KINETICS OF RIGID BODIES PROBLEMS

Size: px
Start display at page:

Download "KINETICS OF RIGID BODIES PROBLEMS"

Transcription

1 KINETICS OF RIID ODIES PROLEMS

2 PROLEMS 1. The 6 kg frme C nd the 4 kg uniform slender br of length l slide with negligible friction long the fied horizontl br under the ction of the 80 N force. Clculte the tension T in wire C nd the nd components of the force eerted on the br b the pin t. The - plne is verticl. (6/13)

3 PROLEMS rectiliner trnsltion F m M 0 for the whole sstem F m 80 (6 4), 8 m/ s m C = 6 kg, m = 4 kg, clculte the tension T in wire C nd the nd components of the force eerted on the br b the pin t. m g = 4(9.81) = 39.4 N 80 N m C g = 6(9.81) = N FD Ξ m C KD m br F 0 + 3l l M C md 39.4 l 4(8) sin , N, T 7.33 F m, 7.33cos T sin 39.4 T sin 60 4(8), N m g = 39.4 N N FD T l / 60 Ξ l / l / l / KD m l / sin 60 d

4 PROLEMS. The block nd ttched rod hve combined mss of 60 kg nd re confined to move long the 60 guide under the ction of the 800 N pplied force. The uniform horizontl rod hs mss of 0 kg nd is welded to the block t. Friction in the guide is negligible. Compute the bending moment M eerted b the weld on the rod t. (6/)

5 SOLUTION FD Kinetic Digrm m T =60 m totl =60 kg, m rod = 0 kg, compute the bending moment M eerted b the weld on the rod t. N 60 o W=60(9.81) N F 4.84 m m / s (9.81) sin FD of rod KD of rod 60 m 1 =0 M W 1 =0(9.81) N M M m d N m M 0(9.81)0.7 (0)(4.84sin 60)(0.7)

6 PROLEMS 3. The uniform 100 kg log is supported b the two cbles nd used s bttering rm. If the log is relesed from rest in the position shown, clculte the initil tension induced in ech cble immeditel fter relese nd the corresponding ngulr ccelertion of the cbles.

7 SOLUTION +n m=100 kg, log relesed from rest, clculte the initil tension in ech cble nd corresponding ngulr ccelertion of the cbles. +n T T mn t r W=100(9.81) N +t FD.45 rd / s m t When it strts to move, v=0, w = 0 but 0 n w r 0 Fn 0 T T mg cos30 0 T T Ft mt mgsin 30 mt t m / s T M N 1.5 m 0.5 m The motion of the log is curviliner trnsltion. T T sin 60(1.5) T N sin 60(0.5) 0 3T +t T KD * *

8 PROLEMS 4. The prllelogrm linkge is used to trnsfer crtes from pltform to pltform nd is hdrulicll operted. The oil pressure in the clinder is progrmmed to provide smooth trnsition of motion from q = 0 to q = q 0 = p/3 rd given b p p t q 1 cos where t is in seconds. Determine the force t D on the pin when t = 1 s. The crte nd pltform hve combined mss of 00 kg with mss center t. The mss of ech link is smll nd m be neglected. (6/9) 6

9 PROLEMS p q = 0 to q = q 0 = p/3 rd, p t q 1 cos t D for t = 1 s. 6, m totl =00 kg, determine the force m g = 00(9.81) = 196 N t 0 F t F D n F n Ξ m n FD KD r CD1.m 3 q p 1 cos t, sin t, cos t p q p p q p p t 1s, q p rd, q p rd / s, q , m mr q 00(1.)( p /144) 16.6 m/ s t M+ F m d 196(0.6) (0.6cos30) FD 16.6(0.6cos sin 30) F 178 N ( compression) D n n q =30 q =30 q =30

10 PROLEMS 5. The spring is uncompressed when the uniform slender br is in the verticl position shown. Determine the initil ngulr ccelertion of the br when it is relesed from rest in position where the br hs been rotted 30 clockwise from the position shown. Neglect n sg of the spring, whose mss is negligible.

11 PROLEMS Spring uncompressed when uniform slender br in verticl position, determine initil ngulr ccelertion of br when relesed from rest in position where the br hs been rotted 30 clockwise from the position shown. Unstrecthed length of the spring: 5 l o (l / 4) l l O t W +t 60 o O +n O n 30 o. 60 o FD F spring l l spring 30 o When q=30 o, length of the spring: When q=30 o, spring force: +t m t +n m n KD I F spring mrw 3 l spring 5 k l + M I m d O mgcos60 l F mw k m l 0 4 t l 3 spring l kl l g l (in compression) ml m l t 4 l 4

12 PROLEMS 6. The 65 kg thin rod is held b cbles nd C. If cble C suddenl breks loose determine the initil ngulr ccelertion of the rod nd the tension in cble. 30 cm C 40 cm 40 cm

13 PROLEMS / i I m = 65 kg, cble C suddenl breks loose, determine the initil ngulr ccelertion of the rod nd the tension in cble. / ww r / r / 0 ( strts fromrest) k 0.3 j 0.4i 0.3 i 0.4 j /, / wc w C r / C r 0 ( strts fromrest) Ck 0.4i 0.4 C j i j 0.3 i 0.4 j 0.4 j 1 1 ml (0.8) j 3.47 C 0.4 kgm C / C / 0.4 C C t t 40 cm n n / n 0 n t t 40 cm r r / / w 0 30 cm

14 PROLEMS 0.6T T M F F + I m m T T N C, m = 65 kg, cble C suddenl breks loose, determine the initil ngulr ccelertion of the rod nd the tension in cble. 3 T(0.4) 3.47C, C T 5 4 T , 0.8T 19.5, 5 3 T 65(9.81) C T 7.53 rd / s,, C 3.473T C rd / s 0.041T C C 40 cm T 40 cm 30 cm Ξ C I C 40 cm m 30 cm 40 cm mg FD m KD

15 PROLEMS 7. Crnk rottes with n ngulr velocit of w = 6 rd/s nd ngulr ccelertion of = rd/s. Roller C cn slide long the circulr slot within the fied plte. For the position shown, ngulr velocit nd ngulr ccelertion of rod C re w C =.9 rd/s (counterclockwise) nd C =37.47 rd/s (counterclockwise) The msses of uniform brs nd C re m = kg nd m C =5 kg. Mss of the roller C nd friction cn be neglected. Determine the rections b the pins nd C. w C =.9 rd/s (ccw) m C =5 kg, C =37.47 rd/s (ccw) L =300 mm L C =500 mm w = 6 rd/s = rd/s m = kg r =150 mm 45 o 37 o C

16 PROLEMS Mss of the roller C nd friction cn be neglected. Determine the rections b the pins nd C. w C =.9 rd/s (ccw) m C =5 kg, C =37.47 rd/s (ccw) L =300 mm L C =500 mm w = 6 rd/s = rd/s m = kg r =150 mm 45 o 37 o C

17 PROLEMS 8. In the mechnism shown, member is being rotted with constnt ngulr velocit of w = 10 rd/s b torque (not shown in the figure). Member sets member C in motion (mss of member C is 6 kg), which then cuses ger D with mss of 3 kg to move. The rdius of grtion of the ger with respect to center C is 00 mm. The rdius of the ger is given s r = 50 mm. For the instnt shown, determine the forces cting on pins C nd. w

18 PROLEMS w = 10 rd/s (cst), m C = 6 kg, m D = 3 kg, k ger = 00 mm, r = 50 mm, Determine forces cting on pins C nd. w

19 PROLEMS 9. The nonhomogeneous 0 kg wheel with the mss center t hs rdius of grtion bout of 0 mm. The wheel rolls down the 0 o rough incline without slipping. In the position shown, the wheel hs n ngulr velocit of 3 rd/s. Clculte the norml force nd the friction force cting on the wheel from the surfce t this position mm 50 mm

20 SOLUTION O FD mg F f enerl Motion N = KD m O / O 0.5i k 0.075i i j F m mgsin 0 Ff F f F m N mg cos N M I N( 0.075) Ff (0.5) I I k m 0(0.0) kgm o r k 3 k 0.075i F N 75 mm rd / s N N 50 mm

Problems (Motion Relative to Rotating Axes)

Problems (Motion Relative to Rotating Axes) 1. The disk rolls without slipping on the roblems (Motion Reltie to Rotting xes) horizontl surfce, nd t the instnt represented, the center O hs the elocity nd ccelertion shown in the figure. For this instnt,

More information

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3.

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3. PROLEM 15.105 A 5-m steel bem is lowered by mens of two cbles unwinding t the sme speed from overhed crnes. As the bem pproches the ground, the crne opertors pply brkes to slow the unwinding motion. At

More information

PROBLEM SOLUTION

PROBLEM SOLUTION PROLEM 15.11 The 18-in.-rdius flywheel is rigidly ttched to 1.5-in.-rdius shft tht cn roll long prllel rils. Knowing tht t the instnt shown the center of the shft hs velocity of 1. in./s nd n ccelertion

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law ME 141 Engineering Mechnics Lecture 10: Kinetics of prticles: Newton s nd Lw Ahmd Shhedi Shkil Lecturer, Dept. of Mechnicl Engg, BUET E-mil: sshkil@me.buet.c.bd, shkil6791@gmil.com Website: techer.buet.c.bd/sshkil

More information

A wire. 100 kg. Fig. 1.1

A wire. 100 kg. Fig. 1.1 1 Fig. 1.1 shows circulr cylinder of mss 100 kg being rised by light, inextensible verticl wire. There is negligible ir resistnce. wire 100 kg Fig. 1.1 (i) lculte the ccelertion of the cylinder when the

More information

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F 1.. In Clss or Homework Eercise 1. An 18.0 kg bo is relesed on 33.0 o incline nd ccelertes t 0.300 m/s. Wht is the coeicient o riction? m 18.0kg 33.0? 0 0.300 m / s irst, we will ind the components o the

More information

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30 Vector Mechnics for Engineers: Dynmics nnouncement Reminders Wednesdy s clss will strt t 1:00PM. Summry of the chpter 11 ws posted on website nd ws sent you by emil. For the students, who needs hrdcopy,

More information

Physics Honors. Final Exam Review Free Response Problems

Physics Honors. Final Exam Review Free Response Problems Physics Honors inl Exm Review ree Response Problems m t m h 1. A 40 kg mss is pulled cross frictionless tble by string which goes over the pulley nd is connected to 20 kg mss.. Drw free body digrm, indicting

More information

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. 1/31/18 1:33 PM Chpter 11 Kinemtics of Prticles 1 1/31/18 1:33 PM First Em Sturdy 1//18 3 1/31/18 1:33 PM Introduction Mechnics Mechnics = science which describes nd predicts conditions of rest or motion

More information

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //15 11:1 M Chpter 11 Kinemtics of Prticles 1 //15 11:1 M Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion of bodies under the ction of forces It is

More information

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1 Version 001 HW#6 - Circulr & ottionl Motion rts (00223) 1 This print-out should hve 14 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Circling

More information

Distributed Forces: Centroids and Centers of Gravity

Distributed Forces: Centroids and Centers of Gravity Distriuted Forces: Centroids nd Centers of Grvit Introduction Center of Grvit of D Bod Centroids nd First Moments of Ares nd Lines Centroids of Common Shpes of Ares Centroids of Common Shpes of Lines Composite

More information

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //16 1:36 AM Chpter 11 Kinemtics of Prticles 1 //16 1:36 AM First Em Wednesdy 4//16 3 //16 1:36 AM Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Multiple Choice ( 6 Points Ech ): F pp = 40 N 20 kg Q = 60 O m s,k = 0 1. A 20 kg box is pulled long frictionless floor with n pplied force of 40 N. The pplied force mkes n ngle of 60 degrees with the

More information

DYNAMICS. Kinematics of Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinematics of Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHTER 15 VECTOR MECHNICS FOR ENGINEERS: YNMICS Ferdinnd. eer E. Russell Johnston, Jr. hillip J. Cornwell Lecture Notes: rin. Self Cliforni olytechnic Stte Uniersity Kinemtics of Rigid odies 013

More information

Correct answer: 0 m/s 2. Explanation: 8 N

Correct answer: 0 m/s 2. Explanation: 8 N Version 001 HW#3 - orces rts (00223) 1 his print-out should hve 15 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Angled orce on Block 01 001

More information

Physics 105 Exam 2 10/31/2008 Name A

Physics 105 Exam 2 10/31/2008 Name A Physics 105 Exm 2 10/31/2008 Nme_ A As student t NJIT I will conduct myself in professionl mnner nd will comply with the proisions of the NJIT Acdemic Honor Code. I lso understnd tht I must subscribe to

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Forces and Accelerations. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Forces and Accelerations. Seventh Edition CHAPTER CHAPTER 16 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinnd P. Beer E. Ruell Johnton, Jr. Lecture Note: J. Wlt Oler Tex Tech Univerity Plne Motion of Rigid Bodie: Force nd Accelertion Content Introduction

More information

KEY. Physics 106 Common Exam 1, Spring, 2004

KEY. Physics 106 Common Exam 1, Spring, 2004 Physics 106 Common Exm 1, Spring, 2004 Signture Nme (Print): A 4 Digit ID: Section: Instructions: Questions 1 through 10 re multiple-choice questions worth 5 points ech. Answer ech of them on the Scntron

More information

Eunil Won Dept. of Physics, Korea University 1. Ch 03 Force. Movement of massive object. Velocity, acceleration. Force. Source of the move

Eunil Won Dept. of Physics, Korea University 1. Ch 03 Force. Movement of massive object. Velocity, acceleration. Force. Source of the move Eunil Won Dept. of Phsics, Kore Uniersit 1 Ch 03 orce Moement of mssie object orce Source of the moe Velocit, ccelertion Eunil Won Dept. of Phsics, Kore Uniersit m ~ 3.305 m ~ 1.8 m 1.8 m Eunil Won Dept.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A uniform circulr disc hs mss m, centre O nd rdius. It is free to rotte bout fixed smooth horizontl xis L which lies in the sme plne s the disc nd which is tngentil to the disc t the point A. The disc

More information

SECTION B Circular Motion

SECTION B Circular Motion SECTION B Circulr Motion 1. When person stnds on rotting merry-go-round, the frictionl force exerted on the person by the merry-go-round is (A) greter in mgnitude thn the frictionl force exerted on the

More information

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES 1. TRANSLATION Figure shows rigid body trnslting in three-dimensionl spce. Any two points in the body, such s A nd B, will move long prllel stright lines if

More information

Mathematics Extension Two

Mathematics Extension Two Student Number 04 HSC TRIAL EXAMINATION Mthemtics Etension Two Generl Instructions Reding time 5 minutes Working time - hours Write using blck or blue pen Bord-pproved clcultors my be used Write your Student

More information

EQUILIBRIUM OF PARTICLES (PROBLEMS)

EQUILIBRIUM OF PARTICLES (PROBLEMS) EQUILIRIUM OF PARICLES (PROLEMS) 1. Determine the force P required to maintain the 2-kg engine in the position for which q=3 o. he diameter of the pulle at is negligible. 2. 4-kg sphere rests on the smooth

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: and Centers of Gravity. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS VECTOR MECHANICS FOR ENGINEERS: and Centers of Gravity. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGrw-Hill Compnies, Inc. All rights reserved. Eighth E CHAPTER 5 Distriuted VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Wlt Oler Tes Tech

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGI OIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. escription

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4 Phy 231 Sp 3 Hoework #8 Pge 1 of 4 8-1) rigid squre object of negligible weight is cted upon by the forces 1 nd 2 shown t the right, which pull on its corners The forces re drwn to scle in ters of the

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

SOLUTIONS TO CONCEPTS CHAPTER 10

SOLUTIONS TO CONCEPTS CHAPTER 10 SOLUTIONS TO CONCEPTS CHPTE 0. 0 0 ; 00 rev/s ; ; 00 rd/s 0 t t (00 )/4 50 rd /s or 5 rev/s 0 t + / t 8 50 400 rd 50 rd/s or 5 rev/s s 400 rd.. 00 ; t 5 sec / t 00 / 5 8 5 40 rd/s 0 rev/s 8 rd/s 4 rev/s

More information

A little harder example. A block sits at rest on a flat surface. The block is held down by its weight. What is the interaction pair for the weight?

A little harder example. A block sits at rest on a flat surface. The block is held down by its weight. What is the interaction pair for the weight? Neton s Ls of Motion (ges 9-99) 1. An object s velocit vector v remins constnt if nd onl if the net force cting on the object is zero.. hen nonzero net force cts on n object, the object s velocit chnges.

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Centroids and Centers of Gravity.

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Centroids and Centers of Gravity. 5 Distributed CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Wlt Oler Texs Tech Universit Forces: Centroids nd Centers of Grvit Contents Introduction

More information

TOPIC C: ENERGY EXAMPLES SPRING 2019

TOPIC C: ENERGY EXAMPLES SPRING 2019 TOPI : ENERGY EXMPES SPRING 2019 (Tke g = 9.81 m s 2 ). Q1. Find the kinetic energy of: () bullet of mss 20 g moving t 400 m s 1 ; rcing cr of mss 2.5 tonnes trvelling t 300 km hr 1 ; (c) sphericl rindrop

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html

More information

PROBLEM 16.4 SOLUTION

PROBLEM 16.4 SOLUTION PROBLEM 16.4 The motion of the.5-kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)

More information

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities.

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities. Ch.6 Friction Types of friction a) Dry friction: occurs when non smooth (non ideal) surfaces of two solids are in contact under a condition of sliding or a tendency to slide. (also called Coulomb friction)

More information

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ]

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ] PROLEM 15.113 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that

More information

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

Year 12 Mathematics Extension 2 HSC Trial Examination 2014 Yer Mthemtics Etension HSC Tril Emintion 04 Generl Instructions. Reding time 5 minutes Working time hours Write using blck or blue pen. Blck pen is preferred. Bord-pproved clcultors my be used A tble of

More information

Problems (Equilibrium of Particles)

Problems (Equilibrium of Particles) 1. he kg block rests on the rough surface. Length of the spring is 18 mm in the position shown. Unstretched length of the spring is mm. Determine the coefficient of friction required for the equilibrium.

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

Dynamics Applying Newton s Laws Accelerated Frames

Dynamics Applying Newton s Laws Accelerated Frames Dynmics Applying Newton s Lws Accelerted Frmes Ln heridn De Anz College Oct 18, 2017 Lst time Circulr motion nd force Centripetl force Exmples Non-uniform circulr motion Overview one lst circulr motion

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

PROBLEMS ON EQUILIBRIUM OF PARTICLES

PROBLEMS ON EQUILIBRIUM OF PARTICLES O EQUILIBRIUM O PRICLES 1. ind the angle of tilt q with the horiontal so that the contact force at B will be one-half that at for the smooth clinder. (3/15) q?, contact force at B will be one-half that

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines Msschusetts Institute of Technology Deprtment of Physics 8.0T Fll 004 Study Guide Finl Exm The finl exm will consist of two sections. Section : multiple choice concept questions. There my be few concept

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves

[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves Gols: 1. To find the re etween two curves Section 6.1 Are of Regions etween two Curves I. Are of Region Between Two Curves A. Grphicl Represention = _ B. Integrl Represention [ ( ) ( )] f x g x dx = C.

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ Jee-Advnced Dte: --7 Time: 09:00 AM to :00 Noon 0_P Model M.Mrks: 0 KEY SHEET CHEMISTRY C D 3 D B 5 A 6 D 7 B 8 AC 9 BC 0 ABD ABD A 3 C D 5 B 6 B 7 9 8 9 0 7 8 3 3 6 PHYSICS B 5 D

More information

Problems (Equilibrium of Particles)

Problems (Equilibrium of Particles) 1. he -kg block rests on the rough surface. Length of the spring is 18 mm in the position shown. Unstretched length of the spring is mm. Determine the coefficient of friction required for the equilibrium.

More information

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects;

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects; Honors Physics Centripetl Pcket 1. 4.00-kg sne whirled t end 2.00-m rope in horizontl circle t speed 15.0 m/s. Ignoring grvittionl effects;. Clculte centripetl ccelertion B. Clculte centripetl force. 2.

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

Physics 110. Spring Exam #1. April 16, Name

Physics 110. Spring Exam #1. April 16, Name Physics 110 Spring 010 Exm #1 April 16, 010 Nme Prt Multiple Choice / 10 Problem #1 / 7 Problem # / 7 Problem #3 / 36 Totl / 100 In keeping with the Union College policy on cdemic honesty, it is ssumed

More information

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc Physics 170 Summry of Results from Lecture Kinemticl Vribles The position vector ~r(t) cn be resolved into its Crtesin components: ~r(t) =x(t)^i + y(t)^j + z(t)^k. Rtes of Chnge Velocity ~v(t) = d~r(t)=

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE 2010 MARKING SCHEME APPLIED MATHEMATICS HIGHER LEVEL

Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE 2010 MARKING SCHEME APPLIED MATHEMATICS HIGHER LEVEL Coimisiún n Scrúduithe Stáit Stte Emintions Commission LEAVING CERTIFICATE 00 MARKING SCHEME APPLIED MATHEMATICS HIGHER LEVEL Generl Guidelines Penlties of three types re pplied to cndidtes' work s follows:

More information

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi 8 3. The thin-wlled cylinder cn be supported in one of two wys s shown. Determine the stte of stress in the wll of the cylinder for both cses if the piston P cuses the internl pressure to be 65 psi. The

More information

Chapter 10 Rotation of a Rigid Object About a Fixed Axis

Chapter 10 Rotation of a Rigid Object About a Fixed Axis Chter ottion o igid Object About Fixed Axis P. () ω ωi. rd s α t. s 4. rd s it+ 4. rd s. s 8. rd (b) θ ω αt P.5 rev min π rd π ωi rd s, ω. min 6. s. rev () ω ωi π / t s α. 5.4 s (b) ω + ωi π π θ ωt t rd

More information

Advanced Computational Analysis

Advanced Computational Analysis Advnced Computtionl Anlysis REPORT REPORT NO: S2149-2 Revision A Title: Closed-Form Anlysis Of Forces And Moments In Bungee Trmpoline Structure Client: Mr Jmes Okey Author: Dr M Lcey BSc PhD CEng F I Mech

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

Problems (Equilibrium of Particles)

Problems (Equilibrium of Particles) 1. he 4kg block rests on the rough surface. Length of the spring is 18 mm in the position shown. Unstretched length of the spring is 2 mm. Determine the coefficient of friction required for the equilibrium.

More information

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bord-pproved clcultors my be used A tble of stndrd

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass? NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass

More information

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans.

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans. 17 4. Determine the moment of inertia of the semiellipsoid with respect to the x axis and express the result in terms of the mass m of the semiellipsoid. The material has a constant density r. y x y a

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects;

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects; AP Physics Centripetl Pcket 1. A 4.00-kg stone is whirled t end 2.00-m rope in horizontl circle t speed 15.0 m/s. Ignoring grvittionl effects; A. Clculte centripetl ccelertion B. Clculte centripetl force.

More information

BME 207 Introduction to Biomechanics Spring 2018

BME 207 Introduction to Biomechanics Spring 2018 April 6, 28 UNIVERSITY O RHODE ISAND Deprtment of Electricl, Computer nd Biomedicl Engineering BME 27 Introduction to Biomechnics Spring 28 Homework 8 Prolem 14.6 in the textook. In ddition to prts -e,

More information

1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member BF.

1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member BF. 1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member B. Joint A AB A I. Cut D D B A 26 kn A I. Cut H 13 kn D B D A H 13 kn 2. Determine

More information

Miscellaneous Problems. pinned to the ground

Miscellaneous Problems. pinned to the ground Miscellneous Problems Problem. Use the mobilit formul to determine the number of degrees of freedom for this sstem. pinned to the ground pinned to the ground Problem. For this mechnism: () Define vectors

More information

Numerical Problems With Solutions(STD:-XI)

Numerical Problems With Solutions(STD:-XI) Numericl Problems With Solutions(STD:-XI) Topic:-Uniform Circulr Motion. An irplne executes horizontl loop of rdius 000m with stedy speed of 900kmh -. Wht is its centripetl ccelertion? Ans:- Centripetl

More information

In this chapter the energy and momentum methods will be added to the tools available for your study of the motion of rigid bodies.

In this chapter the energy and momentum methods will be added to the tools available for your study of the motion of rigid bodies. In this chapter the energy and momentum methods will be added to the tools available for your study of the motion of rigid bodies. For example, by using the principle of conservation of energy and direct

More information

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson JUST THE MATHS SLIDES NUMBER 13.12 INTEGRATION APPLICATIONS 12 (Second moments of n re (B)) b A.J.Hobson 13.12.1 The prllel xis theorem 13.12.2 The perpendiculr xis theorem 13.12.3 The rdius of grtion

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o 6. THE TATC MAGNETC FELD 6- LOENTZ FOCE EQUATON Lorent force eqution F = Fe + Fm = q ( E + v B ) Exmple 6- An electron hs n initil velocity vo = vo y in uniform mgnetic flux density B = Bo. () how tht

More information

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย )

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย ) MEE 14 (Dynmics) Tuesdy 8.30-11.0 Dr. Sortos Tntideerit (สรทศ ต นต ธ รว ทย ) sortos@oep.go.th Lecture Notes, Course updtes, Extr problems, etc No Homework Finl Exm (Dte & Time TBD) 1/03/58 MEE14 Dynmics

More information

Chapter 4. (a) (b) (c) rocket engine, n r is a normal force, r f is a friction force, and the forces labeled mg

Chapter 4. (a) (b) (c) rocket engine, n r is a normal force, r f is a friction force, and the forces labeled mg Chpter 4 0. While the engines operte, their totl upwrd thrust eceeds the weight of the rocket, nd the rocket eperiences net upwrd fce. his net fce cuses the upwrd velocit of the rocket to increse in mgnitude

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Prep 6-7. Oregon State University PH 211 Fall Term Recommended finish date: Wednesday, November 8

Prep 6-7. Oregon State University PH 211 Fall Term Recommended finish date: Wednesday, November 8 Oregon Stte Universit PH 211 ll Term 2017 Prep 6-7 Recommended finish dte: Wednesd, November 8 The formts (tpe, length, scope of these Prep problems hve been purposel creted to closel prllel those of tpicl

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

X Fx = F A. If applied force is small, book does not move (static), a x =0, then f=f s

X Fx = F A. If applied force is small, book does not move (static), a x =0, then f=f s A Appl ewton s nd Lw X 0 X A I pplied orce is sll, boo does not ove sttic, 0, then s A Increse pplied orce, boo still does not ove Increse A ore, now boo oves, 0 > A A here is soe iu sttic rictionl orce,

More information

JURONG JUNIOR COLLEGE

JURONG JUNIOR COLLEGE JURONG JUNIOR COLLEGE 2010 JC1 H1 8866 hysics utoril : Dynmics Lerning Outcomes Sub-topic utoril Questions Newton's lws of motion 1 1 st Lw, b, e f 2 nd Lw, including drwing FBDs nd solving problems by

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

8A Review Solutions. Roger Mong. February 24, 2007

8A Review Solutions. Roger Mong. February 24, 2007 8A Review Solutions Roer Mon Ferury 24, 2007 Question We ein y doin Free Body Dirm on the mss m. Since the rope runs throuh the lock 3 times, the upwrd force on the lock is 3T. (Not ecuse there re 3 pulleys!)

More information

FULL MECHANICS SOLUTION

FULL MECHANICS SOLUTION FULL MECHANICS SOLUION. m 3 3 3 f For long the tngentil direction m 3g cos 3 sin 3 f N m 3g sin 3 cos3 from soling 3. ( N 4) ( N 8) N gsin 3. = ut + t = ut g sin cos t u t = gsin cos = 4 5 5 = s] 3 4 o

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

1. A man pulls himself up the 15 incline by the method shown. If the combined mass of the man and cart is 100 kg, determine the acceleration of the

1. A man pulls himself up the 15 incline by the method shown. If the combined mass of the man and cart is 100 kg, determine the acceleration of the 1. n pulls hiself up the 15 incline b the ethod shown. If the cobined ss of the n nd ct is 100 g deteine the cceletion of the ct if the n eets pull of 50 on the ope. eglect ll fiction nd the ss of the

More information

F is on a moving charged particle. F = 0, if B v. (sin " = 0)

F is on a moving charged particle. F = 0, if B v. (sin  = 0) F is on moving chrged prticle. Chpter 29 Mgnetic Fields Ech mgnet hs two poles, north pole nd south pole, regrdless the size nd shpe of the mgnet. Like poles repel ech other, unlike poles ttrct ech other.

More information

Dynamics and control of mechanical systems. Content

Dynamics and control of mechanical systems. Content Dynmics nd control of mechnicl systems Dte Dy 1 (01/08) Dy (03/08) Dy 3 (05/08) Dy 4 (07/08) Dy 5 (09/08) Dy 6 (11/08) Content Review of the bsics of mechnics. Kinemtics of rigid bodies plne motion of

More information

PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS 211 MIDTERM I 21 April 2004 PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

More information

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM) Slide 1 / 71 Slide 2 / 71 P Physics 1 irculr Motion 2015-12-02 www.njctl.org Topics of Uniform irculr Motion (UM) Slide 3 / 71 Kinemtics of UM lick on the topic to go to tht section Period, Frequency,

More information

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50-kg crate is projected along the floor with an initial

More information

Ans. Ans. Ans. Ans. Ans. Ans.

Ans. Ans. Ans. Ans. Ans. Ans. 08 Solutions 46060 5/28/10 8:34 M Pge 532 8 1. sphericl gs tnk hs n inner rdius of r = 1.5 m. If it is subjected to n internl pressure of p = 300 kp, determine its required thickness if the mximum norml

More information