8.1 The hydrogen atom solutions

Size: px
Start display at page:

Download "8.1 The hydrogen atom solutions"

Transcription

1 8.1 The hydrogen atom solutions Slides: Video Separating for the radial equation Text reference: Quantum Mechanics for Scientists and Engineers Section 10.4 (up to Solution of the hydrogen radial wavefunction ).

2 The hydrogen atom solutions Separating for the radial equation Quantum mechanics for scientists and engineers David Miller

3 Internal states of the hydrogen atom We start with the equation for the relative motion of electron and proton r Vr U EHU r r We use the spherical symmetry of this equation and change to spherical polar coordinates From now on, we drop the subscript r in the operator

4 Internal states of the hydrogen atom In spherical polar coordinates, we have r sin r r r r sin sin where the term in square brackets is the operator ˆ, L / we introduced in discussing angular momentum Knowing the solutions to the angular momentum problem we propose the separation U r RrY,

5 Internal states of the hydrogen atom The mathematics is simpler using the form 1 U r ry, r where, obviously r rr r This choice gives a convenient simplification of the radial derivatives 1 r 1 r r r r r r r r

6 Internal states of the hydrogen atom Hence the Schrödinger equation becomes 1 r r 1 ˆ r Y, LY 3, Y, Vr r r r r Dividing by ry, /r and rearranging, we have r 3 E H 1 r ry, r 1 1 r E ˆ H V r LY, r r Y,

7 Internal states of the hydrogen atom In r r 1 1 r E ˆ H V r LY, ll1 r r Y, in the usual manner for a separation argument the left hand side depends only on r and the right hand side depends only on and so both sides must be equal to a constant We already know what that constant is explicitly i.e., we already know that LY ˆ lm, ll1 Ylm, so that the constant is l l1

8 Internal states of the hydrogen atom Hence, in addition to the ˆL eigenequation which we had already solved from our separation above, we also have r r r E H V r l l1 r r or, rearranging d r ll1 Vr r EH r dr r which we can write as an ordinary differential equation All the functions and derivatives are in one variable, r

9 Internal states of the hydrogen atom Hence we have mathematical equation d r ll1 Vr r EH r dr r for this radial part of the wavefunction which looks like a Schrödinger wave equation with an additional effective potential energy term of the form ll1 r

10 Central potentials Note incidentally that though here we have a specific form for in our assumed Coulomb potential e V re rp 4 r r o e p Vr the above separation works for any potential that is only a function of r sometimes known as a central potential

11 Central potentials The precise form of the equation d r l l1 Vr r EH r dr r will be different for different central potentials but the separation remains We can still separate out the ˆL angular momentum eigenequation with the spherical harmonic solutions

12 Central potentials Since a reasonable first approximation for more complicated atoms is to say that the potential is still approximately central approximately independent of angle we can continue to use the spherical harmonics as the first approximation to the angular form of the orbitals and use the hydrogen atom labels for them e.g., s, p, d, f, etc.

13

14 8.1 The hydrogen atom solutions Slides: Video Radial equation solutions Text reference: Quantum Mechanics for Scientists and Engineers Sections 10.4 starting with Solution of the hydrogen radial wavefunction, and 10.5 Note: The section Text reference: Quantum Mechanics for Scientists and Engineers Section 10.4 contains the complete mathematical details for solving the radial equation in the hydrogen atom problem. For this course, not all those details are required and they are consequently not all covered in the online lectures, so the additional detail, in particular on power series solutions in section Text reference: Quantum Mechanics for Scientists and Engineers Section 10.4, is optional for the student.

15 The hydrogen atom solutions Radial equation solutions Quantum mechanics for scientists and engineers David Miller

16 Radial equation solutions Using a separation of the hydrogen atom wavefunction solutions into radial and angular parts Ur RrY, and rewriting the radial part using r rrr we obtained the radial equation d r e l l1 r EH r dr 4or r where we know l is 0 or any positive integer

17 Radial equation solutions We now choose to write our energies in the form Ry EH n where n for now is just an arbitrary real number We define a new distance unit s r where the parameter is E na o H

18 Radial equation solutions We therefore obtain an equation d ll1 n 1 0 ds s s 4 Then we write l1 s s L s exp s/ so we get d L dl s s l 1 n l 1L 0 ds ds

19 Radial equation solutions The technique to solve this equation d L dl s s l 1 n l 1 L 0 ds ds is to propose a power series in s The power series will go on forever and hence the function will grow arbitrarily unless it terminates at some finite power which requires that n is an integer, and nl1

20 Radial equation solutions The normalizable solutions of d L dl s s l 1 n l 1 L 0 ds ds then become the finite power series known as the associated Laguerre polynomials n l 1 l1 q n l! q Ln l 1 s 1 s nlq1! ql1! q0 or equivalently p 1 q0 q p j! j Lp s s p q! j q! q! q

21 Radial equation solutions Now we can work back to construct the whole solution l1 In our definition s s Lsexp s/ we now insert the associated Laguerre polynomials l1 l1 ss Ln l 1 sexp s/ where s ( / nao ) r Since our radial solution was r rrr we now have 1 l1 l1 Rr naos/ s Ln l 1 sexp s/ r l l1 sl 1 sexp s/ n l

22 Radial equation solutions - normalization We formally introduce a normalization coefficient A so 1 l l1 Rr naos/ s Ln l 1 sexp s/ A The full normalization integral of the wavefunction Ur RrY, would be 1 R ry, rsindddr r000 but we have already normalized the spherical harmonics so we are left with the radial normalization

23 Radial equation solutions - normalization Radial normalization would be We could show 0 1 R r r dr so the normalized radial wavefunction becomes 0 l l1 n n l! s Ln l 1 s expss ds n l1! R r 1/ 3 l nl1! r l1 r r Ln l 1 exp nn l! nao nao nao na o

24 Hydrogen atom radial wavefunctions We write the wavefunctions using the Bohr radius a o as the unit of radial distance so we have a dimensionless radial distance r/ ao and we introduce the subscripts n - the principal quantum number, and l - the angular momentum quantum number to index the various functions R n,l

25 Radial wavefunctions - n = 1 Principal quantum number n = 1 Angular momentum quantum number l = 0 R1,0 exp R R1, Radius

26 Radial wavefunctions - n = l = 0 R,0 4 exp / l = 1 6 R,1 1 exp / R R,0 R, Radius

27 Radial wavefunctions - n = 3 R l = 0 3, exp /3 l = 1 6 R3,1 4 exp / l = 30 R3, 115 exp / 3 R R3,0 R3,1 R3, Radius

28 Hydrogen orbital probability density z x - z cross-section at y = 0 x 1s n = 1 l = 0 m = MMZ

29 Hydrogen orbital probability density z x - z cross-section at y = 0 x logarithmic 1. MMZl intensity scale 1s n = 1 l = 0 m = 0

30 Hydrogen orbital probability density z x - z cross-section at y = 0 x s n = l = 0 m = MMZ

31 Hydrogen orbital probability density z x - z cross-section at y = 0 x logarithmic 1. MMZl intensity scale s n = l = 0 m = 0

32 Hydrogen orbital probability density z x - z cross-section at y = 0 x p n = l = 1 m = 0 MMZ

33 Hydrogen orbital probability density z x - z cross-section at y = 0 x 3s n = 3 l = 0 m = 0.3 MMZ

34 Hydrogen orbital probability density z x - z cross-section at y = 0 x logarithmic 1. MMZl intensity scale 3s n = 3 l = 0 m = 0

35 Hydrogen orbital probability density z x - z cross-section at y = 0 x 3p n = 3 l = 1 m = 0 MMZ

36 Hydrogen orbital probability density z x - z cross-section at y = 0 x logarithmic 1.5 MMZl intensity scale 3p n = 3 l = 1 m = 0

37 Hydrogen orbital probability density z x - z cross-section at y = 0 x 3d n = 3 l = m = 0 4 MMZ

38 Hydrogen orbital probability density z x - z cross-section at y = 0 x 3d n = 3 l = m = 1 10 MMZ

39 Behavior of the complete hydrogen solutions (i) The overall size of the wavefunctions becomes larger with larger n (ii) The number of zeros in the wavefunction is n 1 The radial wavefunctions have n l 1 zeros and the spherical harmonics have l nodal circles The radial wavefunctions appear to have an additional zero at r = 0 for all l 1, but this is already counted because the spherical harmonics have at least one nodal circle for all l 1 which already gives a zero as r 0 in these cases

40 Behavior of the complete hydrogen solutions In summary of the quantum numbers for the so-called principal quantum number n 1,,3, and l n1 We already deduced that l is a positive or zero integer We also now know the eigenenergies Given the possible values for n Ry EH n Note the energy does not depend on l (or m)

41

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8 CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates 8.2 Schrödinger's Equation in Spherical Coordinate 8.3 Separation of Variables 8.4 Three Quantum Numbers 8.5 Hydrogen Atom Wave Function 8.6 Electron Spin

More information

1 Reduced Mass Coordinates

1 Reduced Mass Coordinates Coulomb Potential Radial Wavefunctions R. M. Suter April 4, 205 Reduced Mass Coordinates In classical mechanics (and quantum) problems involving several particles, it is convenient to separate the motion

More information

7.3 The hydrogen atom

7.3 The hydrogen atom 7.3 The hydrogen atom Slides: Video 7.3.1 Multiple particle wavefunctions Text reference: Quantum Mechanics for Scientists and Engineers Chapter 10 introduction and Section 10.1 The hydrogen atom Multiple

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Angular momentum. Angular momentum operators. Quantum mechanics for scientists and engineers

Angular momentum. Angular momentum operators. Quantum mechanics for scientists and engineers 7.1 Angular momentum Slides: Video 7.1.1 Angular momentum operators Text reference: Quantum Mechanics for Scientists and Engineers Chapter 9 introduction and Section 9.1 (first part) Angular momentum Angular

More information

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential Lecture 3 Last lecture we were in the middle of deriving the energies of the bound states of the Λ in the nucleus. We will continue with solving the non-relativistic Schroedinger equation for a spherically

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

1.4 Solution of the Hydrogen Atom

1.4 Solution of the Hydrogen Atom The phase of α can freely be chosen to be real so that α = h (l m)(l + m + 1). Then L + l m = h (l m)(l + m + 1) l m + 1 (1.24) L l m = h (l + m)(l m + 1) l m 1 (1.25) Since m is bounded, it follow that

More information

quantization condition.

quantization condition. /8/016 PHYS 34 Modern Physics Atom II: Hydrogen Atom Roadmap for Exploring Hydrogen Atom Today Contents: a) Schrodinger Equation for Hydrogen Atom b) Angular Momentum in Quantum Mechanics c) Quantum Number

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantum Mechanics for Scientists and Engineers Syllabus and Textbook references All the main lessons (e.g., 1.1) and units (e.g., 1.1.1) for this class are listed below. Mostly, there are three lessons

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

Single Electron Atoms

Single Electron Atoms Single Electron Atoms In this section we study the spectrum and wave functions of single electron atoms. These are hydrogen, singly ionized He, doubly ionized Li, etc. We will write the formulae for hydrogen

More information

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4 Lectures and : Hydrogen Atom B. Zwiebach May 4, 06 Contents The Hydrogen Atom Hydrogen atom spectrum 4 The Hydrogen Atom Our goal here is to show that the two-body quantum mechanical problem of the hydrogen

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4 H atom solution Contents 1 Introduction 2 2 Coordinate system 2 3 Variable separation 4 4 Wavefunction solutions 6 4.1 Solution for Φ........................... 6 4.2 Solution for Θ...........................

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

atoms and light. Chapter Goal: To understand the structure and properties of atoms.

atoms and light. Chapter Goal: To understand the structure and properties of atoms. Quantum mechanics provides us with an understanding of atomic structure and atomic properties. Lasers are one of the most important applications of the quantummechanical properties of atoms and light.

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

Legendre Polynomials and Angular Momentum

Legendre Polynomials and Angular Momentum University of Connecticut DigitalCommons@UConn Chemistry Education Materials Department of Chemistry August 006 Legendre Polynomials and Angular Momentum Carl W. David University of Connecticut, Carl.David@uconn.edu

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

The Bohr Correspondence Principle

The Bohr Correspondence Principle The Bohr Correspondence Principle Kepler Orbits of the Electron in a Hydrogen Atom Deepak Dhar We consider the quantum-mechanical non-relativistic hydrogen atom. We show that for bound states with size

More information

Orbital Angular Momentum of the Hydrogen Atom

Orbital Angular Momentum of the Hydrogen Atom Orbital Angular Momentum of the Hydrogen Atom Department of Physics and Astronomy School of Arts and Sciences Rutgers, The State University of New Jersey 136 Frelinghuysen Road Piscataway, NJ 08854-8019

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

The Hydrogen Atom. Thornton and Rex, Ch. 7

The Hydrogen Atom. Thornton and Rex, Ch. 7 The Hydrogen Atom Thornton and Rex, Ch. 7 Applying Schrodinger s Eqn to the Hydrogen Atom The potential: -1 e 2 V(r) = 4p e0 r Use spherical polar coordinates (with y(x,y,z) => y(r,q,f) ): 1 y 1 y ( r

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 21 Square-Integrable Functions (Refer Slide Time: 00:06) (Refer Slide Time: 00:14) We

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter ifor a one-dimenional problem to a specific and very important

More information

Quantum Orbits. Quantum Theory for the Computer Age Unit 9. Diving orbit. Caustic. for KE/PE =R=-3/8. for KE/PE =R=-3/8. p"...

Quantum Orbits. Quantum Theory for the Computer Age Unit 9. Diving orbit. Caustic. for KE/PE =R=-3/8. for KE/PE =R=-3/8. p... W.G. Harter Coulomb Obits 6-1 Quantum Theory for the Computer Age Unit 9 Caustic for KE/PE =R=-3/8 F p' p g r p"... P F' F P Diving orbit T" T T' Contact Pt. for KE/PE =R=-3/8 Quantum Orbits W.G. Harter

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure PHYS85 Quantum Mechanics II, Spring HOMEWORK ASSIGNMENT 8: Solutions Topics covered: hydrogen fine structure. [ pts] Let the Hamiltonian H depend on the parameter λ, so that H = H(λ). The eigenstates and

More information

5.111 Lecture Summary #6

5.111 Lecture Summary #6 5.111 Lecture Summary #6 Readings for today: Section 1.9 (1.8 in 3 rd ed) Atomic Orbitals. Read for Lecture #7: Section 1.10 (1.9 in 3 rd ed) Electron Spin, Section 1.11 (1.10 in 3 rd ed) The Electronic

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter for a one-dimensional problem to a specific and very important

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like) Stockton Univeristy Chemistry Program, School of Natural Sciences an Mathematics 101 Vera King Farris Dr, Galloway, NJ CHEM 340: Physical Chemistry II Solving the Schröinger Equation for the 1 Electron

More information

The Central Force Problem: Hydrogen Atom

The Central Force Problem: Hydrogen Atom The Central Force Problem: Hydrogen Atom B. Ramachandran Separation of Variables The Schrödinger equation for an atomic system with Z protons in the nucleus and one electron outside is h µ Ze ψ = Eψ, r

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

The Hydrogen Atom Chapter 20

The Hydrogen Atom Chapter 20 4/4/17 Quantum mechanical treatment of the H atom: Model; The Hydrogen Atom Chapter 1 r -1 Electron moving aroundpositively charged nucleus in a Coulombic field from the nucleus. Potential energy term

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

Lecture 2 Finding roots of a function, Λ hypernuclei

Lecture 2 Finding roots of a function, Λ hypernuclei Lecture 2 Finding roots of a function, Λ hypernuclei We start the course with a standard numerical problem: finding the roots of a function. This exercise is meant to get you started with programming in

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Hydrogen Atom Part I John von Neumann 1903-1957 One-Dimensional Atom To analyze the hydrogen atom, we must solve the Schrodinger equation for the Coulomb potential

More information

eff (r) which contains the influence of angular momentum. On the left is

eff (r) which contains the influence of angular momentum. On the left is 1 Fig. 13.1. The radial eigenfunctions R nl (r) of bound states in a square-well potential for three angular-momentum values, l = 0, 1, 2, are shown as continuous lines in the left column. The form V (r)

More information

2.2 Schrödinger s wave equation

2.2 Schrödinger s wave equation 2.2 Schrödinger s wave equation Slides: Video 2.2.1 Schrödinger wave equation introduction Text reference: Quantum Mechanics for Scientists and Engineers Section Chapter 2 introduction Schrödinger s wave

More information

Appendix 9 The Atomic Orbitals of Hydrogen

Appendix 9 The Atomic Orbitals of Hydrogen Appendix 9 The Atomic Orbitals of Hydrogen The discussion of chemical bonding in the main text depends on the description of molecular orbitals as linear combinations of atomic orbitals. In this appendix

More information

Outline Spherical symmetry Free particle Coulomb problem Keywords and References. Central potentials. Sourendu Gupta. TIFR, Mumbai, India

Outline Spherical symmetry Free particle Coulomb problem Keywords and References. Central potentials. Sourendu Gupta. TIFR, Mumbai, India Central potentials Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 October, 2013 Outline 1 Outline 2 Rotationally invariant potentials 3 The free particle 4 The Coulomb problem 5 Keywords

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions PHYS 771, Quantum Mechanics, Final Exam, Fall 11 Instructor: Dr. A. G. Petukhov Solutions 1. Apply WKB approximation to a particle moving in a potential 1 V x) = mω x x > otherwise Find eigenfunctions,

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Solution 01. Sut 25268

Solution 01. Sut 25268 Solution. Since this is an estimate, more than one solution is possible depending on the approximations made. One solution is given The object of this section is to estimate the the size of an atom. While

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

Self-consistent Field

Self-consistent Field Chapter 6 Self-consistent Field A way to solve a system of many electrons is to consider each electron under the electrostatic field generated by all other electrons. The many-body problem is thus reduced

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation VANDERBILT UNIVERSITY MATH 31 INTRO DO PDES The Schrödinger equation 1. Introduction Our goal is to investigate solutions to the Schrödinger equation, i Ψ t = Ψ + V Ψ, 1.1 µ where i is the imaginary number

More information

4.1 Time evolution of superpositions. Slides: Video Introduction to time evolution of superpositions

4.1 Time evolution of superpositions. Slides: Video Introduction to time evolution of superpositions 4.1 Time evolution of superpositions Slides: Video 4.1.1 Introduction to time evolution of superpositions Time evolution of superpositions Quantum mechanics for scientists and engineers David Miller 4.1

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number:

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number: Spin. Historical Spectroscopy of Alkali atoms First expt. to suggest need for electron spin: observation of splitting of expected spectral lines for alkali atoms: i.e. expect one line based on analogy

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I 1 CHEM-UA 127: Advanced General Chemistry I Notes for Lecture 11 Nowthatwehaveintroducedthebasicconceptsofquantummechanics, wecanstarttoapplythese conceptsto build up matter, starting from its most elementary

More information

Multielectron Atoms.

Multielectron Atoms. Multielectron Atoms. Chem 639. Spectroscopy. Spring 00 S.Smirnov Atomic Units Mass m e 1 9.109 10 31 kg Charge e 1.60 10 19 C Angular momentum 1 1.055 10 34 J s Permittivity 4 0 1 1.113 10 10 C J 1 m 1

More information

Tight-Binding Model of Electronic Structures

Tight-Binding Model of Electronic Structures Tight-Binding Model of Electronic Structures Consider a collection of N atoms. The electronic structure of this system refers to its electronic wave function and the description of how it is related to

More information

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =...

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =... Physics 606, Quantum Mechanics, Final Exam NAME Please show all your work. (You are graded on your work, with partial credit where it is deserved.) All problems are, of course, nonrelativistic. 1. Consider

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Particles in potential wells The finite potential well Insert video here (split screen) Finite potential well Lesson 7 Particles in potential

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 1

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 1 QUANTUM MECHANICS I PHYS 516 Solutions to Problem Set # 1 1. Scaling: Bohr computed the energy level spectrum of the hydrogen atom using the Old Quantum Theory, Heisenberg did the same using Matrix Mechanics,

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

Physics 4617/5617: Quantum Physics Course Lecture Notes

Physics 4617/5617: Quantum Physics Course Lecture Notes Physics 467/567: Quantum Physics Course Lecture Notes Dr. Donald G. Luttermoser East Tennessee State University Edition 5. Abstract These class notes are designed for use of the instructor and students

More information

Physible: Interactive Physics Collection MA198 Proposal Rough Draft

Physible: Interactive Physics Collection MA198 Proposal Rough Draft Physible: Interactive Physics Collection MA98 Proposal Rough Draft Brian Campbell-Deem Professor George Francis November 6 th 205 Abstract Physible conglomerates four smaller, physics-related programs

More information

Ch120 - Study Guide 10

Ch120 - Study Guide 10 Ch120 - Study Guide 10 Adam Griffith October 17, 2005 In this guide: Symmetry; Diatomic Term Symbols; Molecular Term Symbols Last updated October 27, 2005. 1 The Origin of m l States and Symmetry We are

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Chem What is the difference between an orbit (Bohr model) and an orbital (quantum mechanical model)?

Chem What is the difference between an orbit (Bohr model) and an orbital (quantum mechanical model)? Reading: sections 6.5-6.6 As you read this material, ask yourself the following questions: What are wave functions and orbitals, how do orbitals differ from orbits? What can we learn about an electron

More information

An Algebraic Approach to Reflectionless Potentials in One Dimension. Abstract

An Algebraic Approach to Reflectionless Potentials in One Dimension. Abstract An Algebraic Approach to Reflectionless Potentials in One Dimension R.L. Jaffe Center for Theoretical Physics, 77 Massachusetts Ave., Cambridge, MA 02139-4307 (Dated: January 31, 2009) Abstract We develop

More information

QUANTUM MECHANICS AND ATOMIC STRUCTURE

QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 CHAPTER QUANTUM MECHANICS AND ATOMIC STRUCTURE 5.1 The Hydrogen Atom 5.2 Shell Model for Many-Electron Atoms 5.3 Aufbau Principle and Electron Configurations 5.4 Shells and the Periodic Table: Photoelectron

More information

Chapter 9. Atomic structure and atomic spectra

Chapter 9. Atomic structure and atomic spectra Chapter 9. Atomic structure and atomic spectra -The structure and spectra of hydrogenic atom -The structures of many e - atom -The spectra of complex atoms The structure and spectra of hydrogenic atom

More information

Chapter 1 Chemical Bonding

Chapter 1 Chemical Bonding Chapter 1 Chemical Bonding 1.1 Atoms, Electrons, and Orbitals Atoms are composed of + Protons positively charged mass = 1.6726 X 10-27 kg Neutrons neutral mass = 1.6750 X 10-27 kg Electrons negatively

More information

Quantum Mechanics. Reading: Gray: (1 8) to (1 12) OGN: (15.5)

Quantum Mechanics. Reading: Gray: (1 8) to (1 12) OGN: (15.5) Quantum Mechanics Reading: Gray: (1 8) to (1 12) OGN: (15.5) A Timeline of the Atom...... 400 BC 0 1800 1850 1900 1950 400 B.C. Democritus: idea of an atom 1808 John Dalton introduces his atomic theory.

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Chapter 6: Quantum Theory of the Hydrogen Atom

Chapter 6: Quantum Theory of the Hydrogen Atom Chapter 6: Quantum Theory of the Hydrogen Atom The first problem that Schrödinger tackled with his new wave equation was that of the hydrogen atom. The discovery of how naturally quantization occurs in

More information

( ( ; R H = 109,677 cm -1

( ( ; R H = 109,677 cm -1 CHAPTER 9 Atomic Structure and Spectra I. The Hydrogenic Atoms (one electron species). H, He +1, Li 2+, A. Clues from Line Spectra. Reminder: fundamental equations of spectroscopy: ε Photon = hν relation

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II January 22, 2016 9:00 a.m. 1:00 p.m. Do any four problems. Each problem is worth 25 points.

More information

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom.

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. Chemistry 356 017: Problem set No. 6; Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. The H atom involves spherical coordinates and angular momentum, which leads to the shapes

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information