Lecture 37. Physics 2170 Fall

Size: px
Start display at page:

Download "Lecture 37. Physics 2170 Fall"

Transcription

1 Lecture 37 Will do hydrogen atom today After Thanksgiving break we have only two weeks before finals. We will talk about multielectron atoms, Pauli Exclusion Principle, etc. up thru Chapter 10. A few interesting facts for Friday! Physics 2170 Fall

2 Renewable Source of Energy Fun Facts Club Watt in Rotterdam, Netherlands is using floor vibrations from people walking and dancing to power its light show. The vibrations are captured by piezoelectric materials that produce an electric change when put under stress. The U.S. Army is also looking at piezoelectric technology for energy. They put the material in soldier s boots in order to charge radios and other portable devices. Although this is an interesting renewable energy with great potential, it s not cheap. Physics 2170 Fall

3 Four Motion Sensor Types 1) Passive infrared sensors detect a person's body heat as it changes against the background of the room. No energy is emitted from the sensor, thus the name "passive infrared). Humans, having a skin temperature of about 93 degrees F, and radiate with a wavelength between 9 and 10 micrometers. Therefore, the sensors are typically sensitive in the range of 8 to 12 micrometers. 2) Sends pulses of ultrasonic waves (above the frequency that a human can hear) and measures the reflection off a moving object. Motion causes the frequency of the reflected wave to change (Doppler effect). 3) A microwave sensor sends out electromagnetic pulses and measures the changes in frequency (Doppler) due to reflection off a moving object. 4) Tomographic motion detection systems sense disturbances to radio waves as they pass from node to node of a mesh network. They have the ability to detect over complete areas because they can sense through walls and obstructions. Physics 2170 Fall

4 Hot and Cold Running Water - Infrared Physics 2170 Fall

5 Shoe after just being worn -infrared Physics 2170 Fall

6 Tomographic Detection Detects the presence of humans based on changes in the baseline signal strength between nodes. The advantage is the ability to pass through walls, furniture and other obstructions. This is implemented using signals in the 2.4 GHz range Physics 2170 Fall

7 Thanksgiving Facts The first Thanksgiving celebration lasted three days. The pilgrims didn't use forks; they ate with spoons, knives, and their fingers. Benjamin Franklin wanted the turkey to be the national bird of the United States. Abraham Lincoln issued a 'Thanksgiving Proclamation' on third October 1863 and officially set aside the last Thursday of November as the national day for Thanksgiving. Sarah Josepha Hale, an American editor, persuaded Abraham Lincoln to declare Thanksgiving a national holiday. She is author of the nursery rhyme "Mary Had a Little Lamb" Turkeys have heart attacks. The United States Air Force was doing test runs and breaking the sound barrier. Nearby turkeys dropped dead with heart attacks from the shock wave. Physics 2170 Fall

8 3-D central force problems The hydrogen atom is an example of a 3D central force problem. The potential energy depends only on the distance from a point (spherically symmetric) Spherical coordinates is the natural coordinate system for this problem. General potential: V(r,θ,φ) Central force potential: V(r) The Time Independent Schrödinger Equation (TISE) becomes: 2 1 ψ 1 ψ 1 2 ψ 2µ r 2 r r2 + sinθ + r r 2 sinθ θ θ r 2 sin 2 θ φ 2 + V (r)ψ = Eψ We can use separation of variables so CM of mass motion is ignored! Physics 2170 Fall x z θ φ r y

9 Separation of Variables 1 2µ 2 r 2 ψ r r2 + r 1 ψ sinθ + r 2 sinθ θ θ 1 2 ψ r 2 sin 2 θ φ 2 + V (r)ψ = Eψ sin 2 θ ψ r r2 [ E V (r)]ψ 2µr2 sin 2 θ sinθ ψ sinθ = 2 ψ r 2 θ θ φ 2 Divide thru by Ψ=RθΦ and set both sides equal to a constant, -m 2, Separates r and theta side from phi side. sin2 θ d dr R dr r2 E V(r) dr [ ] 2µr2 sin 2 θ 2 sinθ Θ d dθ sinθ = m 2 = d 2 Φ dθ dθ dφ 2 Physics 2170 Fall

10 Angular momentum quantization about z-axis Note is similar to which is the solution to the free particle with As k gives the momentum in the x direction, m gives the momentum in the φ direction (angular momentum). x z θ φ r y Angular momentum about the z-axis is quantized: There is nothing truly special about the z-axis. We can point the z-axis anywhere we want to. It is just the nature of the coordinate system that treats the z-axis differently than the x and y axes. Physics 2170 Fall

11 The solution to the Θ(θ) part is more complicated so we skip it. The Θ(θ) part Solving for Θ, and requiring behavior Is finite everywhere forces α = ( +1) where = m, m +1, m + 2, m The end result is that there is another quantum variable l which must be a non-negative integer and l m. The l variable quantizes the total angular momentum: Note, for large l, so l is basically the total angular momentum and m is the z-component of the angular momentum. Since the z-component cannot be larger than the total, m l. x z θ φ r y Physics 2170 Fall

12 Angular Momentum Picture Physics 2170 Fall

13 Spherical harmonics We have determined the angular part of the wave function so has become with the quantum numbers l and m specifying the total angular momentum and the z-component of angular momentum. This angular solution works for any central force problem. The combination are the spherical harmonics Physics 2170 Fall

14 The radial component of ψ For any central force potential we can write the wave function as The radial part of the time independent Schrödinger equation can be written as This is how we are going to get the energy E and the r dependence of the wave function Note that m does not appear. This makes sense because it just contains information on the direction of the angular momentum. The total angular momentum is relevant so l shows up. To solve this equation we need to know the potential V(r). For the hydrogen atom Physics 2170 Fall

15 Clicker question 1 Set frequency to DA For any central force potential we can write the wave function as Q. What are the boundary conditions on the radial part R(r)? A. R(r) must go to zero as r goes to 0 B. R(r) must go to zero as r goes to infinity C. R( ) must equal R(0) D. R(r) must equal R(r+2π). E. More than one of the above. Physics 2170 Fall

16 Clicker question 1 Set frequency to DA For any central force potential we can write the wave function as Q. What are the boundary conditions on the radial part R(r)? A. R(r) must go to zero as r goes to 0 B. R(r) must go to zero as r goes to infinity C. R( ) must equal R(0) D. R(r) must equal R(r+2π). E. More than one of the above. In order for ψ(r,θ,φ) to be normalizable, it must go to zero as r goes to infinity. Therefore, R(r) 0 as r. Physically makes sense as well. Probability of finding the electron very far away from the proton is very small. Physics 2170 Fall

17 Radial Equation 1 r 2 d dr dr r2 + 2µ [ E V(r) ]R = ( +1) R dr 2 r 2 In order to prevent this equation from diverging as r->, it is found that an integer n must have a value n = +1, + 2, + 3,... and E n = µz 2 e n 2 Schrodinger s derivation of this equation in 1926 constituted the first convincing evidence of quantum mechanics Wavefunction depends on all three quantum numbers, but Energy only depends on the quantum number n. Physics 2170 Fall

18 The three quantum numbers For hydrogenic atoms (one electron), energy levels only depend on n and we find the same formula as Bohr: For multielectron atoms the energy also depends on l. There is a shorthand for giving the n and l values. n = 2 l = 1 Different letters correspond to different values of l s p d f g h Physics 2170 Fall

19 Hydrogen ground state The hydrogen ground state has a principal quantum number n = 1 Since l<n, this means that l=0 and therefore the ground state has no angular momentum. Since m l, this means that m=0 and so the ground state has no z-component of angular momentum (makes sense since it has no angular momentum at all). Note that Bohr predicted the ground state to have angular momentum of ħ which is wrong. Experiments have found that the ground state has angular momentum 0 which is what quantum mechanics predicts. Physics 2170 Fall

20 Clicker question 2 Set frequency to AD n = 1, 2, 3, = Principal Quantum Number l = 0, 1, 2, n-1 = angular momentum quantum number = s, p, d, f, m = 0, ±1, ±2, ±l is the z-component of angular momentum A hydrogen atom electron is excited to an energy of 13.6/4 ev. How many different quantum states could the electron be in? That is, how many wave functions ψ nlm have this energy? A. 1 B. 2 C. 3 D. 4 E. more than 4 Physics 2170 Fall

21 Clicker question 2 Set frequency to AD n = 1, 2, 3, = Principal Quantum Number l = 0, 1, 2, n-1 = angular momentum quantum number = s, p, d, f, m = 0, ±1, ±2, ±l is the z-component of angular momentum A hydrogen atom electron is excited to an energy of 13.6/4 ev. How many different quantum states could the electron be in? That is, how many wave functions ψ nlm have this energy? A. 1 B. 2 C. 3 D. 4 E. more than 4 E = 13.6/4 ev means n 2 = 4 so n = 2 For n = 2, l = 0 or l = 1. For l = 0, m = 0. For l = 1, m = 1, 0, or Physics 2170 Fall

22 Degeneracy When multiple combinations of quantum numbers give rise to the same energy, this is called degeneracy. Ground state: n = 1, l = 0, m = 0 1s state no degeneracy 1 st excited state: 2 nd excited state: n = 2, l = 0, m = 0 n = 2, l = 1, m = 1 n = 2, l = 1, m = 0 n = 2, l = 1, m = 1 n = 3, l = 0, m = 0 n = 3, l = 1, m = 1 n = 3, l = 1, m = 0 n = 3, l = 1, m = 1 n = 3, l = 2, m = 2 n = 3, l = 2, m = 1 n = 3, l = 2, m = 0 n = 3, l = 2, m = 1 n = 3, l = 2, m = 2 2s state 2p states 3s state 3p states 3d states 4 states (fourfold degenerate) 9 states (ninefold degenerate) Physics 2170 Fall

23 Hydrogen energy levels l = 0 (s) l = 1 (p) l = 2 (d) n = 3 3s 3p 3d n = 2 2s 2p n = 1 1s Physics 2170 Fall

24 1s 2s 3s What do the wave functions look like? n = 1, 2, 3, l (restricted to 0, 1, 2 n-1) m (restricted to l to l) 4s (l=0) Increasing n Increases distance from nucleus, Increases # of radial nodes 4p (l=1) 4d (l=2) Increasing l Increases angular nodes Decreases radial nodes m = 3 4f (l=3, m=0) m = 3 Changes angular distribution Physics 2170 Fall

25 Radial part of hydrogen wave function R nl (r) Radial part of the wave function for n=1, n=2, n=3. x-axis is in units of the Bohr radius a B. Number of radial nodes (R(r) crosses x-axis or R (r) 2 goes to 0) is equal to n l-1 Quantum number m has no affect on the radial part of the wave function. Physics 2170 Fall

26 The radial part of the wave function squared R nl (r) 2 Note that all l=0 states peak at r=0 Since angular momentum is the electron cannot be at r=0 and have angular momentum. Does this represent the probability of finding the electron near a given radius? Not quite. Physics 2170 Fall

27 Clicker question 3 Assume that darts are thrown such that the probability of hitting any point is the same. The double ring is at r = 16.5 cm and the triple ring is at a r = 10.0 cm. Each ring has the same width in r. For a given dart, what is the probability of hitting a double compared to the probability of hitting a triple? That is, what is P(double)/P(triple)? A. 1 B C D E. Some other value Set frequency to AD Physics 2170 Fall

28 Clicker question 3 Assume that darts are thrown such that the probability of hitting any point is the same. The double ring is at r = 16.5 cm and the triple ring is at a r = 10.0 cm. Each ring has the same width in r. For a given dart, what is the probability of hitting a double compared to the probability of hitting a triple? That is, what is P(double)/P(triple)? A. 1 B C D E. Some other value Set frequency to AD The width in r is the same (dr) so to get the area we multiply this width by the circumference (2πr). So probability is proportional to r Can also consider the differential area in polar coordinates Physics 2170 Fall θ θ

29 Probability versus radius: P(r) = R nl (r) 2 r 2 In spherical coordinates, the volume element has an r 2 term so probability increases with r 2. Most probable radius for the n = 1 state is at the Bohr radius a B Most probable radius for all l=n-1 states (those with only one peak) is at the radius predicted by Bohr (n 2 a B ). Physics 2170 Fall

5.111 Lecture Summary #6

5.111 Lecture Summary #6 5.111 Lecture Summary #6 Readings for today: Section 1.9 (1.8 in 3 rd ed) Atomic Orbitals. Read for Lecture #7: Section 1.10 (1.9 in 3 rd ed) Electron Spin, Section 1.11 (1.10 in 3 rd ed) The Electronic

More information

Magnetic Moments and Spin

Magnetic Moments and Spin Magnetic Moments and Spin Still have several Homeworks to hand back Finish up comments about hydrogen atom and start on magnetic moment + spin. Eleventh Homework Set is due today and the last one has been

More information

atoms and light. Chapter Goal: To understand the structure and properties of atoms.

atoms and light. Chapter Goal: To understand the structure and properties of atoms. Quantum mechanics provides us with an understanding of atomic structure and atomic properties. Lasers are one of the most important applications of the quantummechanical properties of atoms and light.

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Particle in a 3 Dimensional Box just extending our model from 1D to 3D

Particle in a 3 Dimensional Box just extending our model from 1D to 3D CHEM 2060 Lecture 20: Particle in a 3D Box; H atom L20-1 Particle in a 3 Dimensional Box just extending our model from 1D to 3D A 3D model is a step closer to reality than a 1D model. Let s increase the

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Lecture #21: Hydrogen Atom II

Lecture #21: Hydrogen Atom II 561 Fall, 217 Lecture #21 Page 1 Lecture #21: Hydrogen Atom II Last time: TISE For H atom: final exactly solved problem Ĥ in spherical polar coordinates Separation: ψ nlml ( r,θ,φ) = R nl (r)y m l (θ,φ)

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Hydrogen Atom Part I John von Neumann 1903-1957 One-Dimensional Atom To analyze the hydrogen atom, we must solve the Schrodinger equation for the Coulomb potential

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4 H atom solution Contents 1 Introduction 2 2 Coordinate system 2 3 Variable separation 4 4 Wavefunction solutions 6 4.1 Solution for Φ........................... 6 4.2 Solution for Θ...........................

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

The momentum of the particle can be either radial or angular (perpendicular) to the radial direction.

The momentum of the particle can be either radial or angular (perpendicular) to the radial direction. Physics 249 Lecture 20, Oct 22nd 2012 Reading: Chapter 7.1, 7.2, 7.3 Homework due Friday Oct 26th. Available on web site. 1) Angular momentum The momentum of the particle can be either radial or angular

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I 1 CHEM-UA 127: Advanced General Chemistry I Notes for Lecture 11 Nowthatwehaveintroducedthebasicconceptsofquantummechanics, wecanstarttoapplythese conceptsto build up matter, starting from its most elementary

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

Wolfgang Pauli Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table

Wolfgang Pauli Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table Final is on Mon. Dec. 16 from 7:30pm-10:00pm in this room. Homework Set #12 due next Wed. Rest of the semester: Today we will cover

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

Lecture 41 (Hydrogen Atom and Spatial Quantization) Physics Fall 2018 Douglas Fields

Lecture 41 (Hydrogen Atom and Spatial Quantization) Physics Fall 2018 Douglas Fields Lecture 41 (Hydrogen Atom and Spatial Quantization) Physics 262-01 Fall 2018 Douglas Fields States A state of the electron is described by a specific wavefunction (or a specific combination of wavefunctions

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

quantization condition.

quantization condition. /8/016 PHYS 34 Modern Physics Atom II: Hydrogen Atom Roadmap for Exploring Hydrogen Atom Today Contents: a) Schrodinger Equation for Hydrogen Atom b) Angular Momentum in Quantum Mechanics c) Quantum Number

More information

1 Reduced Mass Coordinates

1 Reduced Mass Coordinates Coulomb Potential Radial Wavefunctions R. M. Suter April 4, 205 Reduced Mass Coordinates In classical mechanics (and quantum) problems involving several particles, it is convenient to separate the motion

More information

Atoms 09 update-- start with single electron: H-atom

Atoms 09 update-- start with single electron: H-atom Atoms 09 update-- start with single electron: H-atom VII 33 x z φ θ e -1 y 3-D problem - free move in x, y, z - handy to change systems: Cartesian Spherical Coordinate (x, y, z) (r, θ, φ) Reason: V(r)

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6 Learning Objectives Energy: Light as energy Describe the wave nature of light, wavelength, and frequency using the equation c = λν What is meant by the particle nature of light? Calculate the energy of

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Chapter 6: Quantum Theory of the Hydrogen Atom

Chapter 6: Quantum Theory of the Hydrogen Atom Chapter 6: Quantum Theory of the Hydrogen Atom The first problem that Schrödinger tackled with his new wave equation was that of the hydrogen atom. The discovery of how naturally quantization occurs in

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

Physics 401: Quantum Mechanics I Chapter 4

Physics 401: Quantum Mechanics I Chapter 4 Physics 401: Quantum Mechanics I Chapter 4 Are you here today? A. Yes B. No C. After than midterm? 3-D Schroedinger Equation The ground state energy of the particle in a 3D box is ( 1 2 +1 2 +1 2 ) π2

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

MITOCW ocw lec8

MITOCW ocw lec8 MITOCW ocw-5.112-lec8 The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare in general is available at

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP The wavelength of the electron wave in the ground state of H atom is about the size of the atom. In what region of the spectrum is light of similar wavelength? 1. Radio 2. Microwave 3. Infrared 4. Visible

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Final exam is scheduled on Thursday May 2 @ 8 10 AM In Physics 112 It will cover five Chapters 25, 27, 28, 29, and 30. Review lecture notes,

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 13 The Schrödinger Equation 13.1 Where we are so far We have focused primarily on electron spin so far because it s a simple quantum system (there are only two basis states!), and yet it still

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

The Hydrogen Atom Chapter 20

The Hydrogen Atom Chapter 20 4/4/17 Quantum mechanical treatment of the H atom: Model; The Hydrogen Atom Chapter 1 r -1 Electron moving aroundpositively charged nucleus in a Coulombic field from the nucleus. Potential energy term

More information

Chapter 7 The Quantum-Mechanical Model of the Atom

Chapter 7 The Quantum-Mechanical Model of the Atom Chapter 7 The Quantum-Mechanical Model of the Atom Electron Energy electron energy and position are complimentary because KE = ½mv 2 for an electron with a given energy, the best we can do is describe

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I Physics 342 Lecture 22 The Hydrogen Atom Lecture 22 Physics 342 Quantum Mechanics I Friday, March 28th, 2008 We now begin our discussion of the Hydrogen atom. Operationally, this is just another choice

More information

Bohr model and Franck-Hertz experiment

Bohr model and Franck-Hertz experiment Bohr model and Franck-Hertz experiment Announcements: Will finish up material in Chapter 5. There will be no class on Friday, Oct. 18. Will announce again! Still have a few midterms see me if you haven

More information

Chemistry 400 Note: Problem #21 is a separate 10-point assignment! I. Multiple Choice

Chemistry 400 Note: Problem #21 is a separate 10-point assignment! I. Multiple Choice Chemistry 400 Homework 7, Chapter 7 Note: Problem #21 is a separate 10-point assignment! I. Multiple Choice 1. Which graph best describes the radial wavefunction of a 2s orbital? (A) (B) (C) (D) *2. The

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Applied Statistical Mechanics Lecture Note - 3 Quantum Mechanics Applications and Atomic Structures

Applied Statistical Mechanics Lecture Note - 3 Quantum Mechanics Applications and Atomic Structures Applied Statistical Mechanics Lecture Note - 3 Quantum Mechanics Applications and Atomic Structures Jeong Won Kang Department of Chemical Engineering Korea University Subjects Three Basic Types of Motions

More information

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4 Lectures and : Hydrogen Atom B. Zwiebach May 4, 06 Contents The Hydrogen Atom Hydrogen atom spectrum 4 The Hydrogen Atom Our goal here is to show that the two-body quantum mechanical problem of the hydrogen

More information

Structure of the atom

Structure of the atom Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Name Final Exam December 7, 2015

Name Final Exam December 7, 2015 Name Final Exam December 7, 015 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Part I: Multiple Choice (mixed new and review questions)

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each):

Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each): Indicate if the statement is (T) or False (F) by circling the letter (1 pt each): False 1. In order to ensure that all observables are real valued, the eigenfunctions for an operator must also be real

More information

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7 Lecture 7 - Atomic Structure Reading in Silberberg - Chapter 7, Section 4 The Qunatum-Mechanical Model of the Atom The Quantum

More information

Card Appendix Quantum Concepts

Card Appendix Quantum Concepts 1 Physics 310 Card Appendix Quantum Concepts Table of Contents 0. Blackbody Radiation 2 3. Normalize 2 4. Angular Momentum 3 4. Hydrogen 4 5. Wavefunction 4 6. Photoelectric Effect 5 7. Lowering Operator

More information

Atoms 2012 update -- start with single electron: H-atom

Atoms 2012 update -- start with single electron: H-atom Atoms 2012 update -- start with single electron: H-atom x z φ θ e -1 y 3-D problem - free move in x, y, z - easier if change coord. systems: Cartesian Spherical Coordinate (x, y, z) (r, θ, φ) Reason: V(r)

More information

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor A Quantum Mechanical Model for the Vibration and Rotation of Molecules Harmonic Oscillator Rigid Rotor Degrees of Freedom Translation: quantum mechanical model is particle in box or free particle. A molecule

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential Lecture 3 Last lecture we were in the middle of deriving the energies of the bound states of the Λ in the nucleus. We will continue with solving the non-relativistic Schroedinger equation for a spherically

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

8.1 The hydrogen atom solutions

8.1 The hydrogen atom solutions 8.1 The hydrogen atom solutions Slides: Video 8.1.1 Separating for the radial equation Text reference: Quantum Mechanics for Scientists and Engineers Section 10.4 (up to Solution of the hydrogen radial

More information

PHYSICS 102N Spring Week 12 Quantum Mechanics and Atoms

PHYSICS 102N Spring Week 12 Quantum Mechanics and Atoms PHYSICS 102N Spring 2009 Week 12 Quantum Mechanics and Atoms Quantum Mechanics 1. All objects can be represented by waves describing their propagation through space 2. The wave length is λ=h/p and frequency

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8 CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates 8.2 Schrödinger's Equation in Spherical Coordinate 8.3 Separation of Variables 8.4 Three Quantum Numbers 8.5 Hydrogen Atom Wave Function 8.6 Electron Spin

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

The Central Force Problem: Hydrogen Atom

The Central Force Problem: Hydrogen Atom The Central Force Problem: Hydrogen Atom B. Ramachandran Separation of Variables The Schrödinger equation for an atomic system with Z protons in the nucleus and one electron outside is h µ Ze ψ = Eψ, r

More information

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Up to now we have considered one-electron atoms. Almost all atoms are multiple-electron atoms and their description is more complicated

More information

Physics 2203, Fall 2012 Modern Physics

Physics 2203, Fall 2012 Modern Physics Physics 03, Fall 01 Modern Physics. Monday, Oct. 8 th, 01. Finish up examples for Ch. 8 Computer Exercise. Announcements: Take home Exam #1: Average 84.1, Average both 63.0 Quiz on Friday on Ch. 8 or Ch.

More information

Announcements. Please check for errors now

Announcements. Please check for errors now Announcements Print worksheet #10 prior to your Thursday discussion section LON-CAPA assignment #6 due Tuesday, Oct. 5 at 9am Next week s quiz will be on Tuesday atomic history and electron configurations

More information