Introduction. Chapter 8

Size: px
Start display at page:

Download "Introduction. Chapter 8"

Transcription

1 Chapter 8 Introduction In general, a researcher wants to compare one treatment against another. The analysis of variance (ANOVA) is a general test for comparing treatment means. When the null hypothesis of equality of treatment means are ed at some level of significance, we conclude that there exist significant differences among the treatment means. Typically, investigators want more detailed information about which treatments differ from which other treatments The analysis of variance does not tell us where these differences lie or which particular treatments have different means Introduction Multiple comparison procedures can be classified generally as: pairwise or grouped Pairwise mean comparison can be classified as: planned or unplanned Planned (priori) pairwise comparison specific pair of treatments to be compared was identified before the start of the experiment (e.g., control vs other treatments) done without doing F-test Unplanned (posteriori) pairwise comparison no specific comparison is chosen in advance every possible pair of treatment means is compared to identify pairs of treatment means that are significantly different done if F-test results in ing the null hypothesis of no difference Introduction The commonly used procedures for pairwise mean comparison are: Least significant difference (LSD) test Honest significant difference (HSD) test Scheffe s (S) test Student-Newman-Keul (SNK) test Duncan s multiple range test (DMRT) 4 1

2 Used only if the F-test in the ANOVA is significant May not be used when there are more than four treatments to test, but maybe used for preplanned comparisons regardless of the number of treatments Used for experiments with equal or unequal replications Uses the T table relatively a liberal one since it makes a lot of ions of the null hypothesis Procedure: 1. Arrange the treatment means in descending order.. Compute the difference (d ij ) between the means of the i th and j th treatments: d xi x j. Compute the LSD value at α LSD t ij, v 1 1 MSE ri rj v=error df 5 Ho: μ i = μ j Ha: μ i μ j Decision Rule: Reject Ho if d ij LSD α ; else, do not Ho. This means that the difference between a specific pair of treatment means is significant at the α level of significance if it exceeds LSD α. Example: Replication r i Total

3 ANOVA Table Source of Variation SS df MS F F 0.05 s Error Total.0 16 r i T 5.4 T4 4.5 T1 5 T 1.7 s d ij LSD 0.05 Decision on Ho T vs T Conclusion T vs T Reject Significantly different T vs T Reject Significantly different T4 vs T T4 vs T Reject Significantly different T1 vs T r i T 5.40 a T4 4.5 ab T T 1. s with at least a common letter are not significantly different bc c Example: Consider the RCBD experiment conducted to determine the effect of fertilizer level on the yield of wheat involving three varieties. Four fertilizer levels were tested on wheat planted on pots placed in a greenhouse. Fertilizer Level T Block Total Block Variety of Wheat V 1 V V Total y.. = 5

4 ANOVA Table Source of variation df Sum of Squares Squares Fertilizer Levels Varieties 8 1. Error (Residual) Total F c F LSD t ,6 n i Sample T 5 s dij LSD0.05 Decision on Ho Conclusion T1 vs T Reject Significantly different T1 VS T Reject Significantly different T1 VS T Reject Significantly different T VS T T VS T T4 VS T n i Sample T a b b 5 b s with at least a common letter are not significantly different 4

5 Tukey s Honest Significant Difference Used only if the F-test in the ANOVA is significant Used for experiments with equal replications Uses the studentized range table More conservative than LSD Test statistic Let q α,t,v be the value of the studentized range statistic at a specified α, v error df and t treatments. Then Tukey-Kramer test Tukey (195) and Kramer (19) provided a modification of Tukey s HSD test when the number of replications are unequal Test statistic TK q, t, v MSE 1 1 ri rj HSD q, t, v 1 MSE r Tukey-Kramer test Example1: Refer to the first example used in LSD For this data, MSE=0.078, v=1 and t=4. r i T 5.4 T4 4.5 T1 5 T 1.7 Tukey-Kramer test s d ij TK Decision on Ho Conclusion T vs T T vs T T vs T Reject Significantly different T4 vs T T4 vs T Reject Significantly different T1 vs T

6 Tukey-Kramer test r i T 5.40 a T4 4.5 a T ab T 1.7 b s with at least a common letter are not significantly different Tukey s HSD test Example: Refer to the nd example used in LSD For this data, MSE=18, v=6 and p=4. r i T 5 HSD q 1 18, t, v MSE r Tukey s HSD test s dij HSD Decision on Ho Conclusion T1 vs T T1 VS T Reject Significantly different T1 VS T Reject Significantly different T VS T T VS T T4 VS T Tukey s HSD test r i T 5 a ab b b s with at least a common letter are not significantly different 6

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

A posteriori multiple comparison tests

A posteriori multiple comparison tests A posteriori multiple comparison tests 11/15/16 1 Recall the Lakes experiment Source of variation SS DF MS F P Lakes 58.000 2 29.400 8.243 0.006 Error 42.800 12 3.567 Total 101.600 14 The ANOVA tells us

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

PLSC PRACTICE TEST ONE

PLSC PRACTICE TEST ONE PLSC 724 - PRACTICE TEST ONE 1. Discuss briefly the relationship between the shape of the normal curve and the variance. 2. What is the relationship between a statistic and a parameter? 3. How is the α

More information

ANOVA Multiple Comparisons

ANOVA Multiple Comparisons ANOVA Multiple Comparisons Multiple comparisons When we carry out an ANOVA on k treatments, we test H 0 : µ 1 = =µ k versus H a : H 0 is false Assume we reject the null hypothesis, i.e. we have some evidence

More information

Introduction to Analysis of Variance (ANOVA) Part 2

Introduction to Analysis of Variance (ANOVA) Part 2 Introduction to Analysis of Variance (ANOVA) Part 2 Single factor Serpulid recruitment and biofilms Effect of biofilm type on number of recruiting serpulid worms in Port Phillip Bay Response variable:

More information

Mean Comparisons PLANNED F TESTS

Mean Comparisons PLANNED F TESTS Mean Comparisons F-tests provide information on significance of treatment effects, but no information on what the treatment effects are. Comparisons of treatment means provide information on what the treatment

More information

Linear Combinations. Comparison of treatment means. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 6 1

Linear Combinations. Comparison of treatment means. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 6 1 Linear Combinations Comparison of treatment means Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 6 1 Linear Combinations of Means y ij = µ + τ i + ǫ ij = µ i + ǫ ij Often study

More information

Multiple Comparison Procedures Cohen Chapter 13. For EDUC/PSY 6600

Multiple Comparison Procedures Cohen Chapter 13. For EDUC/PSY 6600 Multiple Comparison Procedures Cohen Chapter 13 For EDUC/PSY 6600 1 We have to go to the deductions and the inferences, said Lestrade, winking at me. I find it hard enough to tackle facts, Holmes, without

More information

Laboratory Topics 4 & 5

Laboratory Topics 4 & 5 PLS205 Lab 3 January 23, 2014 Orthogonal contrasts Class comparisons in SAS Trend analysis in SAS Multiple mean comparisons Laboratory Topics 4 & 5 Orthogonal contrasts Planned, single degree-of-freedom

More information

Multiple comparisons The problem with the one-pair-at-a-time approach is its error rate.

Multiple comparisons The problem with the one-pair-at-a-time approach is its error rate. Multiple comparisons The problem with the one-pair-at-a-time approach is its error rate. Each confidence interval has a 95% probability of making a correct statement, and hence a 5% probability of making

More information

STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons (Ch. 4-5)

STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons (Ch. 4-5) STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons Ch. 4-5) Recall CRD means and effects models: Y ij = µ i + ϵ ij = µ + α i + ϵ ij i = 1,..., g ; j = 1,..., n ; ϵ ij s iid N0, σ 2 ) If we reject

More information

More about Single Factor Experiments

More about Single Factor Experiments More about Single Factor Experiments 1 2 3 0 / 23 1 2 3 1 / 23 Parameter estimation Effect Model (1): Y ij = µ + A i + ɛ ij, Ji A i = 0 Estimation: µ + A i = y i. ˆµ = y..  i = y i. y.. Effect Modell

More information

Linear Combinations of Group Means

Linear Combinations of Group Means Linear Combinations of Group Means Look at the handicap example on p. 150 of the text. proc means data=mth567.disability; class handicap; var score; proc sort data=mth567.disability; by handicap; proc

More information

1 One-way Analysis of Variance

1 One-way Analysis of Variance 1 One-way Analysis of Variance Suppose that a random sample of q individuals receives treatment T i, i = 1,,... p. Let Y ij be the response from the jth individual to be treated with the ith treatment

More information

Hypothesis T e T sting w ith with O ne O One-Way - ANOV ANO A V Statistics Arlo Clark Foos -

Hypothesis T e T sting w ith with O ne O One-Way - ANOV ANO A V Statistics Arlo Clark Foos - Hypothesis Testing with One-Way ANOVA Statistics Arlo Clark-Foos Conceptual Refresher 1. Standardized z distribution of scores and of means can be represented as percentile rankings. 2. t distribution

More information

H0: Tested by k-grp ANOVA

H0: Tested by k-grp ANOVA Pairwise Comparisons ANOVA for multiple condition designs Pairwise comparisons and RH Testing Alpha inflation & Correction LSD & HSD procedures Alpha estimation reconsidered H0: Tested by k-grp ANOVA Regardless

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

Chap The McGraw-Hill Companies, Inc. All rights reserved.

Chap The McGraw-Hill Companies, Inc. All rights reserved. 11 pter11 Chap Analysis of Variance Overview of ANOVA Multiple Comparisons Tests for Homogeneity of Variances Two-Factor ANOVA Without Replication General Linear Model Experimental Design: An Overview

More information

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota Multiple Testing Gary W. Oehlert School of Statistics University of Minnesota January 28, 2016 Background Suppose that you had a 20-sided die. Nineteen of the sides are labeled 0 and one of the sides is

More information

The entire data set consists of n = 32 widgets, 8 of which were made from each of q = 4 different materials.

The entire data set consists of n = 32 widgets, 8 of which were made from each of q = 4 different materials. One-Way ANOVA Summary The One-Way ANOVA procedure is designed to construct a statistical model describing the impact of a single categorical factor X on a dependent variable Y. Tests are run to determine

More information

Pairwise multiple comparisons are easy to compute using SAS Proc GLM. The basic statement is:

Pairwise multiple comparisons are easy to compute using SAS Proc GLM. The basic statement is: Pairwise Multiple Comparisons in SAS Pairwise multiple comparisons are easy to compute using SAS Proc GLM. The basic statement is: means effects / options Here, means is the statement initiat, effects

More information

Chapter 10. Design of Experiments and Analysis of Variance

Chapter 10. Design of Experiments and Analysis of Variance Chapter 10 Design of Experiments and Analysis of Variance Elements of a Designed Experiment Response variable Also called the dependent variable Factors (quantitative and qualitative) Also called the independent

More information

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013 Topic 19 - Inference - Fall 2013 Outline Inference for Means Differences in cell means Contrasts Multiplicity Topic 19 2 The Cell Means Model Expressed numerically Y ij = µ i + ε ij where µ i is the theoretical

More information

Analysis of variance

Analysis of variance Analysis of variance 1 Method If the null hypothesis is true, then the populations are the same: they are normal, and they have the same mean and the same variance. We will estimate the numerical value

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

H0: Tested by k-grp ANOVA

H0: Tested by k-grp ANOVA Analyses of K-Group Designs : Omnibus F, Pairwise Comparisons & Trend Analyses ANOVA for multiple condition designs Pairwise comparisons and RH Testing Alpha inflation & Correction LSD & HSD procedures

More information

STAT22200 Spring 2014 Chapter 5

STAT22200 Spring 2014 Chapter 5 STAT22200 Spring 2014 Chapter 5 Yibi Huang April 29, 2014 Chapter 5 Multiple Comparisons Chapter 5-1 Chapter 5 Multiple Comparisons Note the t-tests and C.I. s are constructed assuming we only do one test,

More information

Multiple Pairwise Comparison Procedures in One-Way ANOVA with Fixed Effects Model

Multiple Pairwise Comparison Procedures in One-Way ANOVA with Fixed Effects Model Biostatistics 250 ANOVA Multiple Comparisons 1 ORIGIN 1 Multiple Pairwise Comparison Procedures in One-Way ANOVA with Fixed Effects Model When the omnibus F-Test for ANOVA rejects the null hypothesis that

More information

Orthogonal contrasts and multiple comparisons

Orthogonal contrasts and multiple comparisons BIOL 933 Lab 4 Fall 2017 Orthogonal contrasts Class comparisons in R Trend analysis in R Multiple mean comparisons Orthogonal contrasts and multiple comparisons Orthogonal contrasts Planned, single degree-of-freedom

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Blood coagulation time T avg A 62 60 63 59 61 B 63 67 71 64 65 66 66 C 68 66 71 67 68 68 68 D 56 62 60 61 63 64 63 59 61 64 Blood coagulation time A B C D Combined 56 57 58 59 60 61

More information

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous.

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous. COMPLETELY RANDOM DESIGN (CRD) Description of the Design -Simplest design to use. -Design can be used when experimental units are essentially homogeneous. -Because of the homogeneity requirement, it may

More information

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

More information

Group comparison test for independent samples

Group comparison test for independent samples Group comparison test for independent samples The purpose of the Analysis of Variance (ANOVA) is to test for significant differences between means. Supposing that: samples come from normal populations

More information

9 One-Way Analysis of Variance

9 One-Way Analysis of Variance 9 One-Way Analysis of Variance SW Chapter 11 - all sections except 6. The one-way analysis of variance (ANOVA) is a generalization of the two sample t test to k 2 groups. Assume that the populations of

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018 Math 403 - P. & S. III - Dr. McLoughlin - 1 2018 2 Hand-out 2 Dr. M. P. M. M. M c Loughlin Revised 2018 3. Fundamentals 3.1. Preliminaries. Suppose we can produce a random sample of weights of 10 year-olds

More information

http://www.statsoft.it/out.php?loc=http://www.statsoft.com/textbook/ Group comparison test for independent samples The purpose of the Analysis of Variance (ANOVA) is to test for significant differences

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Two types of ANOVA tests: Independent measures and Repeated measures Comparing 2 means: X 1 = 20 t - test X 2 = 30 How can we Compare 3 means?: X 1 = 20 X 2 = 30 X 3 = 35 ANOVA

More information

Degrees of freedom df=1. Limitations OR in SPSS LIM: Knowing σ and µ is unlikely in large

Degrees of freedom df=1. Limitations OR in SPSS LIM: Knowing σ and µ is unlikely in large Z Test Comparing a group mean to a hypothesis T test (about 1 mean) T test (about 2 means) Comparing mean to sample mean. Similar means = will have same response to treatment Two unknown means are different

More information

Lecture 15 Topic 11: Unbalanced Designs (missing data)

Lecture 15 Topic 11: Unbalanced Designs (missing data) Lecture 15 Topic 11: Unbalanced Designs (missing data) In the real world, things fall apart: plants are destroyed/trampled/eaten animals get sick volunteers quit assistants are sloppy accidents happen

More information

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03 STA60/03//07 Tutorial letter 03//07 Applied Statistics II STA60 Semester Department of Statistics Solutions to Assignment 03 Define tomorrow. university of south africa QUESTION (a) (i) The normal quantile

More information

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Page 1 Linear Combination of Means ANOVA: y ij = µ + τ i + ɛ ij = µ i + ɛ ij Linear combination: L = c 1 µ 1 + c 1 µ 2 +...+ c a µ a = a i=1

More information

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Multiple Comparisons

Multiple Comparisons Multiple Comparisons Error Rates, A Priori Tests, and Post-Hoc Tests Multiple Comparisons: A Rationale Multiple comparison tests function to tease apart differences between the groups within our IV when

More information

Multiple Comparison Methods for Means

Multiple Comparison Methods for Means SIAM REVIEW Vol. 44, No. 2, pp. 259 278 c 2002 Society for Industrial and Applied Mathematics Multiple Comparison Methods for Means John A. Rafter Martha L. Abell James P. Braselton Abstract. Multiple

More information

Comparing Several Means

Comparing Several Means Comparing Several Means Some slides from R. Pruim STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy The Dating World of Swordtail Fish In some species of swordtail fish, males develop

More information

Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data

Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data 1999 Prentice-Hall, Inc. Chap. 10-1 Chapter Topics The Completely Randomized Model: One-Factor

More information

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions Introduction to Analysis of Variance 1 Experiments with More than 2 Conditions Often the research that psychologists perform has more conditions than just the control and experimental conditions You might

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

Comparing the means of more than two groups

Comparing the means of more than two groups Comparing the means of more than two groups Chapter 15 Analysis of variance (ANOVA) Like a t-test, but can compare more than two groups Asks whether any of two or more means is different from any other.

More information

13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics. Post hoc Comparisons 13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Post hoc Comparisons In the prior chapter we used ANOVA

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

Design of Experiments. Factorial experiments require a lot of resources

Design of Experiments. Factorial experiments require a lot of resources Design of Experiments Factorial experiments require a lot of resources Sometimes real-world practical considerations require us to design experiments in specialized ways. The design of an experiment is

More information

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Jurusan Teknik Industri Universitas Brawijaya Outline Introduction The Analysis of Variance Models for the Data Post-ANOVA Comparison of Means Sample

More information

10 One-way analysis of variance (ANOVA)

10 One-way analysis of variance (ANOVA) 10 One-way analysis of variance (ANOVA) A factor is in an experiment; its values are. A one-way analysis of variance (ANOVA) tests H 0 : µ 1 = = µ I, where I is the for one factor, against H A : at least

More information

Statistics For Economics & Business

Statistics For Economics & Business Statistics For Economics & Business Analysis of Variance In this chapter, you learn: Learning Objectives The basic concepts of experimental design How to use one-way analysis of variance to test for differences

More information

B. Weaver (18-Oct-2006) MC Procedures Chapter 1: Multiple Comparison Procedures ) C (1.1)

B. Weaver (18-Oct-2006) MC Procedures Chapter 1: Multiple Comparison Procedures ) C (1.1) B. Weaver (18-Oct-2006) MC Procedures... 1 Chapter 1: Multiple Comparison Procedures 1.1 Introduction The omnibus F-test in a one-way ANOVA is a test of the null hypothesis that the population means of

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data 1 Stats fest 2007 Analysis of variance murray.logan@sci.monash.edu.au Single factor ANOVA 2 Aims Description Investigate differences between population means Explanation How much of the variation in response

More information

Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis

Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis Sometimes researchers make multiple measurements on the same experimental unit.

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

Tukey Complete Pairwise Post-Hoc Comparison

Tukey Complete Pairwise Post-Hoc Comparison Tukey Complete Pairwise Post-Hoc Comparison Engineering Statistics II Section 10.2 Josh Engwer TTU 2018 Josh Engwer (TTU) Tukey Complete Pairwise Post-Hoc Comparison 2018 1 / 23 PART I PART I: Gosset s

More information

Multiple Testing. Tim Hanson. January, Modified from originals by Gary W. Oehlert. Department of Statistics University of South Carolina

Multiple Testing. Tim Hanson. January, Modified from originals by Gary W. Oehlert. Department of Statistics University of South Carolina Multiple Testing Tim Hanson Department of Statistics University of South Carolina January, 2017 Modified from originals by Gary W. Oehlert Type I error A Type I error is to wrongly reject the null hypothesis

More information

Chapter 11 - Lecture 1 Single Factor ANOVA

Chapter 11 - Lecture 1 Single Factor ANOVA Chapter 11 - Lecture 1 Single Factor ANOVA April 7th, 2010 Means Variance Sum of Squares Review In Chapter 9 we have seen how to make hypothesis testing for one population mean. In Chapter 10 we have seen

More information

STA 4211 Exam 1 Spring 2015 PRINT Name

STA 4211 Exam 1 Spring 2015 PRINT Name STA 4211 Exam 1 Spring 2015 PRINT Name For all significance tests, use = 0.05 significance level. Show work for any partial credit! Q.1. In the broiler chicken study, with factor A (base diet: Sorghum,

More information

STAT Chapter 10: Analysis of Variance

STAT Chapter 10: Analysis of Variance STAT 515 -- Chapter 10: Analysis of Variance Designed Experiment A study in which the researcher controls the levels of one or more variables to determine their effect on the variable of interest (called

More information

Independent Samples ANOVA

Independent Samples ANOVA Independent Samples ANOVA In this example students were randomly assigned to one of three mnemonics (techniques for improving memory) rehearsal (the control group; simply repeat the words), visual imagery

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

Chapter 10: Analysis of variance (ANOVA)

Chapter 10: Analysis of variance (ANOVA) Chapter 10: Analysis of variance (ANOVA) ANOVA (Analysis of variance) is a collection of techniques for dealing with more general experiments than the previous one-sample or two-sample tests. We first

More information

ANOVA: Comparing More Than Two Means

ANOVA: Comparing More Than Two Means 1 ANOVA: Comparing More Than Two Means 10.1 ANOVA: The Completely Randomized Design Elements of a Designed Experiment Before we begin any calculations, we need to discuss some terminology. To make this

More information

Stat 6640 Solution to Midterm #2

Stat 6640 Solution to Midterm #2 Stat 6640 Solution to Midterm #2 1. A study was conducted to examine how three statistical software packages used in a statistical course affect the statistical competence a student achieves. At the end

More information

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE It would be very unusual for all the research one might conduct to be restricted to comparisons of only two samples. Respondents and various groups are seldom divided

More information

OHSU OGI Class ECE-580-DOE :Design of Experiments Steve Brainerd

OHSU OGI Class ECE-580-DOE :Design of Experiments Steve Brainerd Why We Use Analysis of Variance to Compare Group Means and How it Works The question of how to compare the population means of more than two groups is an important one to researchers. Let us suppose that

More information

Unit 12: Analysis of Single Factor Experiments

Unit 12: Analysis of Single Factor Experiments Unit 12: Analysis of Single Factor Experiments Statistics 571: Statistical Methods Ramón V. León 7/16/2004 Unit 12 - Stat 571 - Ramón V. León 1 Introduction Chapter 8: How to compare two treatments. Chapter

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means Data files SpiderBG.sav Attractiveness.sav Homework: sourcesofself-esteem.sav ANOVA: A Framework Understand the basic principles

More information

N J SS W /df W N - 1

N J SS W /df W N - 1 One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F J Between Groups nj( j * ) J - SS B /(J ) MS B /MS W = ( N

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

Analysis of Variance II Bios 662

Analysis of Variance II Bios 662 Analysis of Variance II Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-24 17:21 BIOS 662 1 ANOVA II Outline Multiple Comparisons Scheffe Tukey Bonferroni

More information

One-way ANOVA. Experimental Design. One-way ANOVA

One-way ANOVA. Experimental Design. One-way ANOVA Method to compare more than two samples simultaneously without inflating Type I Error rate (α) Simplicity Few assumptions Adequate for highly complex hypothesis testing 09/30/12 1 Outline of this class

More information

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ 1 = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F Between Groups n j ( j - * ) J - 1 SS B / J - 1 MS B /MS

More information

20.0 Experimental Design

20.0 Experimental Design 20.0 Experimental Design Answer Questions 1 Philosophy One-Way ANOVA Egg Sample Multiple Comparisons 20.1 Philosophy Experiments are often expensive and/or dangerous. One wants to use good techniques that

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

QUEEN MARY, UNIVERSITY OF LONDON

QUEEN MARY, UNIVERSITY OF LONDON QUEEN MARY, UNIVERSITY OF LONDON MTH634 Statistical Modelling II Solutions to Exercise Sheet 4 Octobe07. We can write (y i. y.. ) (yi. y i.y.. +y.. ) yi. y.. S T. ( Ti T i G n Ti G n y i. +y.. ) G n T

More information

Group comparison test for independent samples

Group comparison test for independent samples Group comparison test for independent samples Samples come from normal populations with possibly different means but a common variance Two independent samples: z or t test on difference between means Three,

More information

1. What does the alternate hypothesis ask for a one-way between-subjects analysis of variance?

1. What does the alternate hypothesis ask for a one-way between-subjects analysis of variance? 1. What does the alternate hypothesis ask for a one-way between-subjects analysis of variance? 2. What is the difference between between-group variability and within-group variability? 3. What does between-group

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA)

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Rationale and MANOVA test statistics underlying principles MANOVA assumptions Univariate ANOVA Planned and unplanned Multivariate ANOVA

More information

Garvan Ins)tute Biosta)s)cal Workshop 16/7/2015. Tuan V. Nguyen. Garvan Ins)tute of Medical Research Sydney, Australia

Garvan Ins)tute Biosta)s)cal Workshop 16/7/2015. Tuan V. Nguyen. Garvan Ins)tute of Medical Research Sydney, Australia Garvan Ins)tute Biosta)s)cal Workshop 16/7/2015 Tuan V. Nguyen Tuan V. Nguyen Garvan Ins)tute of Medical Research Sydney, Australia Analysis of variance Between- group and within- group varia)on explained

More information

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr.

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr. Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should be able

More information

PROBLEM TWO (ALKALOID CONCENTRATIONS IN TEA) 1. Statistical Design

PROBLEM TWO (ALKALOID CONCENTRATIONS IN TEA) 1. Statistical Design PROBLEM TWO (ALKALOID CONCENTRATIONS IN TEA) 1. Statistical Design The purpose of this experiment was to determine differences in alkaloid concentration of tea leaves, based on herb variety (Factor A)

More information

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 13, Part A: Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis

More information

Study Guide #3: OneWay ANALYSIS OF VARIANCE (ANOVA)

Study Guide #3: OneWay ANALYSIS OF VARIANCE (ANOVA) Study Guide #3: OneWay ANALYSIS OF VARIANCE (ANOVA) About the ANOVA Test In educational research, we are most often involved finding out whether there are differences between groups. For example, is there

More information

General Linear Models (GLM) for Fixed Factors

General Linear Models (GLM) for Fixed Factors Chapter 224 General Linear Models (GLM) for Fixed Factors Introduction This procedure performs analysis of variance (ANOVA) and analysis of covariance (ANCOVA) for factorial models that include fixed factors

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Much of statistical inference centers around the ability to distinguish between two or more groups in terms of some underlying response variable y. Sometimes, there are but

More information