caianiello Università di Salerno G. Adesso, F. Dell Anno, S. De Siena, A. Di Lisi, S. M. Giampaolo, F. Illuminati, G. Mazzarella former members: A. Albus

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

arxiv: v1 [quant-ph] 24 May 2011

arxiv: v1 [quant-ph] 24 May 2011 Geometry of entanglement witnesses for two qutrits Dariusz Chruściński and Filip A. Wudarski Institute of Physics, Nicolaus Copernicus University, Grudzi adzka 5/7, 87 100 Toruń, Poland May 25, 2011 arxiv:1105.4821v1

More information

Qudit Entanglement. University of New Mexico, Albuquerque, NM USA. The University of Queensland, QLD 4072 Australia.

Qudit Entanglement. University of New Mexico, Albuquerque, NM USA. The University of Queensland, QLD 4072 Australia. Qudit Entanglement P. Rungta, 1) W. J. Munro, 2) K. Nemoto, 2) P. Deuar, 2) G. J. Milburn, 2) and C. M. Caves 1) arxiv:quant-ph/0001075v2 2 Feb 2000 1) Center for Advanced Studies, Department of Physics

More information

arxiv:quant-ph/ v1 25 Jun 2001

arxiv:quant-ph/ v1 25 Jun 2001 Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement M. S. Kim, W. Son,2, V. Bužek, 3, P. L. Knight, 4 School of Mathematics and Physics, The Queen s University, Belfast

More information

Flocks of Quantum Clones: Multiple Copying of Qubits

Flocks of Quantum Clones: Multiple Copying of Qubits Fortschr. Phys. 46 (998) 4 ±5, 5 ±5 Flocks of Quantum Clones: Multiple Copying of Qubits V. BuzÏek ;, M. Hillery and P. L. Knight 4 Institute of Physics, Slovak Academy of Sciences, DuÂbravska cesta 9,

More information

Quantum entanglement and symmetry

Quantum entanglement and symmetry Journal of Physics: Conference Series Quantum entanglement and symmetry To cite this article: D Chrucisi and A Kossaowsi 2007 J. Phys.: Conf. Ser. 87 012008 View the article online for updates and enhancements.

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den aturwissenschaften Leipzig Bell inequality for multipartite qubit quantum system and the maximal violation by Ming Li and Shao-Ming Fei Preprint no.: 27 2013 Bell

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

arxiv: v3 [quant-ph] 11 Dec 2018

arxiv: v3 [quant-ph] 11 Dec 2018 The stabilizer for n-qubit symmetric states Xian Shi Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy

More information

arxiv: v1 [quant-ph] 2 Nov 2018

arxiv: v1 [quant-ph] 2 Nov 2018 Entanglement and Measurement-induced quantum correlation in Heisenberg spin models arxiv:1811.733v1 [quant-ph] 2 Nov 218 Abstract Indrajith V S, R. Muthuganesan, R. Sankaranarayanan Department of Physics,

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

arxiv: v1 [quant-ph] 23 Nov 2016

arxiv: v1 [quant-ph] 23 Nov 2016 Revealing quantum properties with simple measurements S. Wölk Department Physik, Naturwissenschaftlich-Technische Fakultät, Universität Siegen - 57068 Siegen, Germany arxiv:1611.07678v1 [quant-ph] 3 Nov

More information

arxiv:quant-ph/ v1 9 Apr 1998

arxiv:quant-ph/ v1 9 Apr 1998 On the volume of the set of mixed entangled states Karol Życzkowski Institute for Plasma Research, University of Maryland College Park, MD 20742 USA Pawe l Horodecki Faculty of Applied Physics and Mathematics

More information

Quantum Entanglement and Geometry

Quantum Entanglement and Geometry Quantum Entanglement and Geometry arxiv:1003.3778v1 [quant-ph] 19 Mar 2010 Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Andreas

More information

THE NUMBER OF ORTHOGONAL CONJUGATIONS

THE NUMBER OF ORTHOGONAL CONJUGATIONS THE NUMBER OF ORTHOGONAL CONJUGATIONS Armin Uhlmann University of Leipzig, Institute for Theoretical Physics After a short introduction to anti-linearity, bounds for the number of orthogonal (skew) conjugations

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

arxiv: v3 [quant-ph] 16 Mar 2008

arxiv: v3 [quant-ph] 16 Mar 2008 A class of inequalities inducing new separability criteria for bipartite quantum systems arxiv:0711.3390v3 [quant-ph] 16 Mar 2008 1. Introduction Paolo Aniello and Cosmo Lupo Dipartimento di Scienze Fisiche

More information

Entanglement and non-locality of pure quantum states

Entanglement and non-locality of pure quantum states MSc in Photonics Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) PHOTONICSBCN http://www.photonicsbcn.eu

More information

Squashed entanglement

Squashed entanglement Squashed Entanglement based on Squashed Entanglement - An Additive Entanglement Measure (M. Christandl, A. Winter, quant-ph/0308088), and A paradigm for entanglement theory based on quantum communication

More information

Volume of the set of separable states

Volume of the set of separable states PHYSICAL REVIEW A VOLUME 58, NUMBER 2 AUGUST 998 Volume of the set of separable states Karol Życzkowski* Institute for Plasma Research, University of Maryland, College Park, Maryland 2742 Paweł Horodecki

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

arxiv: v3 [quant-ph] 30 Oct 2017

arxiv: v3 [quant-ph] 30 Oct 2017 Noname manuscript No (will be inserted by the editor) Lower bound on concurrence for arbitrary-dimensional tripartite quantum states Wei Chen Shao-Ming Fei Zhu-Jun Zheng arxiv:160304716v3 [quant-ph] 30

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Trivariate analysis of two qubit symmetric separable state

Trivariate analysis of two qubit symmetric separable state Pramana J. Phys. (8) 9:4 https://doi.org/.7/s4-8-598-x Indian Academy of Sciences Trivariate analysis of two qubit symmetric separable state SPSUMA and SWARNAMALA SIRSI Department of Physics, Yuvaraa s

More information

The Postulates of Quantum Mechanics

The Postulates of Quantum Mechanics p. 1/23 The Postulates of Quantum Mechanics We have reviewed the mathematics (complex linear algebra) necessary to understand quantum mechanics. We will now see how the physics of quantum mechanics fits

More information

arxiv: v1 [quant-ph] 4 Jul 2013

arxiv: v1 [quant-ph] 4 Jul 2013 GEOMETRY FOR SEPARABLE STATES AND CONSTRUCTION OF ENTANGLED STATES WITH POSITIVE PARTIAL TRANSPOSES KIL-CHAN HA AND SEUNG-HYEOK KYE arxiv:1307.1362v1 [quant-ph] 4 Jul 2013 Abstract. We construct faces

More information

IBM Research Report. Conditions for Separability in Generalized Laplacian Matrices and Diagonally Dominant Matrices as Density Matrices

IBM Research Report. Conditions for Separability in Generalized Laplacian Matrices and Diagonally Dominant Matrices as Density Matrices RC23758 (W58-118) October 18, 25 Physics IBM Research Report Conditions for Separability in Generalized Laplacian Matrices and Diagonally Dominant Matrices as Density Matrices Chai Wah Wu IBM Research

More information

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013). 1 / 24 Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, 032324 (2013). G. Tóth 1,2,3 and D. Petz 4,5 1 Theoretical Physics, University of the Basque Country UPV/EHU,

More information

Simulation of n-qubit quantum systems. II. Separability and entanglement

Simulation of n-qubit quantum systems. II. Separability and entanglement Computer Physics Communications 175 (2006 145 166 www.elsevier.com/locate/cpc Simulation of n-qubit quantum systems. II. Separability and entanglement T. Radtke,S.Fritzsche Institut für Physik, Universität

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Bell tests in physical systems

Bell tests in physical systems Bell tests in physical systems Seung-Woo Lee St. Hugh s College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of

More information

1 More on the Bloch Sphere (10 points)

1 More on the Bloch Sphere (10 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - 1 Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 More on the Bloch Sphere 10 points a. The state Ψ is parametrized on the

More information

Maximal Entanglement A New Measure of Entanglement

Maximal Entanglement A New Measure of Entanglement 1 Maximal Entanglement A New Measure of Entanglement Salman Beigi School of Mathematics, Institute for Research in Fundamental Sciences IPM, Tehran, Iran arxiv:1405.50v1 [quant-ph] 11 May 014 Abstract

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

Bound entangled states with secret key and their classical counterpart

Bound entangled states with secret key and their classical counterpart Bound entangled states with secret key and their classical counterpart Māris Ozols Graeme Smith John Smolin February 6, 2014 A brief summary Main result A new construction of bound entangled states with

More information

ENTANGLEMENT VERSUS QUANTUM DEGREE OF POLARIZATION

ENTANGLEMENT VERSUS QUANTUM DEGREE OF POLARIZATION Romanian Reports in Physics 70, 104 (2018) ENTANGLEMENT VERSUS QUANTUM DEGREE OF POLARIZATION IULIA GHIU University of Bucharest, Faculty of Physics, Centre for Advanced Quantum Physics, PO Box MG-11,

More information

Asymptotic Pure State Transformations

Asymptotic Pure State Transformations Asymptotic Pure State Transformations PHYS 500 - Southern Illinois University April 18, 2017 PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations April 18, 2017 1 / 15 Entanglement

More information

Language of Quantum Mechanics

Language of Quantum Mechanics Language of Quantum Mechanics System s Hilbert space. Pure and mixed states A quantum-mechanical system 1 is characterized by a complete inner-product space that is, Hilbert space with either finite or

More information

arxiv: v1 [quant-ph] 3 Oct 2012

arxiv: v1 [quant-ph] 3 Oct 2012 Entanglement verification via nonlinear witnesses Megan Agnew, Jeff Z. Salvail, Jonathan each, Robert W. Boyd, Dept. of Physics, University of Ottawa, 50 ouis Pasteur, Ottawa, Ontario, KN 6N5 Canada and

More information

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by Department of Physics Introduction to Quantum Mechanics Physics 5701 Temple University Z.-E. Meziani Thursday February 1, 017 Problem # 1 10pts We are given the operator Um, n defined by Ûm, n φ m >< φ

More information

Converse bounds for private communication over quantum channels

Converse bounds for private communication over quantum channels Converse bounds for private communication over quantum channels Mark M. Wilde (LSU) joint work with Mario Berta (Caltech) and Marco Tomamichel ( Univ. Sydney + Univ. of Technology, Sydney ) arxiv:1602.08898

More information

A Note on the Geometric Interpretation of Bell s Inequalities

A Note on the Geometric Interpretation of Bell s Inequalities Lett Math Phys DOI 10.1007/s11005-013-0631-8 A Note on the Geometric Interpretation of Bell s Inequalities PAOLO DAI PRA, MICHELE PAVON and NEERAJA SAHASRABUDHE Dipartimento di Matematica, Università di

More information

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro Outline of the talk! Decoherence

More information

A successive approximation method for quantum separability

A successive approximation method for quantum separability Front. Math. China 2013, 8(6): 1275 1293 DOI 10.1007/s11464-013-0274-1 A successive approximation method for quantum separability Deren HAN 1, Liqun QI 2 1 School of Mathematical Sciences, Jiangsu Key

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Multipartite entangled coherent states

Multipartite entangled coherent states PHYSICAL REVIEW A, VOLUME 65, 012303 Multipartite entangled coherent states Xiaoguang Wang 1,2 and Barry C. Sanders 3 1 Institute of Physics and Astronomy, University of Aarhus, Aarhus, DK-8000, Denmark

More information

GLOBAL ENTANGLEMENT IN MULTIPARTICLE SYSTEMS

GLOBAL ENTANGLEMENT IN MULTIPARTICLE SYSTEMS 1 June 2001 quant-ph/0108104 GLOBAL ENTANGLEMENT IN MULTIPARTICLE SYSTEMS David A. Meyer and Nolan R. Wallach Project in Geometry and Physics Department of Mathematics University of California/San Diego

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

Introduction to Quantum Key Distribution

Introduction to Quantum Key Distribution Fakultät für Physik Ludwig-Maximilians-Universität München January 2010 Overview Introduction Security Proof Introduction What is information? A mathematical concept describing knowledge. Basic unit is

More information

arxiv: v2 [quant-ph] 14 Mar 2018

arxiv: v2 [quant-ph] 14 Mar 2018 God plays coins or superposition principle for classical probabilities in quantum suprematism representation of qubit states. V. N. Chernega 1, O. V. Man ko 1,2, V. I. Man ko 1,3 1 - Lebedev Physical Institute,

More information

arxiv:quant-ph/ v2 17 Jun 1996

arxiv:quant-ph/ v2 17 Jun 1996 Separability Criterion for Density Matrices arxiv:quant-ph/9604005v2 17 Jun 1996 Asher Peres Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel Abstract A quantum system

More information

Quantum interference and evolution of entanglement in a system of three-level atoms

Quantum interference and evolution of entanglement in a system of three-level atoms Quantum interference and evolution of entanglement in a system of three-level atoms Łukasz Derkacz and Lech Jakóbczyk Institute of Theoretical Physics University of Wrocław Pl. M. Borna, 5-24 Wrocław,

More information

Quantum Computing with Para-hydrogen

Quantum Computing with Para-hydrogen Quantum Computing with Para-hydrogen Muhammad Sabieh Anwar sabieh@lums.edu.pk International Conference on Quantum Information, Institute of Physics, Bhubaneswar, March 12, 28 Joint work with: J.A. Jones

More information