ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral.

Size: px
Start display at page:

Download "ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral."

Transcription

1 ATOMIC MODELS Models are formulated to fit the available data Atom was known to have certain size. Atom was known to be neutral. Atom was known to give off electrons. THOMPSON MODEL To satisfy the above conditions Thompson proposed Atom made of positive material with enough electrons embedded to make it neutral. 1

2 RUTHERFORD Made measurements of alpha particles scattered from gold: Found 1. Most alpha particles passed through gold without being scattered.. Some alpha particles were scattered through large scattering angles. Data could not be explained by Thompson Model of Atom. 1. How could alpha particles pass through positive mass?. The force between charges was known to be F q 1 r q

3 With the known charges and this force how could alpha particles be scattered through large angles? RUTHERFORD MODEL Small nucleus all positive mass contained in small center part. Electrons in space surrounding nucleus. SCALE MODEL Nucleus Radius = 1 mm Edge of Atom 10 m 3

4 LINE SPECTRA FIRST CONSIDER WHITE LIGHT THROUGH DIFFRACTION GRATING WHITE LIGHT GRATING RAINBOW COLORS 4

5 BUT WITH HYDROGEN GAS AS SHOWN: FIG 3.6 PAGE 93, T & R 5

6 6

7 657 FIG 3.7 PAGE 93, T & R 7

8 THE ONLY WAVELENGTHS PRESENT IN VISIBLE ARE 657 nm (red) 486 nm (blue-green) 434 nm (violet) 410 nm (violet) 397 nm Closely spaced lines out to 365 nm (series limit) 8

9 BALMER Balmer found that he could predict the wavelength of these lines with one equation: R n where R x10 7 m 1 and n 3,4,5,... etc. 9

10 The Balmer lines are in the visible There are other lines: One set in the ultraviolet Three sets in the infrared All wavelengths can be determined by one equation: R n 1 n RYDBERG EQUATION 10

11 WHERE n 1 = 1 and n =,3,4, gives the uv series n 1 = and n = 3,4,5, gives the visible series n 1 = 3 and n = 4,5,6, gives the 1st IR series n 1 = 4 and n = 5,6,7, gives the nd IR series n 1 = 5 and n = 6,7,8, gives the 3 rd IR series 11

12 The series have names for the physicists who did the early work in that part of the spectrum For n 1 = 1 the series is named for Lyman For n 1 = the series is named for Balmer For n 1 = 3 the series is named for Paschen For n 1 = 4 the series is named for Brackett For n 1 = 5 the series is named for Pfund 1

13 THE BOHR MODEL OF THE ATOM Bohr proposed a modification of the Rutherford model that fit the data all data before and including the Rutherford scattering data. The Bohr Atom Postulates: 1. Only orbits allowed are where angular momentum is integral multiple of h. No atom radiates energy as long as electron is in one of the orbital states. 13

14 DERIVATION OF RYDBERG EQUATION (thus validation of Bohr Model) Angular momemtum = mvr m = mass of electron v = velocity of electron in orbit r = radius of orbit From 1 st postulate mvr h n n = 1,, 3, Solving for r r h n mv (1) 14

15 Electron in orbit accelerates toward center a v r The force causing the acceleration is F e r and 15

16 F ma So e r v m r Solving for v 16

17 v e 4 0 mr () Put this in Eq. 1 above Solve for r r n n h me 0 Subscript n to remind one r for each n! 17

18 For n = 1 h 0 r1 10 me x m a0 a 0 is the Bohr orbit for the hydrogen atom in the lowest energy state. Then the other orbits r n n a0 18

19 Bohr model is nucleus with electrons in only specific allowed orbits! 19

20 ENERGY OF THE ATOM Total energy is KE + PE KE 1 mv PE e 4 r 0 and we found v 0

21 1 mr e v 0 4 So r e mr e m E TotalEnergy r e 0 8 Or n n r e E 0 8

22 and r n n h me 0 Putting this in Total Energy equation E n me h n where n= 1,, 3, For: n= 1 E 1 = x J = ev n= E = x J = ev n=3 E 3 = -.41 x J = ev n=4 E 4 = x J = ev

23 Plot these values on a vertical scale to get Figure 4.16 on page 145 of Thornton and Rex 3

24 4

25 DERIVATION OF RYDBERG EQUATION Consider any two energy levels and E i with n i E j with n j If the atom is in n i state with total energy E i and goes to the to the state n j with total energy E j the atom will have less total energy. The difference in energy will be E E i E j The energy is carried off by a photon with energy 5

26 hf So hf E i E j Or since f c 1 f c E i E j 6

27 and E i me h ni E j 4 me h 1 n j So 4 1 me ch n j n i If 7

28 8 me R 1.097x10 m 3 0ch (and it does) Then for n j = 1 We have the Lyman Equation n j = We have the Balmer Equation n j = 3 We have the Paschen Equation n j = 4 We have the Brackett Equation n j = 5 We have the Pfund Equation STUDY FIGURE 4.16 ON PAGE 145 IN THORNTON AND REX!! 8

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m Chapter 30 Atom Physics DR JJ UiTM-Cutnell & Johnson 7th ed. 1 30.1 Rutherford Scattering and the Nuclear Atom Model of an atom-the recent model Nuclear radius r 10-15 m Electron s position radius r 10-10

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 QC-2 QUANTUM CHEMISTRY (Classical Concept) Dr. A. DAYALAN,Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai

More information

PHY293 Lecture #15. November 27, Quantum Mechanics and the Atom

PHY293 Lecture #15. November 27, Quantum Mechanics and the Atom PHY293 Lecture #15 November 27, 2017 1. Quantum Mechanics and the Atom The Thompson/Plum Pudding Model Thompson discovered the electron in 1894 (Nobel Prize in 1906) Heating materials (metals) causes corpuscles

More information

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Covers all readings, lectures, homework from Chapters 17 through 30 Be sure to bring your student ID card, calculator, pencil, and up to three onepage

More information

The Hydrogen Atom According to Bohr

The Hydrogen Atom According to Bohr The Hydrogen Atom According to Bohr The atom We ve already talked about how tiny systems behave in strange ways. Now let s s talk about how a more complicated system behaves. The atom! Physics 9 4 Early

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY Warning: The mercury spectral lamps emit UV radiation. Do not stare into the lamp. Avoid exposure where possible. Introduction

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

(a) e/m of a particle is called the specific charge of the particle.

(a) e/m of a particle is called the specific charge of the particle. e/m of an electron (Thomson Method):- (a) e/m of a particle is called the specific charge of the particle. e/m = v/rb Here, r is the radius of curvature, B is the strength of magnetic field, v is the velocity,

More information

PC1144 Physics IV. Atomic Spectra

PC1144 Physics IV. Atomic Spectra PC1144 Physics IV Atomic Spectra 1 Objectives Investigate how well the visible light wavelengths of hydrogen predicted by the Bohr theory agree with experimental values. Determine an experimental value

More information

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1 Worksheet 14 Bohr Model of the Hydrogen Atom In the late 1800's, Johannes Rydberg, building on the work of Johann Balmer, had come up with a mathematical formula that could be used to find the wavelengths

More information

Chapter 1 The Bohr Atom

Chapter 1 The Bohr Atom Chapter 1 The Bohr Atom 1 Introduction Niels Bohr was a Danish physicist who made a fundamental contribution to our understanding of atomic structure and quantum mechanics. He made the first successful

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum CONCEPT MAP ATOMS Atoms 1.Thomson model 2.Rutherford model 3.Bohr model 4.Emission line spectra 2a. Alpha scattering experiment 3a. Bohr s postulates 6. Hydrogen spectrum 8. De Broglie s explanation 5.Absorption

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

Chapter 31 Atomic Physics

Chapter 31 Atomic Physics 100 92 86 100 92 84 100 92 84 98 92 83 97 92 82 96 91 80 96 91 76 95 91 74 95 90 68 95 89 67 95 89 66 94 87 93 86 No. of Students in Range Exam 3 Score Distribution 25 22 20 15 10 10 5 3 2 0 0 0 0 0 0

More information

The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom.

The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom. Lecture 20-21 Page 1 Lectures 20-21 Transitions between hydrogen stationary states The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of

More information

Physics: Quanta to Quarks Option (99.95 ATAR)

Physics: Quanta to Quarks Option (99.95 ATAR) HSC Physics Year 2016 Mark 95.00 Pages 22 Published Jan 15, 2017 Physics: Quanta to Quarks Option (99.95 ATAR) By Edward (99.95 ATAR) Powered by TCPDF (www.tcpdf.org) Your notes author, Edward. Edward

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

Physics 116. Nov 22, Session 32 Models of atoms. R. J. Wilkes

Physics 116. Nov 22, Session 32 Models of atoms. R. J. Wilkes Physics 116 Session 32 Models of atoms Nov 22, 2011 Thomson Rutherford R. J. Wilkes Email: ph116@u.washington.edu Announcements Exam 3 next week (Tuesday, 11/29) Usual format and procedures I ll post example

More information

Different energy levels

Different energy levels Different energy levels In the microscopic world energy is discrete www.cgrahamphysics.com Review Atomic electrons can only exist in certain discrete energy levels Light is made of photons When e s lose

More information

Atomic Structure. Thornton and Rex, Ch. 4

Atomic Structure. Thornton and Rex, Ch. 4 Atomic Structure Thornton and Rex, Ch. 4 Models of the Atom Required features: 1. Electrons as constituents. 2. Some positive charges to neutralize the negative charges of the electrons. 3. Some scheme

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

PHYS 202. Lecture 23 Professor Stephen Thornton April 20, 2006

PHYS 202. Lecture 23 Professor Stephen Thornton April 20, 2006 PHYS 202 Lecture 23 Professor Stephen Thornton April 20, 2006 Reading Quiz The noble gases (He, Ne, Ar, etc.) 1) are very reactive because they lack one electron of being in a closed shell. 2) are very

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Bohr model and Franck-Hertz experiment

Bohr model and Franck-Hertz experiment Bohr model and Franck-Hertz experiment Announcements: Will finish up material in Chapter 5. There will be no class on Friday, Oct. 18. Will announce again! Still have a few midterms see me if you haven

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

Quantum Mechanics and Stellar Spectroscopy.

Quantum Mechanics and Stellar Spectroscopy. Quantum Mechanics and Stellar Spectroscopy http://apod.nasa.gov/apod/ Recall the electric force. Like gravity it is a 1/r 2 force/ That is: F elec = Z 1 Z 2 e2 r 2 where Z 1 and Z 2 are the (integer) numbers

More information

Atomic Structure. Thornton and Rex, Ch. 4

Atomic Structure. Thornton and Rex, Ch. 4 Atomic Structure Thornton and Rex, Ch. 4 Models of the Atom Required features: 1. Electrons as constituents. 2. Some positive charges to neutralize the negative charges of the electrons. 3. Some scheme

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Solutions to problems (Ch. 3)28, 32, 35 and 53;(Ch. 4)2,6,14,15

Solutions to problems (Ch. 3)28, 32, 35 and 53;(Ch. 4)2,6,14,15 University of Wisconsin-Madison, Physics 241 Spring 2014 Grade (entered by Greg Lau): pts/40 pts Solutions to problems (Ch. 3)28, 32, 35 and 53;(Ch. 4)2,6,14,15 Caitlin Evers, 9068118596 February 22, 2014

More information

h p L= mvr = n atomic absorption and emission of light 1889 Rydberg generalized to other H emission lines: (Z ) n (ev) 1 2 ke Z E= mv -

h p L= mvr = n atomic absorption and emission of light 1889 Rydberg generalized to other H emission lines: (Z ) n (ev) 1 2 ke Z E= mv - atomic absorption and emission of light 1889 Rydberg generalized to other H emission lines: mv r n r.53 Z ke Z = r (A) * (Z ) E n -13.6 (ev) n h p o L= mvr = n 1 ke Z E= mv - r Mosley's Law E E f n E n1

More information

Atomic Structure. Thornton and Rex, Ch. 4

Atomic Structure. Thornton and Rex, Ch. 4 Atomic Structure Thornton and Rex, Ch. 4 Models of the Atom Required features: 1. Electrons as constituents. 2. Some positive charges to neutralize the negative charges of the electrons. 3. Some scheme

More information

We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism".

We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism. We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism". -Richard Feynman Quantum H Atom Review Radia Wave Function (1s):

More information

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1 Physics 102: Lecture 24 Bohr vs. Correct Model of Atom Physics 102: Lecture 24, Slide 1 Plum Pudding Early Model for Atom positive and negative charges uniformly distributed throughout the atom like plums

More information

An electron can be liberated from a surface due to particle collisions an electron and a photon.

An electron can be liberated from a surface due to particle collisions an electron and a photon. Quantum Theory and the Atom the Bohr Atom The story so far... 1. Einstein argued that light is a photon (particle) and each photon has a discrete amount of energy associated with it governed by Planck's

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Emission Spectroscopy

Emission Spectroscopy Objectives Emission Spectroscopy Observe spectral lines from a hydrogen gas discharge tube Determine the initial and final energy levels for the electronic transitions associated with the visible portion

More information

From Last Time. Summary of Photoelectric effect. Photon properties of light

From Last Time. Summary of Photoelectric effect. Photon properties of light Exam 3 is Tuesday Nov. 25 5:30-7 pm, 203 Ch (here) Students w / scheduled academic conflict please stay after class Tues. Nov. 8 (TODAY) to arrange alternate time. From Last Time Photoelectric effect and

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Surprise, surprise, surprise

Surprise, surprise, surprise Experiment Rutherford had two grad students, Marsden and Geiger. It was decided that Geiger would gain some practice by conducting a series of experiments with gold and alpha particles. The positively

More information

Bohr's Theory of the Hydrogen Atom

Bohr's Theory of the Hydrogen Atom OpenStax-CNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Describe

More information

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths.

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths. In contract, light emitted in low=pressure gas discharge contains only discrete individual wavelengths,

More information

Lecture 11. > Uncertainty Principle. > Atomic Structure, Spectra

Lecture 11. > Uncertainty Principle. > Atomic Structure, Spectra Lecture 11 > Uncertainty Principle > Atomic Structure, Spectra *Beiser, Mahajan & Choudhury, Concepts of Modern Physics 7/e French, Special Relativity *Nolan, Fundamentals of Modern Physics 1/e Serway,

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Experiment 7: Spectrum of the Hydrogen Atom

Experiment 7: Spectrum of the Hydrogen Atom Experiment 7: Spectrum of the Hydrogen Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30-6:30PM INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction The physics behind: The spectrum of

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

normalized spectral amplitude R(λ)

normalized spectral amplitude R(λ) Mid-Term Exam 2 Physics 23 Modern Physics Tuesday October 23, 2 Point distribution: All questions are worth points 5 points. Questions # - #6 are multiple choice and answers should be bubbled onto the

More information

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 1 Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 3 Continuous Spectra: Thermal Radiation The equations below quantitatively summarize the light-emitting

More information

ratio for cathode rays is very low.

ratio for cathode rays is very low. Q. 1 Which is not basic postulate of Dalton s atomic theory? Option 1 Atoms are neither created nor destroyed in a chemical reaction Option In a given compound, the relative number and kinds of atoms are

More information

2/28/2016 ATOMS) ATOMS. Physics 2D. PHYS 342 Modern Physics Atom I: Rutherford Model and Bohr Model

2/28/2016 ATOMS) ATOMS. Physics 2D. PHYS 342 Modern Physics Atom I: Rutherford Model and Bohr Model PHYS 342 Modern Physics Atom I: Rutherford Model and Bohr Model Today Contents: a) Basic Properties of Atoms b) Rutherford Model and Scattering Experiments c) Bohr Model and Line Spectra Physics 2D Subfields

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton PERIODICITY AND ATOMIC STRUCTURE CHAPTER 5 How can we relate the structure of the atom to the way that it behaves chemically? The process of understanding began with a realization that many of the properties

More information

Question 12.1: Choose the correct alternative from the clues given at the end of the each statement: (a) The size of the atom in Thomson s model is... the atomic size in Rutherford s model. (much greater

More information

Lecture 4. The Bohr model of the atom. De Broglie theory. The Davisson-Germer experiment

Lecture 4. The Bohr model of the atom. De Broglie theory. The Davisson-Germer experiment Lecture 4 The Bohr model of the atom De Broglie theory The Davisson-Germer experiment Objectives Learn about electron energy levels in atoms and how Bohr's model can be used to determine the energy levels

More information

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA OBJECTIVES Learn the theory of the grating spectrometer Observe the spectrum of mercury and hydrogen Measure the grating constant of a diffraction grating Measure the Rydberg Constant EXPERIMENT THE GRATING

More information

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER BOHR S THEORY AND PHYSICS OF ATOM CHAPTER 3 1. a 1 h A T (ML T ) M L T 3 L me L MLT M(AT) M L T a has dimensions of length.. We know, 1/ 1.1 1 (1/n 1 1/n ) a) n 1, n 3 or, 1/ 1.1 1 (1/ 1/9) 36 or, 6.5

More information

Physics 1030 General Physics II

Physics 1030 General Physics II Final Exam April 20 6:00-9:00 pm University Center, Rm 210-224 (seats 1-211) 2016-03-30 Phys 1030 General Physics II (Gericke) 1 The De Broglie Wavelength (Section 29.5) de Broglie wavelength: hp Wavelength

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Problems with the atomic model?

Problems with the atomic model? Modern Atomic Theory- Electronic Structure of Atoms DR HNIMIR-CH7 Where should (-) electrons be found? Problems with the atomic model? First, a Little About Electromagnetic Radiation- Waves Another Look

More information

An element Is a substance that cannot be split into simpler substance. It is composed of discrete particles called atoms.

An element Is a substance that cannot be split into simpler substance. It is composed of discrete particles called atoms. digitalteachers.co.ug Atomic structure Inorganic chemistry deals with the physical and chemical properties of the elements of the the periodic table. An element Is a substance that cannot be split into

More information

PHYS 202. Lecture 23 Professor Stephen Thornton April 25, 2005

PHYS 202. Lecture 23 Professor Stephen Thornton April 25, 2005 PHYS 202 Lecture 23 Professor Stephen Thornton April 25, 2005 Reading Quiz The noble gases (He, Ne, Ar, etc.) 1) are very reactive because they lack one electron of being in a closed shell. 2) are very

More information

Atoms and Spectroscopy

Atoms and Spectroscopy Atoms and Spectroscopy Lecture 3 1 ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND 2 FROM ATOMS TO STARS AND GALAXIES HOW DO WE KNOW? Observations The Scientific Method Hypothesis Verifications LAW 3

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

The following experimental observations (between 1895 and 1911) needed new quantum ideas:

The following experimental observations (between 1895 and 1911) needed new quantum ideas: The following experimental observations (between 1895 and 1911) needed new quantum ideas: 1. Spectrum of Black Body Radiation: Thermal Radiation 2. The photo electric effect: Emission of electrons from

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra Atom and Quantum Atomic Nucleus Ernest Rutherford 1871-1937 Rutherford s Gold Foil Experiment Deflection of alpha particles showed the atom to be mostly empty space with a concentration of mass at its

More information

3. Particle nature of matter

3. Particle nature of matter 3. Particle nature of matter 3.1 atomic nature of matter Democrit(us) 470-380 B.C.: there is only atoms and empty space, everything else is mere opinion (atoms are indivisible) Dalton (chemist) 180: chemical

More information

Class XII_Delhi_Physics_Set-1

Class XII_Delhi_Physics_Set-1 17. Write three important factors which justify the need of modulating a message signal. Show diagrammatically how an amplitude modulated wave is obtained when a modulating signal is superimposed on a

More information

Physics 1C. Modern Physics Lecture

Physics 1C. Modern Physics Lecture Physics 1C Modern Physics Lecture "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars."

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 32 Modern Physics Atomic Physics Early models of the atom Atomic spectra http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 28 1 If you want to know your progress

More information

UNIT VIII ATOMS AND NUCLEI

UNIT VIII ATOMS AND NUCLEI UNIT VIII ATOMS AND NUCLEI Weightage Marks : 06 Alpha-particles scattering experiment, Rutherford s model of atom, Bohr Model, energy levels, Hydrogen spectrum. Composition and size of Nucleus, atomic

More information

Chapter 4: Atomic Physics

Chapter 4: Atomic Physics Nature resolves everything into it component atoms and never reduces anything to nothing. Lucretius (95 BC - 55 BC) 4.1 The History of the Atom The earliest attempt to find simplicity in matter occurred

More information

Introduction. Procedure and Data

Introduction. Procedure and Data Introduction The spectrum is the entire range over which some measurable property of a physical system of phenomenon can vary. Systems that have spectrums include sound frequency, electromagnetic radiation

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Physics 280 Quantum Mechanics Lecture

Physics 280 Quantum Mechanics Lecture Spring 2015 1 1 Department of Physics Drexel University August 3, 2016 Objectives Review Early Quantum Mechanics Objectives Review Early Quantum Mechanics Schrödinger s Wave Equation Objectives Review

More information

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

More information

Laboratory Exercise. Quantum Mechanics

Laboratory Exercise. Quantum Mechanics Laboratory Exercise Quantum Mechanics Exercise 1 Atomic Spectrum of Hydrogen INTRODUCTION You have no doubt been exposed many times to the Bohr model of the atom. You may have even learned of the connection

More information

1. ATOMIC STRUCTURE PREVIOUS EAMCET BITS. 1) 25 : 9 2) 5 : 3 3) 9 : 25 4) 3 : 5 Ans: 1 Sol: According to de-broglie equation h

1. ATOMIC STRUCTURE PREVIOUS EAMCET BITS. 1) 25 : 9 2) 5 : 3 3) 9 : 25 4) 3 : 5 Ans: 1 Sol: According to de-broglie equation h . ATOMIC STRUCTURE PREVIOUS EAMCET BITS. The wavelengths of electron waves in two orbits is 3 :. The ratio of kinetic energy of electron will be (E-009) ) : 9 ) : 3 3) 9 : ) 3 : Sol: According to de-broglie

More information

m(g) / M = q(c) / N V Q

m(g) / M = q(c) / N V Q CHAPTER 3 THE PARTICLE NATURE of MATTER ELECTROLYSIS Faraday established the law of electrolysis in 1833. After passing a current I=dq/dt through an electrolytic solution ( he used molten NaCl ), a know

More information

5.111 Lecture Summary #5 Friday, September 12, 2014

5.111 Lecture Summary #5 Friday, September 12, 2014 5.111 Lecture Summary #5 Friday, September 12, 2014 Readings for today: Section 1.3 Atomic Spectra, Section 1.7 up to equation 9b Wavefunctions and Energy Levels, Section 1.8 The Principle Quantum Number.

More information