Chapter 8 Potential energy and conservation of energy

Size: px
Start display at page:

Download "Chapter 8 Potential energy and conservation of energy"

Transcription

1 Chpter 8 Potentl energy nd conservton o energy I. Potentl energy Energy o congurton II. Wor nd potentl energy III. Conservtve / Non-conservtve orces IV. Determnng potentl energy vlues: - Grvttonl potentl energy - Elstc potentl energy I. V. Conservton o hncl energy VI. Eternl wor nd erml energy VII. Eternl orces nd nternl energy chnges VIII. Power I. Potentl energy Energy ssocted w e rrngement o system o objects t eert orces on one noer. nts: J Emples: - Grvttonl potentl energy: ssocted w e stte o seprton between objects whch cn ttrct one noer v e grvttonl orce. - Elstc potentl energy: ssocted w e stte o compresson/etenson o n elstc object. II. Wor nd potentl energy I tomto rses grvttonl orce trnsers energy rom tomto s netc energy to e grvttonl potentl energy o e tomto-er system. I tomto lls down grvttonl orce trnsers energy rom e grvttonl potentl energy to e tomto s netc energy.

2 W lso vld or elstc potentl energy Sprng compresson s Sprng orce does W on bloc energy trnser rom netc energy o e bloc to potentl elstc energy o e sprng. Sprng etenson s Sprng orce does +W on bloc energy trnser rom potentl energy o e sprng to netc energy o e bloc. Generl: - System o two or more objects. - orce cts between prtcle n e system nd e rest o e system. - When system congurton chnges orce does wor on e object W trnserrng energy between KE o e object nd some oer orm o energy o e system. - When e congurton chnge s reversed orce reverses e energy trnser, dong W. III. Conservtve / Nonconservtve orces - I W W lwys conservtve orce. Emples: Grvttonl orce nd sprng orce ssocted potentl energes. - I W W nonconservtve orce. Emples: Drg orce, rctonl orce KE trnserred nto erml energy. Non-reversble process. - Therml energy: Energy ssocted w e rndom movement o toms nd molecules. Ths s not potentl energy.

3 - Conservtve orce: The net wor t does on prtcle movng round every closed p, rom n ntl pont nd en bc to t pont s zero. - The net wor t does on prtcle movng between two ponts does not depend on e prtcle s p. Conservtve orce W b, W b, Proo: W b, + W b, W b, -W b, W b, - W b, W b, W b, IV. Determnng potentl energy vlues W F d Force F s conservtve Grvttonl potentl energy: y y mg dy mg[ y] y mg y y mg y y Chnge n e grvttonl potentl energy o e prtcle-er system., y y mgy Reerence congurton The grvttonl potentl energy ssocted w prtcle-er system depends only on prtcle s vertcl poston y reltve to e reerence poston y, not on e horzontl poston. Elstc potentl energy: d [ ] Chnge n e elstc potentl energy o e sprng-bloc system. Reerence congurton when e sprng s t ts reled leng nd e bloc s t., Remember! Potentl energy s lwys ssocted w system. V. Conservton o hncl energy Mechncl energy o system: Sum o ts potentl nd netc K energes. 3

4 E + K ssumptons: W K W - Only conservtve orces cuse energy trnser wn e system. - The system s solted rom ts envronment No eternl orce rom n object outsde e system cuses energy chnges nsde e system. K + K K + K + K + K + - In n solted system where only conservtve orces cuse energy chnges, e netc energy nd potentl energy cn chnge, but er sum, e hncl energy o e system cnnot chnge. - When e hncl energy o system s conserved, we cn relte e sum o netc energy nd potentl energy t one nstnt to t t noer nstnt wout consderng e ntermedte moton nd wout ndng e wor done by e orces nvolved. y E constnt E K + K + K + Potentl energy curves Fndng e orce nlytclly: d W F F D moton d - The orce s e negtve o e slope o e curve versus. - The prtcle s netc energy s: K E 4

5 Turnng pont: pont t whch e prtcle reverses ts moton K. K lwys K.5mv Emples: E 5J5J+K K < E 5J >5J+K K< mpossble Equlbrum ponts: where e slope o e curve s zero F -F d /d -F /d -F Slope Equlbrum ponts E, E, E,3 Emple: 5 E, 4J4J+K K nd lso F 5 neutrl equlbrum >>, 5 >> 4 E, 3J 3J+K K Turnng ponts 3 K, F prtcle sttonry nstble equlbrum 4 E,3 JJ+K K, F, t cnnot move to > 4 or < 4, snce en K< Stble equlbrum 5

6 6 Revew: Potentl energy W - - The zero s rbtrry Only potentl energy derences hve physcl menng. - The orce D s gven by: F -d/d - The potentl energy s sclr uncton o e poston. P. The orce between two toms n dtomc molecule cn be represented by e ollowng potentl energy uncton: 6 where nd re constnts. Clculte e orce F [ ] d d F Mnmum vlue o. [ ] 7 3 mn F d d s ppro. e energy necessry to dssocte e two toms.

7 VI. Wor done on system by n eternl orce Wor s energy trnser to or rom system by mens o n eternl orce ctng on t system. When more n one orce cts on system er net wor s e energy trnserred to or rom e system. No Frcton: Remember! Frcton: W K+ Et. orce K+ only when: - System solted. - No et. orces ct on system. - ll nternl orces re conservtve. F v v m + d.5 v v / d m F v v Fd d m v d W Fd K + d v Fd mv mv + d Generl: W Fd + d Emple: loc sldng up rmp. Therml energy: d Frcton due to cold weldng between two surces. s e bloc sldes over e loor, e sldng cuses terng nd reormng o e welds between e bloc nd e loor, whch mes e bloc-loor wrmer. Wor done on system by n eternl orce, rcton nvolved W Fd + 7

8 VI. Conservton o energy Totl energy o system E hncl + E erml + E nternl - The totl energy o system cn only chnge by mounts o energy trnserred rom or to e system. W + + Epermentl lw E nt -The totl energy o n solted system cnnot chnge. There cnnot be energy trnsers to or rom t. Isolted system: + + nt In n solted system we cn relte e totl energy t one nstnt to e totl energy t noer nstnt wout consderng e energes t ntermedte sttes. Emple: Trolley pole jumper Run Internl energy muscles gets trnserred nto netc energy. Jump/scent Knetc energy trnserred to potentl elstc energy trolley pole deormton nd to grvttonl potentl energy 3 Descent Grvttonl potentl energy gets trnserred nto netc energy. 8

9 VII. Eternl orces nd nternl energy chnges Emple: ster pushes hersel wy rom rlng. There s orce F on her rom e rlng t ncreses her netc energy. One prt o n object ster s rm does not move le e rest o body. Internl energy trnser rom one prt o e system to noer v e eternl orce F. ochemcl energy rom muscles trnserred to netc energy o e body. W F, et K Fcosϕ d Non solted system K + W F, et Fd cosϕ Fd cosϕ Chnge n system s hncl energy by n eternl orce Proo: v v + d.5m Mv Mv Md K F cosϕ d VIII. Power verge power: P vg t Instntneous power: de P dt 9

10 6. In e gure below, bloc sldes long p t s wout rcton untl e bloc reches e secton o leng L.75m, whch begns t heght hm. In t secton, e coecent o netc rcton s.4. The bloc psses rough pont w speed o 8m/s. Does t rech pont where e secton o rcton ends? I so, wht s e speed ere nd not, wht gretest heght bove pont does t rech? N mg cos3 8.5m mg N µ N.48.5m 3.4m C Only conservtve orces K mv + K C + C mvc + mghc vc 5m / s The netc energy n C turns nto erml nd potentl energy loc stops. K.5mv.4m c K mgy + d.4m mg d sn md d.49 meters c C c d > L.75m loc reches Isolted system.4m.5mv m +.5m v 3.5m / s + + K + K + + L.4m.5mv + mg y y + µ mglcos3.5mv + mglsn 3 + µ mglcos3 c C C 9. mssless rgd rod o leng L hs bll o mss m ttched to one end. The oer end s pvoted n such wy t e bll wll move n vertcl crcle. Frst, ssume t ere s no rcton t e pvot. The system s lunched downwrd rom e horzontl poston w ntl speed v. The bll just brely reches pont D nd en stops. Derve n epresson or v n terms o L, m nd g. b Wht s e tenson n e rod when e bll psses rough? c lttle grl s plced on e pvot to ncrese e rcton ere. Then e bll just brely reches C when lunched rom w e sme speed s beore. Wht s e decrese n hncl energy durng s moton? d Wht s e decrese n hncl energy by e tme e bll nlly comes to rest t ter severl osclltons? K ; D K + K + mgl mv v c v W d c + gl b F m T mg v m T mg T m v L L + K + K cent mv mgl + mv gl + gl v v c + g gl T 5mg y v D L T F c mg C The derence n heghts or n grvttonl potentl energes between e postons C reched by e bll when ere s rcton nd D durng e rctonless movement Is gong to be e loss o hncl energy whch goes nto erml energy. c mgl d The derence n heght between nd D s L. The totl loss o hncl energy whch ll goes nto erml energy s: mgl

11 . 3g slo hngs 3m bove e ground. Wht s e grvttonl potentl energy o e slo-er system we te e reerence pont y to be t e ground? I e slo drops to e ground nd r drg on t s ssumed to be neglgble, wht re b e netc energy nd c e speed o e slo just beore t reches e ground? K + K + b K 94.J ground ; K mgh 3.g9.8m / s 3m 94.J c K mv v K m 7.67m / s 3. metl tool s shrpen by beng held gnst e rm o wheel on grndng mchne by orce o 8N. The rctonl orces between e rm nd e tool grnd smll peces o e tool. The wheel hs rdus o cm nd rottes t.5 rev/s. The coecent o netc rcton between e wheel nd e tool s.3. t wht rte s energy beng trnserred rom e motor drvng e wheel nd e tool to e netc energy o e mterl rown rom e tool? v F8N rev π.m v.5 3.4m / s P v 57.6N 3.4m / s 8W s rev Pmotor 8W µ N µ F.38 N 57.6N Power dsspted by rcton Power sup pled motor 8. bloc w netc energy o 3J s bout to collde w sprng t ts reled leng. s e bloc compresses e sprng, rctonl orce between e bloc nd loor cts on e bloc. The gure below gves e netc energy o e bloc K nd e potentl energy o e sprng s uncton o e poston o e bloc, s e sprng s compressed. Wht s e ncrese n erml energy o e bloc nd e loor when e bloc reches poston. m nd b e sprng reches ts mmum compresson? Isolted system.m E, E b K 3J Grph : E K, K 3J 3J 7J, m K 3J E J, 4J 3J 6J + 7J + v K.m, 3J 3J 4J 6J mg N

12 . g bloc s pushed gnst sprng w sprng constnt 5 N/m compressng t cm. ter e bloc s relesed, t trvels long rctonless horzontl surce nd 45º nclne plne. Wht s e mmum heght reched by s bloc?

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Chapter 7. Potential Energy and Conservation of Energy

Chapter 7. Potential Energy and Conservation of Energy Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8) Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

Torsion, Thermal Effects and Indeterminacy

Torsion, Thermal Effects and Indeterminacy ENDS Note Set 7 F007bn orson, herml Effects nd Indetermncy Deformton n orsonlly Loded Members Ax-symmetrc cross sectons subjected to xl moment or torque wll remn plne nd undstorted. At secton, nternl torque

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1 A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum? Which of the following summrises the chnge in wve chrcteristics on going from infr-red to ultrviolet in the electromgnetic spectrum? frequency speed (in vcuum) decreses decreses decreses remins constnt

More information

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 ) Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F 1.. In Clss or Homework Eercise 1. An 18.0 kg bo is relesed on 33.0 o incline nd ccelertes t 0.300 m/s. Wht is the coeicient o riction? m 18.0kg 33.0? 0 0.300 m / s irst, we will ind the components o the

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A uniform circulr disc hs mss m, centre O nd rdius. It is free to rotte bout fixed smooth horizontl xis L which lies in the sme plne s the disc nd which is tngentil to the disc t the point A. The disc

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ M/G//GD/ / System! Pollcze-Khnchn (PK) Equton L q 2 2 λ σ s 2( + ρ ρ! Stedy-stte probbltes! π 0 ρ! Fndng L, q, ) 2 2 M/M/R/GD/K/K System! Drw the trnston dgrm! Derve the stedy-stte probbltes:! Fnd L,L

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Prt I: Bsic Concepts o Thermodynmics Lecture 4: Kinetic Theory o Gses Kinetic Theory or rel gses 4-1 Kinetic Theory or rel gses Recll tht or rel gses: (i The volume occupied by the molecules under ordinry

More information

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. 1/31/18 1:33 PM Chpter 11 Kinemtics of Prticles 1 1/31/18 1:33 PM First Em Sturdy 1//18 3 1/31/18 1:33 PM Introduction Mechnics Mechnics = science which describes nd predicts conditions of rest or motion

More information

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //15 11:1 M Chpter 11 Kinemtics of Prticles 1 //15 11:1 M Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion of bodies under the ction of forces It is

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Conservation of Energy

Conservation of Energy Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //16 1:36 AM Chpter 11 Kinemtics of Prticles 1 //16 1:36 AM First Em Wednesdy 4//16 3 //16 1:36 AM Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

KINETICS OF RIGID BODIES PROBLEMS

KINETICS OF RIGID BODIES PROBLEMS KINETICS OF RIID ODIES PROLEMS PROLEMS 1. The 6 kg frme C nd the 4 kg uniform slender br of length l slide with negligible friction long the fied horizontl br under the ction of the 80 N force. Clculte

More information

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

in state i at t i, Initial State E = E i

in state i at t i, Initial State E = E i Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement. Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1 - I the acceleraton o an object s negate, the object must be

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10. Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk. Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

JURONG JUNIOR COLLEGE

JURONG JUNIOR COLLEGE JURONG JUNIOR COLLEGE 2010 JC1 H1 8866 hysics utoril : Dynmics Lerning Outcomes Sub-topic utoril Questions Newton's lws of motion 1 1 st Lw, b, e f 2 nd Lw, including drwing FBDs nd solving problems by

More information

PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS 211 MIDTERM I 21 April 2004 PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

Lecture 22: Potential Energy

Lecture 22: Potential Energy Lecture : Potental Energy We have already studed the work-energy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by

More information

Physics 131: Lecture 16. Today s Agenda

Physics 131: Lecture 16. Today s Agenda Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

Exam 1: Tomorrow 8:20-10:10pm

Exam 1: Tomorrow 8:20-10:10pm x : Toorrow 8:0-0:0p Roo Assignents: Lst Ne Roo A-D CCC 00 -J CS A0 K- PUGH 70 N-Q LI 50 R-S RY 30 T-Z W 00 redown o the 0 Probles teril # o Probles Chpter 4 Chpter 3 Chpter 4 6 Chpter 5 3 Chpter 6 5 Crib

More information

5.3 The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the t-is, n between t n t. (You my wnt to look up the re formul

More information

_3-----"/- ~StudI_G u_id_e_-..,...-~~_~

_3-----/- ~StudI_G u_id_e_-..,...-~~_~ e- / Dte Period Nme CHAPTR 3-----"/- StudIG uide-..,...- [-------------------- Accelerted Motion Vocbulry Review Write the term tht correctly completes the sttement. Use ech term once. ccelertion verge

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs . Eponentil Functions nd Their Grphs Sllbus Objective: 9. The student will sketch the grph of eponentil, logistic, or logrithmic function. 9. The student will evlute eponentil or logrithmic epressions.

More information

KEY. Physics 106 Common Exam 1, Spring, 2004

KEY. Physics 106 Common Exam 1, Spring, 2004 Physics 106 Common Exm 1, Spring, 2004 Signture Nme (Print): A 4 Digit ID: Section: Instructions: Questions 1 through 10 re multiple-choice questions worth 5 points ech. Answer ech of them on the Scntron

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force? Problem 07-50 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T Version 001 HW#6 - lectromgnetic Induction rts (00224) 1 This print-out should hve 12 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. AP 1998

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

Chapter 6 Continuous Random Variables and Distributions

Chapter 6 Continuous Random Variables and Distributions Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete

More information

Physics Honors. Final Exam Review Free Response Problems

Physics Honors. Final Exam Review Free Response Problems Physics Honors inl Exm Review ree Response Problems m t m h 1. A 40 kg mss is pulled cross frictionless tble by string which goes over the pulley nd is connected to 20 kg mss.. Drw free body digrm, indicting

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ Jee-Advnced Dte: --7 Time: 09:00 AM to :00 Noon 0_P Model M.Mrks: 0 KEY SHEET CHEMISTRY C D 3 D B 5 A 6 D 7 B 8 AC 9 BC 0 ABD ABD A 3 C D 5 B 6 B 7 9 8 9 0 7 8 3 3 6 PHYSICS B 5 D

More information

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1 Version 001 HW#6 - Circulr & ottionl Motion rts (00223) 1 This print-out should hve 14 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Circling

More information

13 Design of Revetments, Seawalls and Bulkheads Forces & Earth Pressures

13 Design of Revetments, Seawalls and Bulkheads Forces & Earth Pressures 13 Desgn of Revetments, Sewlls nd Bulkheds Forces & Erth ressures Ref: Shore rotecton Mnul, USACE, 1984 EM 1110--1614, Desgn of Revetments, Sewlls nd Bulkheds, USACE, 1995 Brekwters, Jettes, Bulkheds nd

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information