Numerical Methods for Partial Differential Equations

Size: px
Start display at page:

Download "Numerical Methods for Partial Differential Equations"

Transcription

1 Numerical Methods for Partial Differetial Equatios CAAM 452 Sprig 2005 Lecture 9 Istructor: Tim Warburto

2 Today Chage of pla I will go through i detail how to solve homework 3 step by step.

3 Q1) Build a fiite-differece solver for Homework 3 Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio u t Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. u = c x ) 2 π x) u x e x [ ] 4cos,0 =, 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

4 Q1a Use Cash-Karp RK for Time- Steppig We will use a vector versio of Cash-Karp: 1 k = dtf u ) 2 1 k = dtf u + b ) 21k k = dtf u + b ) 31k + b32k k = dtf u + b ) 41k + b42k + b43k k = dtf u + b ) 51k + b52k + b53k + b54k k = dtf u + b61k + b62k + b63k + b64k + b65k u = u + c k + c k + c k + c k + c k + c k ) Where f is a vector valued fuctio i our case it will be a liear operator actig o a vector argumet.

5 Where the b,c coefficiets are c= [ 37/ / / /1771] /5 0 3/40 9/40 0 b = 3/10-9/10 6/5 0-11/54 5/2-70/27 35/ / / / / / Provided i cashkarp.m o the web site. Origial paper at:

6 Q1) Build a fiite-differece solver for Homework 3 u t Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio ) 4cos Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. u = c x 2 π x) [ ] u x,0 = e, x 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

7 Recall: 4 th Order Cetral Differece Scheme The fourth order cetral differece derivative acts o ay vector ad gives the followig value for each etry of a result vector: 1 δ 4v ) = vm 2 8vm 1 8vm 1 vm 2 ) m dx Where the icremets o the idexig is doe modulo M. Sice we will use this operator repeatedly I made a fuctio

8 Code Each time step cosists of evaluatig the 6 itermediate vectors k1,k2,..,k6 Ad piecig them together. Notice here I set up u at the start as a vector, ad delta4 accepts a vector ad dx) as argumets ad returs a vector. i.e. each of k1,k2,..,k6 is a vector.

9 Alterate Code I could also have used loops Note: u is a row vector of legth M so the k s are a matrix of size 6 x M

10 Q1) Build a fiite-differece solver for Homework 3 u t Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio ) 4cos Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. u = c x 2 π x) [ ] u x,0 = e, x 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

11 Cash-Karp The Cash-Karp Ruge-Kutta itegrator i our case is: k 1 = ) dtf u ) k = dtf u + b k ) k = dtf u + b k + b k ) k = dtf u + b k + b k + b k ) k = dtf u + b k + b k + b k + b k ) k = dtf u + b k + b k + b k + b k + b k u = u + c k + c k + c k + c k + c k + c k Notice, we do ot eed the time compoet o the right had side, because our fiite-differece right had side is idepedet of time.

12 Liear Stability Aalysis We achieve the liear stability aalysis by assumig f is liear i u: f u) = µ u k 1 = µ dtu ) k = µ dt u + b k ) k = µ dt u + b k + b k ) k = µ dt u + b k + b k + b k ) k = µ dt u + b k + b k + b k + b k ) k = µ dt u + b k + b k + b k + b k + b k u = u + c k + c k + c k + c k + c k + c k

13 cot We replace mu*dt with u k 1 = νu ) k = ν u + b k ) k = ν u + b k + b k ) k = ν u + b k + b k + b k ) k = ν u + b k + b k + b k + b k ) k = ν u + b k + b k + b k + b k + b k u = u + c k + c k + c k + c k + c k + c k

14 cot We wish to remove all the itermediate variables ad express the scheme i a oe-step form like: u Where the multiplier fuctio piu) is a 6 th order polyomial i u. It is certaily possible to fid all the coefficiets of this polyomial by had but a little messy. We ca take a short cut assumig Cash-Karp is actually a 5 th order scheme as claimed we kow that the first 6 terms of the polyomial multiplier must be the first 6 terms of the Taylor series for ) + 1 = π ν u e ν

15 cot So we kow that: π ν = 1+ ν + ν + ν + ν + ν + Cν 1! 2! 3! 4! 5! ) Where C is to be determied. However, lookig at the defiitio of the stages we see that there is oly oe cotributio to the 6 th order term: 6 c b b b b b ν So π ν = 1+ ν + ν + ν + ν + ν + c b b b b b ν 1! 2! 3! 4! 5! )

16 Stability Coditio We eed to plot the stability regio, so we determie the margi of stability by fidig u such that π ν ) = 1+ ν + ν + ν + ν + ν + c6b65b 54b43b32 b21ν = 1 1! 2! 3! 4! 5! The curve of poits i the root) complex plae with i magitude 1 ca be parameterized i theta by e θ So for each theta i [0,2pi) we seek the correspodig u such that: i π ν = 1+ ν + ν + ν + ν + ν + c b b b b b ν = 1! 2! 3! 4! 5! ) e θ

17 Matlab roots Commad The matlab roots commad ca be used to fid roots of a polyomial. If the polyomial is say: ) π x = a + a x + a x The costruct a vector of coefficiets highest order first): a = [ a, a, a ] Ad ivoke: rootsa) A vector of the roots if ay) of the polyomial will be retured.

18 Adaptig RKabstab.m So I took the routie from the class web page ad modified it slightly I hard coded it to use the multiplier polyomial for the Cash-Karp I chaged the plottig to use a scatter plot

19 Absolute Stability for Cash-Karp This is a classic picture. What is iterestig is that it does ot covicigly cover the imagiary axis!.

20 O The Imagiary Axis Here I used Matlab s polyval to evaluate the multiplier polyomial for u o the imagiary axis. Coclusio the absolute stability regio is just to the left of the imagiary axis ot a big issue here)

21 Q1) Build a fiite-differece solver for Homework 3 u t Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio ) 4cos Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. u = c x 2 π x) [ ] u x,0 = e, x 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

22 Q1d) Boud the spectral radius of the derivative operator All the eigevalues of the 4 th order cetral differece are o the imagiary axis, with values recall from Lecture 6): ic λ = θ θ m 6dx m m 8si ) si 2 )) So the gotcha is that there is o dt such that the eigevalues*dt are all exactly iside the stability regio. However, we will estimate the largest eigevalue ad make a assumptio..

23 Q1d) cotiued ic λ θ ) = 8si θ ) si 2θ )) 6dx dλ ic θ = θ θ dθ 6dx critical poits for θ which satisfy: ) ) 8cos ) 2cos 2 ) θ ) θ ) 0 = 8cos 2cos 2 2 θ ) θ ) ) =8cos 2 2cos 1 θ ) θ ) 2 =-4cos + 8cos ± i. e. cos θ ) = = i e θ 3 2 c dx -1.. = cos 1- ) m λ We ca estimate the largest magitude eigevalue directly

24 Q1) Build a fiite-differece solver for Homework 3 u t Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio ) 4cos Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. u = c x 2 π x) [ ] u x,0 = e, x 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

25 Q1e) Sice we are oly itegratig for 8 periods let s choose a reasoable maximum u <=1 So for close to absolute liear) stability Implies that we ca choose: i.e. the time step restrictio is: We ca further reduce the right had side of the iequality to reduce margial growth. cdt dx λ m dx dt c c dx

26 Q1) Build a fiite-differece solver for Homework 3 Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio u t Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. ) u = c x 2 π x) u x e x [ ] 4cos,0 =, 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

27 Q1f: Test Rus I already set up this iitial coditio for the web demos: I modified the testrig.m file to call the cetraldifferece4ckrk54.m file T=4 It looks like reasoable 4 th order covergece.. We examie the error ratios to be more certai

28 Q1) Build a fiite-differece solver for Homework 3 Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio u t ) Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. u = c x 2 π x) u x e x [ ] 4cos,0 =, 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

29 Q1g) Estimate Order of Accuracy of Solutio M Max error at t= Order of accuracy Cool asymptotically it looks like a fourth order code i space)

30 Q1) Build a fiite-differece solver for Homework 3 Q1a) use your Cash-Karp Ruge-Kutta time itegrator from HW2 for time steppig Q1b) use the 4 th order cetral differece i space periodic domai) Q1c) perform a stability aalysis for the time-steppig based o visual ispectio of the CK R-K stability regio cotaiig the imagiary axis) Q1d) boud the spectral radius of the spatial operator Q1e) choose a dt well i the stability regio u t Q1f) perform four rus with iitial coditio use M=20,40,80,160) ad compute maximum error at t=8 Q1g) estimate the accuracy order of the solutio. ) u = c x 2 π x) u x e x [ ] 4cos,0 =, 0,2 Q1h) extra credit: perform adaptive time-steppig to keep the local trucatio error from time steppig bouded by a tolerace.

31 Q1h) Estimatig the Local Trucatio Error Give the k vectors we ca also costruct a lower order 4 th order i time) approximatio to the updated solutio: 1 * 1 * 2 * 3 * 4 * 5 * 6 u + = u + c1 k + c2k + c3k + c4k + c5k + c6k The we ca ball park what the time step should be: dt rk 4 tol u = dt mi u u est rk 5 rk 4 0.2

32 Q1h) Code Modify last time step to lad o EdTime Form alterative embedded fourth order approximatio Estimate reasoable dt Check to see if we should reduce time step.

33 Q1h) Testig I started with a fairly large time step ad let the code adjust itself M Max error at t= Order of accuracy These are pretty much uchaged from before.

34 Q1h) Adaptive Time Steppig started with dt=100*dx) Q) Why does it take more time steps for the Lower resolutio rus?

35 Note o the Cash-Karp RK Check out: There is a iterestig treatmet of RK schemes, with the idea of parameterizig embedded RK schemes +1 stage, th order) by choosig the coefficiet i the multiplier directly. Icreasig this parameter a little will make sure that at least part of the imagiary axis is iside the absolute stability regio.

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Numerical Methods for Partial Differetial Equatios CAAM 45 Sprig 005 Lecture 4 -step time-steppig methods: stability, accuracy Ruge-Kutta Methods, Istructor: Tim Warburto Today Recall AB stability regios

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c)

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c) Problem. Compute the itegrals C r d for Z, where C r = ad r >. Recall that C r has the couter-clockwise orietatio. Solutio: We will use the idue Theorem to solve this oe. We could istead use other (perhaps

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2.

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2. Calculus Test File Sprig 06 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = +. Produce a solid by revolvig the regio aroud

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

9.3 The INTEGRAL TEST; p-series

9.3 The INTEGRAL TEST; p-series Lecture 9.3 & 9.4 Math 0B Nguye of 6 Istructor s Versio 9.3 The INTEGRAL TEST; p-series I this ad the followig sectio, you will study several covergece tests that apply to series with positive terms. Note

More information

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b) Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Math 220B Final Exam Solutions March 18, 2002

Math 220B Final Exam Solutions March 18, 2002 Math 0B Fial Exam Solutios March 18, 00 1. (1 poits) (a) (6 poits) Fid the Gree s fuctio for the tilted half-plae {(x 1, x ) R : x 1 + x > 0}. For x (x 1, x ), y (y 1, y ), express your Gree s fuctio G(x,

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

SCORE. Exam 2. MA 114 Exam 2 Fall 2017 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

SCORE. Exam 2. MA 114 Exam 2 Fall 2016 MA 4 Exam Fall 06 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Trasform The -trasform is a very importat tool i describig ad aalyig digital systems. It offers the techiques for digital filter desig ad frequecy aalysis of digital sigals. Defiitio of -trasform:

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

Math 210A Homework 1

Math 210A Homework 1 Math 0A Homework Edward Burkard Exercise. a) State the defiitio of a aalytic fuctio. b) What are the relatioships betwee aalytic fuctios ad the Cauchy-Riema equatios? Solutio. a) A fuctio f : G C is called

More information

Math 113 (Calculus 2) Section 12 Exam 4

Math 113 (Calculus 2) Section 12 Exam 4 Name: Row: Math Calculus ) Sectio Exam 4 8 0 November 00 Istructios:. Work o scratch paper will ot be graded.. For questio ad questios 0 through 5, show all your work i the space provided. Full credit

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Math 113 Exam 4 Practice

Math 113 Exam 4 Practice Math Exam 4 Practice Exam 4 will cover.-.. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Math 128A: Homework 1 Solutions

Math 128A: Homework 1 Solutions Math 8A: Homework Solutios Due: Jue. Determie the limits of the followig sequeces as. a) a = +. lim a + = lim =. b) a = + ). c) a = si4 +6) +. lim a = lim = lim + ) [ + ) ] = [ e ] = e 6. Observe that

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

ENGI Series Page 6-01

ENGI Series Page 6-01 ENGI 3425 6 Series Page 6-01 6. Series Cotets: 6.01 Sequeces; geeral term, limits, covergece 6.02 Series; summatio otatio, covergece, divergece test 6.03 Stadard Series; telescopig series, geometric series,

More information

Solutions to quizzes Math Spring 2007

Solutions to quizzes Math Spring 2007 to quizzes Math 4- Sprig 7 Name: Sectio:. Quiz a) x + x dx b) l x dx a) x + dx x x / + x / dx (/3)x 3/ + x / + c. b) Set u l x, dv dx. The du /x ad v x. By Itegratio by Parts, x(/x)dx x l x x + c. l x

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

MH1101 AY1617 Sem 2. Question 1. NOT TESTED THIS TIME

MH1101 AY1617 Sem 2. Question 1. NOT TESTED THIS TIME MH AY67 Sem Questio. NOT TESTED THIS TIME ( marks Let R be the regio bouded by the curve y 4x x 3 ad the x axis i the first quadrat (see figure below. Usig the cylidrical shell method, fid the volume of

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

Summary. Recap ... Last Lecture. Summary. Theorem

Summary. Recap ... Last Lecture. Summary. Theorem Last Lecture Biostatistics 602 - Statistical Iferece Lecture 23 Hyu Mi Kag April 11th, 2013 What is p-value? What is the advatage of p-value compared to hypothesis testig procedure with size α? How ca

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics X0/70 NATIONAL QUALIFICATIONS 005 MONDAY, MAY.00 PM 4.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Computational Fluid Dynamics. Lecture 3

Computational Fluid Dynamics. Lecture 3 Computatioal Fluid Dyamics Lecture 3 Discretizatio Cotiued. A fourth order approximatio to f x ca be foud usig Taylor Series. ( + ) + ( + ) + + ( ) + ( ) = a f x x b f x x c f x d f x x e f x x f x 0 0

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH Taylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. A ay poit i the eighbourhood of 0, the fuctio ƒ() ca be represeted by a power series of the followig form: X 0 f(a) f() f() ( ) f( ) ( )

More information

COMM 602: Digital Signal Processing

COMM 602: Digital Signal Processing COMM 60: Digital Sigal Processig Lecture 4 -Properties of LTIS Usig Z-Trasform -Iverse Z-Trasform Properties of LTIS Usig Z-Trasform Properties of LTIS Usig Z-Trasform -ve +ve Properties of LTIS Usig Z-Trasform

More information

Power Series: A power series about the center, x = 0, is a function of x of the form

Power Series: A power series about the center, x = 0, is a function of x of the form You are familiar with polyomial fuctios, polyomial that has ifiitely may terms. 2 p ( ) a0 a a 2 a. A power series is just a Power Series: A power series about the ceter, = 0, is a fuctio of of the form

More information

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α Nice plottig of proteis: I A widely used display of protei shapes is based o the coordiates of the alpha carbos - - C α -s. The coordiates of the C α -s are coected by a cotiuous curve that roughly follows

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES AP CALCULUS BC 04 SCORING GUIDELINES Questio 6 + The Taylor series for a fuctio f about x = is give by ( ) ( x ) ad coverges to f( x ) for = x < R, where R is the radius of covergece of the Taylor series.

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Solutions to Homework 1

Solutions to Homework 1 Solutios to Homework MATH 36. Describe geometrically the sets of poits z i the complex plae defied by the followig relatios /z = z () Re(az + b) >, where a, b (2) Im(z) = c, with c (3) () = = z z = z 2.

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Accurac, Stabilit ad Sstems of Equatios November 0, 07 Numerical Solutios of Ordiar Differetial Equatios Accurac, Stabilit ad Sstems of Equatios Larr Caretto Mecaical Egieerig 0AB Semiar i Egieerig Aalsis

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

Calculus with Analytic Geometry 2

Calculus with Analytic Geometry 2 Calculus with Aalytic Geometry Fial Eam Study Guide ad Sample Problems Solutios The date for the fial eam is December, 7, 4-6:3p.m. BU Note. The fial eam will cosist of eercises, ad some theoretical questios,

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

Solutions to Final Exam Review Problems

Solutions to Final Exam Review Problems . Let f(x) 4+x. Solutios to Fial Exam Review Problems Math 5C, Witer 2007 (a) Fid the Maclauri series for f(x), ad compute its radius of covergece. Solutio. f(x) 4( ( x/4)) ( x/4) ( ) 4 4 + x. Sice the

More information

Section 1.4. Power Series

Section 1.4. Power Series Sectio.4. Power Series De itio. The fuctio de ed by f (x) (x a) () c 0 + c (x a) + c 2 (x a) 2 + c (x a) + ::: is called a power series cetered at x a with coe ciet sequece f g :The domai of this fuctio

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

Math 116 Practice for Exam 3

Math 116 Practice for Exam 3 Math 6 Practice for Exam Geerated October 0, 207 Name: SOLUTIONS Istructor: Sectio Number:. This exam has 7 questios. Note that the problems are ot of equal difficulty, so you may wat to skip over ad retur

More information

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

Real Variables II Homework Set #5

Real Variables II Homework Set #5 Real Variables II Homework Set #5 Name: Due Friday /0 by 4pm (at GOS-4) Istructios: () Attach this page to the frot of your homework assigmet you tur i (or write each problem before your solutio). () Please

More information

Chapter 2: Numerical Methods

Chapter 2: Numerical Methods Chapter : Numerical Methods. Some Numerical Methods for st Order ODEs I this sectio, a summar of essetial features of umerical methods related to solutios of ordiar differetial equatios is give. I geeral,

More information

Please do NOT write in this box. Multiple Choice. Total

Please do NOT write in this box. Multiple Choice. Total Istructor: Math 0560, Worksheet Alteratig Series Jauary, 3000 For realistic exam practice solve these problems without lookig at your book ad without usig a calculator. Multiple choice questios should

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

9.3 Power Series: Taylor & Maclaurin Series

9.3 Power Series: Taylor & Maclaurin Series 9.3 Power Series: Taylor & Maclauri Series If is a variable, the a ifiite series of the form 0 is called a power series (cetered at 0 ). a a a a a 0 1 0 is a power series cetered at a c a a c a c a c 0

More information

MTH 133 Solutions to Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Solutions to Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12. Name: Sectio: Recitatio Istructor: INSTRUCTIONS Fill i your ame, etc. o this first page. Without fully opeig the exam, check that you have pages through. Show all your work o the stadard respose questios.

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1. Math 7 Sprig 06 PROBLEM SET 5 SOLUTIONS Notatios. Give a real umber x, we will defie sequeces (a k ), (x k ), (p k ), (q k ) as i lecture.. (a) (5 pts) Fid the simple cotiued fractio represetatios of 6

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) Math 0560, Exam 3 November 6, 07 The Hoor Code is i effect for this examiatio. All work is to be your ow. No calculators. The exam lasts for hour ad 5 mi. Be sure that your ame is o every page i case pages

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

from definition we note that for sequences which are zero for n < 0, X[z] involves only negative powers of z.

from definition we note that for sequences which are zero for n < 0, X[z] involves only negative powers of z. We ote that for the past four examples we have expressed the -trasform both as a ratio of polyomials i ad as a ratio of polyomials i -. The questio is how does oe kow which oe to use? [] X ] from defiitio

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

SCORE. Exam 2. MA 114 Exam 2 Fall 2016 Exam 2 Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3. Calculus Eam File Fall 07 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = 3 + 4. Produce a solid by revolvig the regio aroud

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information