Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each):

Size: px
Start display at page:

Download "Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each):"

Transcription

1 Indicate if the statement is (T) or False (F) by circling the letter (1 pt each): False 1. In order to ensure that all observables are real valued, the eigenfunctions for an operator must also be real valued.. The ground state of a quantum mechanical rigid rotor has an energy that is equal to zero. False 3. The function y = 5x is an eigenfunction of xˆ with eigenvalue equal to 5. False 4. The emission for the n=3 to n= transition for the hydrogen atom occurs at a shorter wavelength than the n= to n=1 transition. 5. The energy levels of the quantum mechanical harmonic oscillator are all equally spaced. False 6. In quantum mechanics, eigenfunctions must be normalized or else they are not solutions to a given operator equation. 7. The total angular momentum of an electron in a 3p orbital is equal to. 8. It is possible to know both the total and the z-component of the angular momentum of an electron in a p orbital of the hydrogen atom to the same precision. False 9. There are 4 nodes in the n=4 energy eigenfunction for the particle on a line problem.. The energy state for an electron in a p orbital of hydrogen is triply degenerate. Multiple Choice Section ( pts. each). Circle the letter corresponding to the one best choice. 11. The work function for a certain metal is 7.67 x -19 J. If light of wavelength 518 nm hits the surface, what will happen? 518nm= a. electrons will be ejected with their kinetic energy equal to 4.41 x x -19 J J. b. electrons will be ejected with their kinetic energy equal to 3.84 x -0 J. c. electrons will be ejected if the light is of sufficient brightness d. no electrons will be ejected since the light wavelength is insufficient 1. The debroglie wavelength of an object whose mass is m and is traveling a speed of v is: a. mv h b. mv c. mv d. hv m 13. What is the degeneracy of the energy level equal to a cube (all sides equal to L)? 9h 8mL for the three-dimensional particle in a. 0 b. 1 c. 3 d. 6

2 14. The reduced mass of a certain diatomic molecule is 19.4 amu and its force constant (k) is 160 kg/s. What is its vibrational frequency, v? a Hz b..4 x -14 Hz c. 1.1 x 14 Hz d x 13 Hz 15. f(x) = e -6x is an eigenfunction of the x operator. What is its eigenvalue? a. 18 b. 36 c. 7 d. 144 Short Answer/Problems. Please show your work and circle your final answer. (pts each) 16. Consider a system described as a quantum mechanical harmonic oscillator with frequency equal to 1.48 x 14 Hz. (a) Calculate the zero point energy in Joules (b) Calculate the first vibrational transition (0 to 1) in cm -1. (a) ( )( ) = ν = = E 0 0 pt h J s s J (b) hc ε = hν = = hc ν λ 14 1 ν 1.48 s ν = = = 1 c.998 cm s 4940 cm An experiment repeated many times on identical systems will yield an average value that can be predicted at high precision even though the outcome of any individual measurement only has a finite probability of occurring. Provide a formula for how to compute this average value. BE AS GENERAL AS POSSIBLE. a = Ψ * ÂΨdτ * ΨΨ dτ

3 18. A particle confined to a line of length L is in an n= energy state. What is the probability that the particle exists within % of the center of the line (from 4 L 6L to )? b a 0.5L ψ dx = 0.4L ψ dx 0 a b L.5L πx x sin sin 4 1 π P = dx = ( ax) a = L L L 4a L.5L.4 L.4L 4 5L 4L L 4π 5L 4π 4L P = sin sin L 0 0 8π L L 1 1 = 4 [ sin( π) sin(1.6 π) ] 0 8π 1 = [ 0 ( ) ] = or 4.86% 8π

4 19. The frequency of light observed for the lowest pure rotational transition ( =0 to =1) of the H 7 Cl molecule is 3.8 x 11 Hz. Given the masses of H and 7 Cl are.014 and a.m.u. respectively, calculate the bond length of this diatomic molecule in meters. (.014)( ) 1 µ = = kg I 34 h 6.66 J s πν 4 π (3.8 s ) = = = kg m 47 r I = = 1.7 µ m 0. Write an expression (that you could type into Mathcad to get a number) for the probability Hatom that the electron in a pz ( Ψ ) orbital lies between 1 and Bohr [ao] from the nucleus and also lies within 45 degrees of the positive z axis. π /4 4 r 1 r e dr cos θ sinθ dθ

5 1. Working with just the radial part of the hydrogen atom problem, what is the average value of <r 3 > for an electron in a p orbital in units of Bohr [a0]? r r 1 = r e dr 7! 4 = = = 64 bohr. A certain diatomic molecule behaves as a quantum mechanical oscillator with force constant equal to 185 N/m and a reduced mass of x -6 kg. Assuming that it is in the lowest energy vibrational state, write a one line expression which when entered into Mathcad would give a number representing its average value of position squared <x > in picometers: 6 π (185) (6.854 ) kµ α = = = m = pm π 0 x e x dx

6 3. The following figures show, from left to right, the radial probability distribution and an orbital isosurface for a one-electron orbital. Identify each of these hydrogen orbitals. Write your answer in the third column (only n and need to be specified). Probability Isosurface Orbital s 3s 4d 5f

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor A Quantum Mechanical Model for the Vibration and Rotation of Molecules Harmonic Oscillator Rigid Rotor Degrees of Freedom Translation: quantum mechanical model is particle in box or free particle. A molecule

More information

CHM320 EXAM #2 USEFUL INFORMATION

CHM320 EXAM #2 USEFUL INFORMATION CHM30 EXAM # USEFUL INFORMATION Constants mass of electron: m e = 9.11 10 31 kg. Rydberg constant: R H = 109737.35 cm 1 =.1798 10 18 J. speed of light: c = 3.00 10 8 m/s Planck constant: 6.66 10 34 Js

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Chem 452 Mega Practice Exam 1

Chem 452 Mega Practice Exam 1 Last Name: First Name: PSU ID #: Chem 45 Mega Practice Exam 1 Cover Sheet Closed Book, Notes, and NO Calculator The exam will consist of approximately 5 similar questions worth 4 points each. This mega-exam

More information

CHEM 301: Homework assignment #5

CHEM 301: Homework assignment #5 CHEM 30: Homework assignment #5 Solutions. A point mass rotates in a circle with l =. Calculate the magnitude of its angular momentum and all possible projections of the angular momentum on the z-axis.

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Physics 43 Exam 2 Spring 2018

Physics 43 Exam 2 Spring 2018 Physics 43 Exam 2 Spring 2018 Print Name: Conceptual Circle the best answer. (2 points each) 1. Quantum physics agrees with the classical physics limit when a. the total angular momentum is a small multiple

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 208 Dr Jean M Standard March 9, 208 Name KEY Physical Chemistry II Exam 2 Solutions ) (4 points) The harmonic vibrational frequency (in wavenumbers) of LiH is 4057 cm Based upon this

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics. A 10-MINUTE RATHER QUICK INTRODUCTION TO QUANTUM MECHANICS 1. What is quantum mechanics (as opposed to classical mechanics)? Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter - Key Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Wave Properties of Particles Louis debroglie:

Wave Properties of Particles Louis debroglie: Wave Properties of Particles Louis debroglie: If light is both a wave and a particle, why not electrons? In 194 Louis de Broglie suggested in his doctoral dissertation that there is a wave connected with

More information

The one and three-dimensional particle in a box are prototypes of bound systems. As we

The one and three-dimensional particle in a box are prototypes of bound systems. As we 6 Lecture 10 The one and three-dimensional particle in a box are prototypes of bound systems. As we move on in our study of quantum chemistry, we'll be considering bound systems that are more and more

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points Name ME 5 Exam # November 5, 7 Prof. Lucht ME 55. POINT DISTRIBUTION Problem # 3 points Problem # 3 points Problem #3 3 points Problem #4 3 points Problem #5 3 points. EXAM INSTRUCTIONS You must do four

More information

Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions. Solutions Manual. by Andrew Cooksy

Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions. Solutions Manual. by Andrew Cooksy Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions Solutions Manual by Andrew Cooksy February 4, 2014 Contents Contents i Objectives Review Questions 1 Chapter Problems 11 Notes

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each.

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each. Physical Chemistry Final Name Spring 2004 Prof. Shattuck Constants: h=6.626x10-34 J s h =1.054x10-34 J s 1Å=1x10-8cm=1x10-10m NA=6.022x1023 mol-1 R=8.314 J/mol K 1eV= 96.485 kj/mol Part 1. Answer 7 of

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net Electrons and Periodic Behavior Cartoon courtesy of NearingZero.net Wave-Particle Duality JJ Thomson won the Nobel prize for describing the electron as a particle. His son, George Thomson won the Nobel

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

( )( s 1

( )( s 1 Chemistry 362 Dr Jean M Standard Homework Problem Set 6 Solutions l Calculate the reduced mass in kg for the OH radical The reduced mass for OH is m O m H m O + m H To properly calculate the reduced mass

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. CHEM 2060 Lecture 18: Particle in a Box L18-1 Atomic Orbitals If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. We can only talk

More information

Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book)

Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book) Name: SID: TA Name: Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book) This exam has 38 multiple choice questions. Fill in the Scantron form AND circle your answer on the exam. Each

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

(3.1) Module 1 : Atomic Structure Lecture 3 : Angular Momentum. Objectives In this Lecture you will learn the following

(3.1) Module 1 : Atomic Structure Lecture 3 : Angular Momentum. Objectives In this Lecture you will learn the following Module 1 : Atomic Structure Lecture 3 : Angular Momentum Objectives In this Lecture you will learn the following Define angular momentum and obtain the operators for angular momentum. Solve the problem

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam answers Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7.

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

Atomic Structure 11/21/2011

Atomic Structure 11/21/2011 Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE 1 7.1 The Nature of Light 2 Most subatomic particles behave as PARTICLES and obey the physics of waves. Light is a type of electromagnetic radiation Light consists

More information

Principles of Molecular Spectroscopy

Principles of Molecular Spectroscopy Principles of Molecular Spectroscopy What variables do we need to characterize a molecule? Nuclear and electronic configurations: What is the structure of the molecule? What are the bond lengths? How strong

More information

MODULE 213 BASIC INORGANIC CHEMISTRY UNIT 1 ATOMIC STRUCTURE AND BONDING II

MODULE 213 BASIC INORGANIC CHEMISTRY UNIT 1 ATOMIC STRUCTURE AND BONDING II Course Title: Basic Inorganic Chemistry 1 Course Code: CHEM213 Credit Hours: 2.0 Requires: 122 Required for: 221 Course Outline: Wave-particle duality: what are the typical properties of particles? What

More information

Physics 342: Modern Physics

Physics 342: Modern Physics Physics 342: Modern Physics Final Exam (Practice) Relativity: 1) Two LEDs at each end of a meter stick oriented along the x -axis flash simultaneously in their rest frame A. The meter stick is traveling

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

Chapter 1 - Basic Concepts: atoms

Chapter 1 - Basic Concepts: atoms Chapter 1 - Basic Concepts: atoms Discovery of atomic structure Rutherford (1910) JJ Thomson (1897) Milliken (1909) Rutherford (1911) 1 Symbol p + e - n 0 Mass (amu) 1.0073 0.000549 1.00870 Discovery 1919,

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7. (9 pts)

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jean M Standard Problem Set 3 Solutions 1 Verify for the particle in a one-dimensional box by explicit integration that the wavefunction ψ x) = π x ' sin ) is normalized To verify that

More information

The Hydrogen Atom Chapter 20

The Hydrogen Atom Chapter 20 4/4/17 Quantum mechanical treatment of the H atom: Model; The Hydrogen Atom Chapter 1 r -1 Electron moving aroundpositively charged nucleus in a Coulombic field from the nucleus. Potential energy term

More information

Chapter 7 The Quantum-Mechanical Model of the Atom

Chapter 7 The Quantum-Mechanical Model of the Atom Chapter 7 The Quantum-Mechanical Model of the Atom Electron Energy electron energy and position are complimentary because KE = ½mv 2 for an electron with a given energy, the best we can do is describe

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

Wave Nature of Matter. Wave Nature of Matter. Wave Nature of Matter. Light has wave-like and particle-like properties

Wave Nature of Matter. Wave Nature of Matter. Wave Nature of Matter. Light has wave-like and particle-like properties Wave Nature of Matter Light has wave-like and particle-like properties Can matter have wave and particle properties? de Broglie s hypothesis: matter has wave-like properties in addition to the expected

More information

CHM320 PRACTICE EXAM #1 (SPRING 2018)

CHM320 PRACTICE EXAM #1 (SPRING 2018) CHM320 PRACTICE EXAM #1 (SPRING 2018) Name: Score: NOTE: You must show your work, with sufficient number of intermediate steps. No credit will be awarded if you simply write down the answers from memory

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light! Properties of Light and Atomic Structure Chapter 7 So Where are the Electrons? We know where the protons and neutrons are Nuclear structure of atoms (Chapter 2) The interaction of light and matter helps

More information

YOUR NAME (last name, first name)...answers... FALL 2018 MIDTERM. (Total number of pages = 10) (Total points = 110) (Total time = 110 minutes)

YOUR NAME (last name, first name)...answers... FALL 2018 MIDTERM. (Total number of pages = 10) (Total points = 110) (Total time = 110 minutes) CHEM 14A Instructor: Dr. Laurence Lavelle YOUR NAME (last name, first name)...answers... STUDENT ID#... FALL 2018 MIDTERM (Total number of pages = 10) (Total points = 110) (Total time = 110 minutes) **Carefully

More information

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz) The Development of Quantum Mechanics Early physicists used the properties of electromagnetic radiation to develop fundamental ideas about the structure of the atom. A fundamental assumption for their work

More information

Chapter 7. Wave Behavior of Electrons

Chapter 7. Wave Behavior of Electrons Chapter 7 Wave Behavior of Electrons 2-Slit Interference If electrons behave only like particles, there should only be two bright spots on the target However, electrons actually present an interference

More information

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry 5.6 Physical Chemistry Final Exam 2/6/09 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.6 Physical Chemistry Final Examination () PRINT your name on the cover page. (2) It

More information

CHAPTER 13 LECTURE NOTES

CHAPTER 13 LECTURE NOTES CHAPTER 13 LECTURE NOTES Spectroscopy is concerned with the measurement of (a) the wavelengths (or frequencies) at which molecules absorb/emit energy, and (b) the amount of radiation absorbed at these

More information

Suggested time minutes (22 points) minutes (16 points) minutes (38 points) 4. 9 minutes (24 points) Total (100 points) Name

Suggested time minutes (22 points) minutes (16 points) minutes (38 points) 4. 9 minutes (24 points) Total (100 points) Name First Hour Exam 5.111 Write your name below. Do not open the exam until the start of the exam is announced. The exam is closed notes and closed book. 1. Read each part of each problem carefully and thoroughly.

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Chp 6: Atomic Structure

Chp 6: Atomic Structure Chp 6: Atomic Structure 1. Electromagnetic Radiation 2. Light Energy 3. Line Spectra & the Bohr Model 4. Electron & Wave-Particle Duality 5. Quantum Chemistry & Wave Mechanics 6. Atomic Orbitals Overview

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

Chapter 8 Problem Solutions

Chapter 8 Problem Solutions Chapter 8 Problem Solutions 1. The energy needed to detach the electron from a hydrogen atom is 13.6 ev, but the energy needed to detach an electron from a hydrogen molecule is 15.7 ev. Why do you think

More information

CHEM 301: Homework assignment #12

CHEM 301: Homework assignment #12 CHEM 301: Homework assignment #12 Solutions 1. Let s practice converting between wavelengths, frequencies, and wavenumbers. (10%) Express a wavelength of 442 nm as a frequency and as a wavenumber. What

More information

Chemistry 1A, Spring 2006 Midterm Exam I, Version 1 Feb 6, 2006 (90 min, closed book)

Chemistry 1A, Spring 2006 Midterm Exam I, Version 1 Feb 6, 2006 (90 min, closed book) Chemistry 1A, Spring 2006 Midterm Exam I, Version 1 Feb 6, 2006 (90 min, closed book) Name: SID: Identification Sticker TA Name: Write your name on every page of this exam. This exam has 37 multiple choice

More information

R BC. reaction coordinate or reaction progress R. 5) 8pts) (a) Which of the following molecules would give an infrared spectrum? HCl O 2 H 2 O CO 2

R BC. reaction coordinate or reaction progress R. 5) 8pts) (a) Which of the following molecules would give an infrared spectrum? HCl O 2 H 2 O CO 2 Physical Chemistry Spring 2006, Prof. Shattuck Final Name Part Ia. Answer 4 (four) of the first 5 (five) questions. If you answer more than 4, cross out the one you wish not to be graded. 1) 8pts) Of absorption

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

CHEM Course web page. Outline for first exam period

CHEM Course web page.  Outline for first exam period CHEM 3 Course web page http://web.chemistry.gatech.edu/~barefield/3/chem3a.html Outline for first exam period Atomic structure and periodic properties Structures and bonding models for covalent compounds

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom Quantum Mechanics The Behavior of the Very Small Electrons are incredibly small. Electron behavior determines much of the behavior of atoms. Directly

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Uncertainty Principle Demonstration Any experiment designed to observe the electron results in detection of a single electron particle and no interference pattern. Determinacy vs.

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

University of Michigan Physics Department Graduate Qualifying Examination

University of Michigan Physics Department Graduate Qualifying Examination Name: University of Michigan Physics Department Graduate Qualifying Examination Part II: Modern Physics Saturday 17 May 2014 9:30 am 2:30 pm Exam Number: This is a closed book exam, but a number of useful

More information

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems. D Chemistry 3502/4502 Exam I February 6, 2006 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the

More information

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons. CHAPTER SEVEN: QUANTUM THEORY AND THE ATOM Part One: Light Waves, Photons, and Bohr Theory A. The Wave Nature of Light (Section 7.1) 1. Structure of atom had been established as cloud of electrons around

More information