Bohr model and Franck-Hertz experiment

Size: px
Start display at page:

Download "Bohr model and Franck-Hertz experiment"

Transcription

1 Bohr model and Franck-Hertz experiment Announcements: Will finish up material in Chapter 5. There will be no class on Friday, Oct. 18. Will announce again! Still have a few midterms see me if you haven t picked it up Today will be analyzing the Bohr model with clicker questions. Gustav Hertz: James Franck: Physics 2170 Fall

2 Clicker question 1 What atomic energy levels for electrons are consistent with this spectrum? Electron Energy levels: 0 ev 0 ev 5ev 3ev 2ev Photon energy nm A B C D 0 ev 10 ev E 2 ev 3 ev 7 ev 8 ev 10 ev 7 ev 10 ev 7 ev 5 ev 0 ev 5 ev 3 ev 2 ev 0 ev Physics 2170 Fall

3 Clicker question 1 What atomic energy levels for electrons are consistent with this spectrum? Electron Energy levels: 0 ev 0 ev 5ev 3ev 2ev Photon energy nm A B C D 0 ev 10 ev E 2 ev 3 ev 7 ev 8 ev 10 ev 7 ev 10 ev 7 ev 5 ev 0 ev 5 ev 3 ev 2 ev 0 ev Physics 2170 Fall

4 Why are only certain energy levels allowed? Bohr postulated that angular momentum was quantized so: Quantizing angular momentum leads to a quantization of radius: where where Quantizing radius leads to a quantization of energy: is the Bohr radius where E R is the Rydberg energy: Physics 2170 Fall

5 Last lecture we found - + v r If the electron orbits the proton at a constant speed, the magnitude of the net force on the electron is mv 2 /r Setting the net force (from Coulomb) equal to the mass times acceleration (mv 2 /r) for circular motion gives us: which we can also write as: Physics 2170 Fall

6 What does this say about total energy? - r F + v We now put together three pieces: 1. mv 2 = ke 2 /r (just derived) 2. electrostatic potential energy is U = -ke 2 /r 3. nonrelativistic kinetic energy is K = ½mv 2 This means K = -½U and the total energy is 0 potential energy distance from proton Note E = -K and 2K = -U The total energy, radius, and velocity are all related. Knowing just one of the three determines the other two! Physics 2170 Fall

7 A little algebra mvr =nħ = nh/2π, n = 1, 2, 3,.. So r = n 2 ħ 2 /m ke 2, n = 1, 2, 3,. r =.053 nm for n =1 And v = ke 2 /nħ, v = m/s n = 1, 2, 3,. Justifies using classical mechanics, but for large Z need to be careful E = -K = mv 2 /2 = -mk 2 e 4 /2n 2 ħ 2, n = 1, 2, 3,. Physics 2170 Fall

8 Clicker question 2 Which of the following principles of classical physics is violated in deriving the Bohr model of the atom? A. Opposite charges attract with a force inversely proportional to the square of the distance between them. B. The force on an object is equal to its mass times its acceleration. C. Accelerating charges radiate energy. D. Particles have a well-defined position and momentum. E. All of the above. Physics 2170 Fall

9 Clicker question 2 Which of the following principles of classical physics is violated in deriving the Bohr model of the atom? A. Opposite charges attract with a force inversely proportional to the square of the distance between them. B. The force on an object is equal to its mass times its acceleration. C. Accelerating charges radiate energy. D. Particles have a well-defined position and momentum. E. All of the above. Note that A & B were used in the derivation of the Bohr model. Physics 2170 Fall

10 Bohr s calculation of hydrogen energy levels Using the formula for energy Hydrogen energy levels Bohr could calculate the various transitions and they agreed with the generalized Balmer formula. Photon energy is given by: E γ = E n E n' = E R 1 n' 2 1 n 2 = 13.6 ev 1 n' 2 1 n 2 Physics 2170 Fall

11 Clicker question 3 An atom with the energy levels shown is initially in the ground state. A free electron with an energy of 16.0 ev hits the atom. What possible states could the atom be in after the interaction? A. n=1 B. n=1, n=2, or n=3 C. n=3 D. n=2 or n=3 E. Any of the states n=5 n=4 n=3 n=2 n=1 1 ev 2 ev 10 ev 20 ev Physics 2170 Fall

12 Clicker question 3 An atom with the energy levels shown is initially in the ground state. A free electron with an energy of 16.0 ev hits the atom. What possible states could the atom be in after the interaction? A. n=1 B. n=1, n=2, or n=3 C. n=3 D. n=2 or n=3 E. Any of the states n=5 n=4 n=3 n=2 n=1 If the atom goes to n=1, 2, or 3, the free electron will lose 0 ev, 10 ev, or 15 ev of kinetic energy. 1 ev 2 ev 10 ev 20 ev Free electron hits atom e e e Less KE Physics 2170 Fall

13 Clicker question 4 An atom with the energy levels shown is initially in the ground state. A photon with an energy of 16.0 ev hits the atom. What possible states could the atom be in after the interaction? A. n=1 B. n=1, n=2, or n=3 C. n=3 D. n=2 or n=3 E. Any of the states n=5 n=4 n=3 n=2 n=1 1 ev 2 ev 10 ev 20 ev Physics 2170 Fall

14 Clicker question 4 An atom with the energy levels shown is initially in the ground state. A photon with an energy of 16.0 ev hits the atom. What possible states could the atom be in after the interaction? A. n=1 B. n=1, n=2, or n=3 C. n=3 D. n=2 or n=3 E. Any of the states n=5 n=4 n=3 n=2 n=1 1 ev 2 ev 10 ev 20 ev For the free electron, whatever energy is absorbed by the atom is deducted from the free electron s kinetic energy. For photons, the photon is absorbed and so it must transfer all of its energy to the atom. Otherwise energy would not be conserved. Therefore, atoms can only absorb photons with an energy that will exactly move the atom to another energy level. Physics 2170 Fall

15 Clicker question 5 An atom with the energy levels shown is initially in the ground state. Which of the following is the most complete list of photon energies that can be absorbed by the atom? A. 1 ev B. 1 ev, 2 ev, 5 ev, 10 ev C. 10 ev D. 10 ev, 15 ev, 18 ev E. 10 ev, 15 ev, 18 ev, 25 ev n=5 n=4 n=3 n=2 n=1 1 ev 2 ev 10 ev 20 ev Physics 2170 Fall

16 Clicker question 5 An atom with the energy levels shown is initially in the ground state. Which of the following is the most complete list of photon energies that can be absorbed by the atom? A. 1 ev B. 1 ev, 2 ev, 5 ev, 10 ev C. 10 ev D. 10 ev, 15 ev, 18 ev E. 10 ev, 15 ev, 18 ev, 25 ev n=5 n=4 n=3 n=2 n=1 1 ev 2 ev 10 ev 20 ev Photons with energy of 10 ev, 15 ev, 18 ev, 19 ev will cause the electron to jump to the n=2, n=3, n=4, n=5 energy level. Any photon with an energy 20 ev will ionize the atom. The electron will escape. Since a free electron can have any energy, any photon with energy 20 ev can be absorbed by the atom. 20 ev will go into ejecting the electron and the rest will go into the free electron s kinetic energy. Similar to the photoelectric effect. Physics 2170 Fall

17 Hydrogen like ions Atoms which have only one electron can be analyzed much like the hydrogen atom. An atom with atomic number Z with Z-1 electrons removed is a hydrogen like ion The (Coulomb) force on the electron is The increase in the force results in tighter orbits and a deeper potential well, reducing the energy (more negative). Physics 2170 Fall

18 Clicker question 6 A single electron is in the n=2 energy level around a helium nucleus (He + ). What is the minimum energy photon that can remove this electron? A. 3.4 ev B ev C ev D ev E. None of the above Physics 2170 Fall

19 Clicker question 6 electron? A. 3.4 ev B ev C ev D ev E. None of the above A single electron is in the n=2 energy level around a helium nucleus (He + ). What is the minimum energy photon that can remove this The atomic number of helium is Z=2 and the electron is in the n=2 energy level. So the energy of the state is The value E n is also referred to as the binding energy since it is a measure of how bound the electron is. It takes that amount of energy to free the electron (break its bond to the proton). Physics 2170 Fall

20 Reduced Mass Have shown that energy for one electron atoms levels scale as E = -K = mv 2 /2 = -mk 2 Z 2 e 4 /2n 2 ħ 2, n = 1, 2, 3,. But we have one more correction it was found that the energy levels in Hydrogen were all lower by 1 part out of This was accounted for by the reduced mass, because we had assumed the nucleus was infinitely heavy L = m e M N /(m e +M N ) x vr = nħ Reduced Mass Physics 2170 Fall

21 E = 1 2 m e v 2 E = 1 2 m e r 2 Reduced Mass + V(r) + V(r) E = 1 2 m er M r V(r 2 r 1 ) Plugging back into energy equation We find: E = 1 2 m e M 2 (m e + M) 2 r 2 21 { M m e (m e + M) 2 r 2 21 r 21 = r 2 r 1 m e r 1 + M r 2 = 0 r 1 = r 2 = M m e + M m e m e + M r 21 r 21 + V(r 2 r 1 ) E = 1 2 m e M r (m e + M) V(r 2 r 1 ) Physics 2170 Fall

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1 Worksheet 14 Bohr Model of the Hydrogen Atom In the late 1800's, Johannes Rydberg, building on the work of Johann Balmer, had come up with a mathematical formula that could be used to find the wavelengths

More information

Chapter 1 The Bohr Atom

Chapter 1 The Bohr Atom Chapter 1 The Bohr Atom 1 Introduction Niels Bohr was a Danish physicist who made a fundamental contribution to our understanding of atomic structure and quantum mechanics. He made the first successful

More information

From Last Time. Summary of Photoelectric effect. Photon properties of light

From Last Time. Summary of Photoelectric effect. Photon properties of light Exam 3 is Tuesday Nov. 25 5:30-7 pm, 203 Ch (here) Students w / scheduled academic conflict please stay after class Tues. Nov. 8 (TODAY) to arrange alternate time. From Last Time Photoelectric effect and

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements:

Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements: Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements: Problem solving sessions Tues. 1-3. Reading for Wednesday TZD 6.1-.4 2013 Nobel Prize Announcement Tomorrow Few slides on the Higgs Field

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral.

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral. ATOMIC MODELS Models are formulated to fit the available data. 1900 Atom was known to have certain size. Atom was known to be neutral. Atom was known to give off electrons. THOMPSON MODEL To satisfy the

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Covers all readings, lectures, homework from Chapters 17 through 30 Be sure to bring your student ID card, calculator, pencil, and up to three onepage

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

PH300 Spring Homework 07

PH300 Spring Homework 07 PH300 Spring 2011 Homework 07 Total Points: 30 1. (1 Point) Each week you should review both your answers and the solutions for the previous week's homework to make sure that you understand all the questions

More information

An electron can be liberated from a surface due to particle collisions an electron and a photon.

An electron can be liberated from a surface due to particle collisions an electron and a photon. Quantum Theory and the Atom the Bohr Atom The story so far... 1. Einstein argued that light is a photon (particle) and each photon has a discrete amount of energy associated with it governed by Planck's

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Lecture 11: The Bohr Model. PHYS 2130: Modern Physics Prof. Ethan Neil

Lecture 11: The Bohr Model. PHYS 2130: Modern Physics Prof. Ethan Neil Lecture 11: The Bohr Model PHYS 2130: Modern Physics Prof. Ethan Neil (ethan.neil@colorado.edu) Announcements/reminders Midterm Exam #1 next Thursday at 7:30 PM HALE 270 (see class website for details)

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

The Hydrogen Atom According to Bohr

The Hydrogen Atom According to Bohr The Hydrogen Atom According to Bohr The atom We ve already talked about how tiny systems behave in strange ways. Now let s s talk about how a more complicated system behaves. The atom! Physics 9 4 Early

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 QC-2 QUANTUM CHEMISTRY (Classical Concept) Dr. A. DAYALAN,Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

Lecture 4. The Bohr model of the atom. De Broglie theory. The Davisson-Germer experiment

Lecture 4. The Bohr model of the atom. De Broglie theory. The Davisson-Germer experiment Lecture 4 The Bohr model of the atom De Broglie theory The Davisson-Germer experiment Objectives Learn about electron energy levels in atoms and how Bohr's model can be used to determine the energy levels

More information

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths.

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths. In contract, light emitted in low=pressure gas discharge contains only discrete individual wavelengths,

More information

3. Particle nature of matter

3. Particle nature of matter 3. Particle nature of matter 3.1 atomic nature of matter Democrit(us) 470-380 B.C.: there is only atoms and empty space, everything else is mere opinion (atoms are indivisible) Dalton (chemist) 180: chemical

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 XII PHYSICS TEST MODERN PHYSICS NAME-... DATE-.. MM- 25 TIME-1 HR 1) Write one equation representing nuclear fusion reaction. (1) 2) Arrange radioactive radiations

More information

Question 12.1: Choose the correct alternative from the clues given at the end of the each statement: (a) The size of the atom in Thomson s model is... the atomic size in Rutherford s model. (much greater

More information

The (Almost) Modern Atom Model. SUMMARY from previous lecture Energy comes in different forms. ENERGY IS ALWAYS CONSERVED.

The (Almost) Modern Atom Model. SUMMARY from previous lecture Energy comes in different forms. ENERGY IS ALWAYS CONSERVED. Announcements The midterm 1 exam scores will be available on OWL at 5:00 PM today. Login to OWL and click the Course Grades link to see your score. Your score has already been scaled to correspond to the

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan Sharif University of Technology Physics Department Modern Physics Spring 2016 Prof. Akhavan Problems Set #5. Due on: 03 th of April / 15 th of Farvardin. 1 Blackbody Radiation. (Required text book is Modern

More information

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m Chapter 30 Atom Physics DR JJ UiTM-Cutnell & Johnson 7th ed. 1 30.1 Rutherford Scattering and the Nuclear Atom Model of an atom-the recent model Nuclear radius r 10-15 m Electron s position radius r 10-10

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Class XII_Delhi_Physics_Set-1

Class XII_Delhi_Physics_Set-1 17. Write three important factors which justify the need of modulating a message signal. Show diagrammatically how an amplitude modulated wave is obtained when a modulating signal is superimposed on a

More information

Class XII - Physics Atoms Chapter-wise Problems

Class XII - Physics Atoms Chapter-wise Problems Class XII - Physics Atoms Chapter-wise Problems Multiple Choice Question :- 1.1 Taking the Bohr radius as a = 53pm, the radius of Li ++ ion in its ground state, on the basis of Bohr s model, will be about

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER BOHR S THEORY AND PHYSICS OF ATOM CHAPTER 3 1. a 1 h A T (ML T ) M L T 3 L me L MLT M(AT) M L T a has dimensions of length.. We know, 1/ 1.1 1 (1/n 1 1/n ) a) n 1, n 3 or, 1/ 1.1 1 (1/ 1/9) 36 or, 6.5

More information

Astro 210 Lecture 13 Feb 16, 2011

Astro 210 Lecture 13 Feb 16, 2011 Astro 210 Lecture 13 Feb 16, 2011 Announcements Hour Exam 1 in class Friday info online HW1 bonus problem due online Friday last Planetarium shows: tomorrow and Monday registration, report forms, info

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

(a) e/m of a particle is called the specific charge of the particle.

(a) e/m of a particle is called the specific charge of the particle. e/m of an electron (Thomson Method):- (a) e/m of a particle is called the specific charge of the particle. e/m = v/rb Here, r is the radius of curvature, B is the strength of magnetic field, v is the velocity,

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Atomic Models the Nucleus

Atomic Models the Nucleus Atomic Models the Nucleus Rutherford (read his bio on pp 134-5), who had already won a Nobel for his work on radioactivity had also named alpha, beta, gamma radiation, developed a scattering technique

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Chapter 38 and Chapter 39

Chapter 38 and Chapter 39 Chapter 38 and Chapter 39 State of 19th and very early 20th century physics: Light: 1. E&M Maxwell s equations > waves; J. J. Thompson s double slit experiment with light 2. Does light need a medium? >

More information

Light & Matter Interactions

Light & Matter Interactions Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Inside atoms 3. Classical Atoms 4. The Bohr Model 5. Lowest energy 6. Kirchoff's laws, again 2. Quantum Theory. The Photoelectric Effect

More information

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

PHY293 Lecture #15. November 27, Quantum Mechanics and the Atom

PHY293 Lecture #15. November 27, Quantum Mechanics and the Atom PHY293 Lecture #15 November 27, 2017 1. Quantum Mechanics and the Atom The Thompson/Plum Pudding Model Thompson discovered the electron in 1894 (Nobel Prize in 1906) Heating materials (metals) causes corpuscles

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

Physics 208 Exam 3 Nov. 28, 2006

Physics 208 Exam 3 Nov. 28, 2006 Name: Student ID: Section #: Physics 208 Exam 3 Nov. 28, 2006 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed in

More information

Magnetic Moments and Spin

Magnetic Moments and Spin Magnetic Moments and Spin Still have several Homeworks to hand back Finish up comments about hydrogen atom and start on magnetic moment + spin. Eleventh Homework Set is due today and the last one has been

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 32 Modern Physics Atomic Physics Early models of the atom Atomic spectra http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 28 1 If you want to know your progress

More information

Particle Nature of Matter. Chapter 4

Particle Nature of Matter. Chapter 4 Particle Nature of Matter Chapter 4 Modern physics When my grandfather was born, atoms were just an idea. That year, 1897, was marked by the discovery of the electron by J.J. Thomson. The nuclear model

More information

4E : The Quantum Universe. Lecture 6, April 6 Vivek Sharma

4E : The Quantum Universe. Lecture 6, April 6 Vivek Sharma 4E : The Quantum Universe Lecture 6, April 6 Vivek Sharma modphys@hepmail.ucsd.edu Bragg Scattering photographic film Bragg Scattering: Probing Atoms With X-Rays Incident X-ray detector Constructive Interference

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

Chapter 27 Early Quantum Theory and Models of the Atom

Chapter 27 Early Quantum Theory and Models of the Atom Chapter 27 Early Quantum Theory and Models of the Atom Modern Physics 19th century physics had so many great successes, that most people felt nature was almost fully understood. Just a few small clouds

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Time dilation and length contraction without relativity: The Bohr atom and the semi-classical hydrogen molecule ion

Time dilation and length contraction without relativity: The Bohr atom and the semi-classical hydrogen molecule ion Time dilation and length contraction without relativity: The Bohr atom and the semi-classical hydrogen molecule ion Allan Walstad * Abstract Recently it was shown that classical "relativistic" particle

More information

Paper 2. Section B : Atomic World

Paper 2. Section B : Atomic World Paper 2 Section B : Atomic World Q.2 Multiple-choice questions A B C D 2.1 25.19 15.78 9.18 49.68 2.2 25.79 20.39 41.97 11.72 2.3 18.35 9.76 48.84 22.65 2.4 9.27 18.87 27.90 43.50 2.5 63.47 4.28 10.99

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Wavelength of 1 ev electron

Wavelength of 1 ev electron HW8: M Chap 15: Question B, Exercises 2, 6 M Chap 16: Question B, Exercises 1 M Chap 17: Questions C, D From Last Time Essay topic and paragraph due Friday, Mar. 24 Light waves are particles and matter

More information

Physics 107 Final Exam May 6, Your Name: 1. Questions

Physics 107 Final Exam May 6, Your Name: 1. Questions Physics 107 Final Exam May 6, 1996 Your Name: 1. Questions 1. 9. 17. 5.. 10. 18. 6. 3. 11. 19. 7. 4. 1. 0. 8. 5. 13. 1. 9. 6. 14.. 30. 7. 15. 3. 8. 16. 4.. Problems 1. 4. 7. 10. 13.. 5. 8. 11. 14. 3. 6.

More information

The following experimental observations (between 1895 and 1911) needed new quantum ideas:

The following experimental observations (between 1895 and 1911) needed new quantum ideas: The following experimental observations (between 1895 and 1911) needed new quantum ideas: 1. Spectrum of Black Body Radiation: Thermal Radiation 2. The photo electric effect: Emission of electrons from

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

normalized spectral amplitude R(λ)

normalized spectral amplitude R(λ) Mid-Term Exam 2 Physics 23 Modern Physics Tuesday October 23, 2 Point distribution: All questions are worth points 5 points. Questions # - #6 are multiple choice and answers should be bubbled onto the

More information

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1 Physics 102: Lecture 24 Bohr vs. Correct Model of Atom Physics 102: Lecture 24, Slide 1 Plum Pudding Early Model for Atom positive and negative charges uniformly distributed throughout the atom like plums

More information

Modern Physics Lesson 1: Intro to Quantum Mechanics and Photoelectric Effect Lesson 2: Energy Levels Lesson 3: E = mc^2 Lesson 4: Standard Model of

Modern Physics Lesson 1: Intro to Quantum Mechanics and Photoelectric Effect Lesson 2: Energy Levels Lesson 3: E = mc^2 Lesson 4: Standard Model of Modern Physics Lesson 1: Intro to Quantum Mechanics and Photoelectric Effect Lesson 2: Energy Levels Lesson 3: E = mc^2 Lesson 4: Standard Model of Particle Physics Pass up your homework Energy is Quantized

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

Surprise, surprise, surprise

Surprise, surprise, surprise Experiment Rutherford had two grad students, Marsden and Geiger. It was decided that Geiger would gain some practice by conducting a series of experiments with gold and alpha particles. The positively

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Energy in Planetary Orbits

Energy in Planetary Orbits Lecture 19: Energy in Orbits, Bohr Atom, Oscillatory Motion 1 Energy in Planetary Orbits Consequences of Kepler s First and Third Laws According to Kepler s First Law of Planetary Motion, all planets move

More information

20th Century Atomic Theory- Hydrogen Atom

20th Century Atomic Theory- Hydrogen Atom Background for (mostly) Chapter 12 of EDR 20th Century Atomic Theory- Hydrogen Atom EDR Section 12.7 Rutherford's scattering experiments (Raff 11.2.3) in 1910 lead to a "planetary" model of the atom where

More information

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

298 Chapter 6 Electronic Structure and Periodic Properties of Elements 98 Chapter 6 Electronic Structure and Periodic Properties of Elements 6. The Bohr Model By the end of this section, you will be able to: Describe the Bohr model of the hydrogen atom Use the Rydberg equation

More information

An object capable of emitting/absorbing all frequencies of radiation uniformly

An object capable of emitting/absorbing all frequencies of radiation uniformly 1 IIT Delhi - CML 100:1 The shortfalls of classical mechanics Classical Physics 1) precise trajectories for particles simultaneous specification of position and momentum 2) any amount of energy can be

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Different energy levels

Different energy levels Different energy levels In the microscopic world energy is discrete www.cgrahamphysics.com Review Atomic electrons can only exist in certain discrete energy levels Light is made of photons When e s lose

More information

Light & Matter Interactions

Light & Matter Interactions Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Photons. Inside atoms 2. Classical Atoms 3. The Bohr Model 4. Lowest energy 5. Kirchoff's laws, again 3. Quantum Theory. de Broglie wavelength

More information

Physics 213: General Physics Fall :30 AM Lecture

Physics 213: General Physics Fall :30 AM Lecture Physics 213: General Physics Fall 2004 9:30 AM Lecture Midterm I Solutions Tuesday, September 21, 2004 Chem-Phys 153 Name (print): Signature: Student Number: Your Seat Number (on back of chair): 1. Immediately

More information

Physics 280 Quantum Mechanics Lecture

Physics 280 Quantum Mechanics Lecture Spring 2015 1 1 Department of Physics Drexel University August 3, 2016 Objectives Review Early Quantum Mechanics Objectives Review Early Quantum Mechanics Schrödinger s Wave Equation Objectives Review

More information

UNIT VIII ATOMS AND NUCLEI

UNIT VIII ATOMS AND NUCLEI UNIT VIII ATOMS AND NUCLEI Weightage Marks : 06 Alpha-particles scattering experiment, Rutherford s model of atom, Bohr Model, energy levels, Hydrogen spectrum. Composition and size of Nucleus, atomic

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 4 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

Bohr Model. In addition to the atomic line spectra of single electron atoms, there were other successes of the Bohr Model

Bohr Model. In addition to the atomic line spectra of single electron atoms, there were other successes of the Bohr Model Bohr Model In addition to the atomic line spectra of single electron atoms, there were other successes of the Bohr Model X-ray spectra Frank-Hertz experiment X-ray Spectra Recall the x-ray spectra shown

More information