1 Introduction The Separation of Independent Sources (SIS) assumes that some unknown but independent temporal signals propagate through a mixing and/o

Size: px
Start display at page:

Download "1 Introduction The Separation of Independent Sources (SIS) assumes that some unknown but independent temporal signals propagate through a mixing and/o"

Transcription

1 Appeared in IEEE Trans. on Circuits and Systems, vol. 42, no. 11, pp , November 95 c Implementation and Test Results of a Chip for The Separation of Mixed Signals Ammar B. A. Gharbi and Fathi M. A. Salam Circuits, Systems and Articial Neural Networks Laboratory Department of Electrical Engineering Michigan State University, East Lansing, MI gharbi@ee.msu.edu, salam@ee.msu.edu Abstract We describe an algorithm and chip implementation for separating a mixture of unknown, but independent, temporal signals in static and dynamic environments. The proposed algorithm, which is a simple modication of the Herault and Jutten (HJ) algorithm, proved to be robust to parameter variations. Moreover, we present some chip results to quantify the performance of the modied algorithm in static and dynamic (mixing and ltering) environments. Acknowledgment: This work is supported in part by the Michigan Research Excellence Fund (REF). 1

2 1 Introduction The Separation of Independent Sources (SIS) assumes that some unknown but independent temporal signals propagate through a mixing and/or ltering natural or synthetic medium. By sensing outputs of this medium, a neural network is tailored to adaptively recover the original independent signals. Using only the property of independence, the neural network would work to counteract the eect of the mixing medium, see [1], [2], [3] and [4]. Major applications include the separation of signals received via an array of sensors in radar, sonar, pace makers, hearing aides, and medical diagnosis. (More motivation of the potential uses of this approach are relegated to the cited references.) One essential and practical limitation, however, is that the HJ algorithm and all its reported realizations, considers only static mixing environments represented by an unknown but constant matrix.dynamic environments which signify mixing and ltering are more realistic. Filtering indeed introduces a physical signal delay whichmaybecontributed by the medium and/or the sensors. One may also consider a cascade of lters to construct a delay line to provide for larger signal delays. This work introduces a modication of the Herault-Jutten (HJ) algorithm which aspires to address the eect of dynamic media in mixing and/or ltering signals. It describes the implementation and application performance of a prototype neuro-chip in static (mixing) and dynamic (mixing and ltering) environments. Moreover, it experimentally quanties the chip's capability and limitation. 2 Problem Denition The general block diagram for SIS is shown in Figure 1. The vectors s(t), e(t), and y(t) are, respectively, the unknown source vector, the measured signal vector, and the output signal vector. The network to be designed receives the signal e(t) and adaptively modies y(t) to reproduce the original signal s(t). In [1] and [2], Herault and Jutten had proposed an algorithm that assumes a static linear medium with no dynamics. The input to the network model is a measured signal vector, e(t): e(t) =As(t) (1) where A is a matrix whose components are all positive and which models the environment statically. Furthermore, A is assumed to be nonsingular. Its diagonal entries are all ones and each o diagonal element is less than one. Herault and Jutten [1, 2] used a recursive architecture made up of fully 2

3 interconnected outputs. Each output,y i (t), receives the mixed signal, e i (t), and a weighted sum of all other outputs, ; P j6=i d ij y j (t). Thus, y(t) =e(t) ; D y(t) (2) where D is an nn matrix whose main diagonal is zero. Now, the problem of separation of signals translates to retrieving the original signals. In the limit, it is thus desired to have: y(t) =P s(t) where P is a permutation matrix. From biological and intuitive inspirations, Herault and Jutten [1, 2] proposed the following update law: _ d ij = ij f(y i )g(y j ) (3) where f(:) and g(:) are two nonlinear odd functions and ij is the learning rate. This algorithm has been implemented in CMOS. Successful testing of several implementations, using static models of the environment and the network, described by (1) and (2), has been reported in [5] and [6]. However, the algorithm, and thus its implementations, lacks robustness to changes in the environment model (which may include dynamics). 3 A Modied HJ Algorithm The network of (2) can be rewritten as =;y i + e i ; X j6=i d ij y j (4) To include the eect of the transient dynamics, we consider the dynamic network i _y i (t) =;y i (t)+e i (t) ; X j6=i d ij y j (t) (5) where i, for all i, is selected to provide time-scale separation between (5) and (3). By considering the dynamic network (5) in conjunction with the update law (3), only the stable and robust solutions of (5) become feasible solutions. This robustness property is important in lieu of the fact that physical circuit realization is necessarily prone to function approximation and inaccuracies. Moreover, this modied algorithm performs smoothing and enables an integrated circuit implementation to dominate the ever-present parasitic capacitance of its transistors. In [4], simulation 3

4 results had shown that the system described by (1), (3) and (5) successfully separates mixed signals more robustly. Our chip implementation of system (3) and (5), discussed below, will be tested in both the static environment case as well as the more realistic dynamic environment case. It should be noted that dynamic environment is represented by a linear mixing and ltering function, where ltering introduces a physical signal delay characteristics. 4 VLSI Implementation The modied HJ algorithm is implemented in CMOS using 2:m technology on a Tiny Chip (2:222:25mm 2 ). Equations (3) and (5) are implemented in CMOS by the circuit diagrams shown in Figure 2 using basic building blocks from [5, 7]. The governing equations are _V ij = 2wI e (V b+v ) tanh C ij 2 y i sinh y j C i V ij ; V T (V R ; V T ) _y i = e i ; y i + X j6=i V R ; V T y i Observe the explicit inclusion of the capacitor, Ci, to generate the proper dynamics necessitated by our algorithm. The table below shows the parameters in equations (3) and (5), their corresponding CMOS expressions as well as their nominal values in the course of testing. CMOS expression Nominal value i Ci (V R ;V T ) 1:2 1 ;8 s ij 2wI e (V b +V ) C ij 8: 1 4 s ;1 Using the basic building blocks, the circuit implementation of our algorithm, governed by (3) and (5), is directly realized. Observe that the ratio between i and the inverse of ij is about 4-folds, leading to a fast and slow time-scales of the dynamics of the network and the weight update. This distinct fast-slow time-scales are crucial in enabling convergence of the algorithm. 5 Test Results The resulting chip is tested to quantify its performance for static and dynamic media. The chip testing has been carried out using a two-neuron network where it is desired to separate two independent signals. Experiments have been conducted to investigate the performance of the chip for the separation of signals in three scenarios: (i) separation of prototype waveforms such as sine, triangular and square waveforms, (ii) separation of two speech segments of two dierent English 4

5 speakers, or English and Japanese speakers, and (iii) separation of white noise and an English speech segment. 5.1 The Static Medium Case It is assumed here that the mixed signals are linear combinations of the unknown sources as described in (1). The combined circuits shown in Figure 3, with C F ij combination of the original sources: e i = nx R R j=1 ij s j = s i + X j6=i R R ij s j with R ii = R =1k =, will produce a linear Thus, the coecient of the matrix A in (1), a ij = R R ij,canbevaried by using an external variable potentiometer for R ij. Such variations can be used to study the robustness of the network realized on the Tiny Chip. Successful separation was obtained in the rst two cases for mixing levels less than 8%. For the third case, perfect separation is attained only for mixing levels less than 3%. Above these levels, the outputs of the network are not separated but rather contain a mixture of the original signals. See Figure 4 for example experimental results. For the three mentioned scenarios, the level of mixing has been varied in order to study the robustness of the network to variations. For this reason, the parameters a ij are initially xed to some values. Once the network converged (and separation of signals is established), the parameters a ij are then varied in order to observe the quality of performance. Experiments for dierent starting values of the mixing matrix A were performed. The percentage of the robustness to each parameter is then recorded. Based on the experiments, the network is robust to parameter variations of about 15% (on average). As the level of mixing is varied, it was discovered that the network fails to separate the signals when the mixing reaches some level. Based on experiments, the coecients of the mixing matrix A should range between. and.8 for the rst two scenarios and. and.3 for the third scenario. 5.2 The Dynamic Modeling Case It is now assumed that the input to the network is a superposition and a ltered version of the unknown sources. This is a more realistic, real-world, mixing scenario. The circuit diagrams shown in Figure 3 (a) is used to obtain a ltered version of the original signals: e i = nx X F ij (s j )=s i + j=1 j6=n 5 F ij (s j ) with C Fij = and R ij = R

6 F ij (:) isalow pass lter with gain g ij = R =R ij and cuto frequency! ij =1=R C Fij, namely F ij (V in )= g ij s! cij +1 V in The goal now is to study whether the modied algorithm can still update the parameters where the parameters d ij will adaptively counter the eect of g ij and! cij, and thus recover the original signals. The three previous scenarios are repeated in studying this problem. Exhaustive experimentation and testing led to the conclusion that separation of the signals occurs in the rst two scenarios when g ij < :4 and also in the third scenario when g ij < :15. See Figure 5 for example results. It is noted that the interval range over which the separation occured had shrunk considerably in comparison to the linear static medium case. Nonetheless, the chip was able to achieve signal separation in this dynamic medium as well. 6 Conclusion We have tested chip implementation of the modied HJ algorithm and explored its validity range. The modication produces robust performance to parameter variations and to dynamic media eects. Limits were also experimentally quantied. The fact that realistic sensors have their own inherent dynamics underlines the need for such consideration. We showed that the modied algorithm has a potential in solving the problem of SIS in more realistic real-world environments. References [1] J. Herault and C. Jutten. Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24:1{1, July [2] J. Herault and C. Jutten. Blind separation of sources, part 2: Problem statement. Signal Processing, 24:11{2, July [3] J. C. Platt and F. Faggin. Networks for the separation sources that are superimposed and delayed. Advances in Neural Information Processing systems, 1:73{737, [4] F. M. A. Salam. An adaptive network for blind separation of independent signals. International Symposium on Circuits and Systems, 1:431{434, May

7 [5] E. Vittoz and X. Arreguit. Cmos integration of herault-jutten cells for separation of sources. Proceedings Workshop on Analog VLSI and Neural Systems, May [6] M. H. Cohen and G. Andreou. Current-mode subthreshold mos implementation of heraultjutten autoadaptive network. IEEE Journal of Solid-State Circuits, 27(5):714{727, May [7] C. Mead. Analog VLSI and Neural Systems. Prentice Hall, New York, s(t) - Environment Model e(t) - Network Model y(t) - Figure 1: Block diagram Vr -ei Ci yi Vin Vij Vi1 yn yj Figure 2: Summing Unit Vin Ro CFij Ro sj Low Pass : Ri1 : Rij Low Pass. : sn Low Rin Pass Vout (1) Ro ei V out = ;1 s V!cij +1 in (a) Low pass lter e i = P n j=i F ij(s j ) (b) Mixing/ltering circuit Figure 3: Mixing Circuit 7

8 1 5 5 s2 () () e e y error: (ms) error: y2-s (ms) (a) sine and triangular functions 5 5 s e1 61 e y y2 s ms ms (b) White signal and English segment Figure 4: Static Mixing 8

9 () delayed 1 () e s delayed s e2 1 () y2 () error: error: y2-s2 2 () (ms) (ms) (a) Two sine functions 5 5 s e1 57 e y y2 s ms ms (b) Both English segments Figure 5: Dynamic Mixing 9

BLIND SEPARATION OF SOURCES: A NON-LINEAR NEURAL ALGORITHM

BLIND SEPARATION OF SOURCES: A NON-LINEAR NEURAL ALGORITHM BLIND SEPARATION OF SOURCES: A NON-LINEAR NEURAL ALGORITHM Gilles BUREL Thomson CSF, Laboratoires Electroniques de Rennes, Avenue de Belle Fontaine, F-35510 CESSON-SEVIGNE, France My new address is: Prof.

More information

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis Aapo Hyvarinen Helsinki University of Technology Laboratory of Computer and Information Science P.O.Box 5400,

More information

MULTICHANNEL BLIND SEPARATION AND. Scott C. Douglas 1, Andrzej Cichocki 2, and Shun-ichi Amari 2

MULTICHANNEL BLIND SEPARATION AND. Scott C. Douglas 1, Andrzej Cichocki 2, and Shun-ichi Amari 2 MULTICHANNEL BLIND SEPARATION AND DECONVOLUTION OF SOURCES WITH ARBITRARY DISTRIBUTIONS Scott C. Douglas 1, Andrzej Cichoci, and Shun-ichi Amari 1 Department of Electrical Engineering, University of Utah

More information

J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125

J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 WINNER-TAKE-ALL NETWORKS OF O(N) COMPLEXITY J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 ABSTRACT We have designed, fabricated, and tested

More information

x 1 (t) Spectrogram t s

x 1 (t) Spectrogram t s A METHOD OF ICA IN TIME-FREQUENCY DOMAIN Shiro Ikeda PRESTO, JST Hirosawa 2-, Wako, 35-98, Japan Shiro.Ikeda@brain.riken.go.jp Noboru Murata RIKEN BSI Hirosawa 2-, Wako, 35-98, Japan Noboru.Murata@brain.riken.go.jp

More information

Introduction to Neural Networks: Structure and Training

Introduction to Neural Networks: Structure and Training Introduction to Neural Networks: Structure and Training Professor Q.J. Zhang Department of Electronics Carleton University, Ottawa, Canada www.doe.carleton.ca/~qjz, qjz@doe.carleton.ca A Quick Illustration

More information

Examples. 2-input, 1-output discrete-time systems: 1-input, 1-output discrete-time systems:

Examples. 2-input, 1-output discrete-time systems: 1-input, 1-output discrete-time systems: Discrete-Time s - I Time-Domain Representation CHAPTER 4 These lecture slides are based on "Digital Signal Processing: A Computer-Based Approach, 4th ed." textbook by S.K. Mitra and its instructor materials.

More information

CONTROL SYSTEMS ANALYSIS VIA BLIND SOURCE DECONVOLUTION. Kenji Sugimoto and Yoshito Kikkawa

CONTROL SYSTEMS ANALYSIS VIA BLIND SOURCE DECONVOLUTION. Kenji Sugimoto and Yoshito Kikkawa CONTROL SYSTEMS ANALYSIS VIA LIND SOURCE DECONVOLUTION Kenji Sugimoto and Yoshito Kikkawa Nara Institute of Science and Technology Graduate School of Information Science 896-5 Takayama-cho, Ikoma-city,

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Yugoslav Journal of Operations Research 5 (25), Number, 79-95 ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Slavica TODOROVIĆ-ZARKULA EI Professional Electronics, Niš, bssmtod@eunet.yu Branimir TODOROVIĆ,

More information

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Blind Source Separation (BSS) and Independent Componen Analysis (ICA) Massoud BABAIE-ZADEH Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Outline Part I Part II Introduction

More information

Efficient Sensitivity Analysis in Hidden Markov Models

Efficient Sensitivity Analysis in Hidden Markov Models Efficient Sensitivity Analysis in Hidden Markov Models Silja Renooij Department of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands silja@cs.uu.nl

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Comparison of DDE and ETDGE for. Time-Varying Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong

Comparison of DDE and ETDGE for. Time-Varying Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong Comparison of DDE and ETDGE for Time-Varying Delay Estimation H. C. So Department of Electronic Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong Email : hcso@ee.cityu.edu.hk

More information

SYMBOLIC ANALYSIS OF POWER/GROUND NETWORKS. focused on nding transfer function solutions for general

SYMBOLIC ANALYSIS OF POWER/GROUND NETWORKS. focused on nding transfer function solutions for general SYMBOLIC ANALYSIS OF POWER/GROUND NETWORKS USING MOMENT-MATCHING METHODS Jatan C Shah 1 Ahmed A Younis 1 Sachin S Sapatnekar 2 Marwan M Hassoun 1 1 Department of Electrical and Computer Engineering, Iowa

More information

Neuromorphic architectures: challenges and opportunites in the years to come

Neuromorphic architectures: challenges and opportunites in the years to come Neuromorphic architectures: challenges and opportunites in the years to come Andreas G. Andreou andreou@jhu.edu Electrical and Computer Engineering Center for Language and Speech Processing Johns Hopkins

More information

ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM. Brain Science Institute, RIKEN, Wako-shi, Saitama , Japan

ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM. Brain Science Institute, RIKEN, Wako-shi, Saitama , Japan ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM Pando Georgiev a, Andrzej Cichocki b and Shun-ichi Amari c Brain Science Institute, RIKEN, Wako-shi, Saitama 351-01, Japan a On leave from the Sofia

More information

ICA ALGORITHM BASED ON SUBSPACE APPROACH. Ali MANSOUR, Member of IEEE and N. Ohnishi,Member of IEEE. Bio-Mimetic Control Research Center (RIKEN),

ICA ALGORITHM BASED ON SUBSPACE APPROACH. Ali MANSOUR, Member of IEEE and N. Ohnishi,Member of IEEE. Bio-Mimetic Control Research Center (RIKEN), ICA ALGORITHM BASED ON SUBSPACE APPROACH Ali MANSOUR, Member of IEEE and N Ohnishi,Member of IEEE Bio-Mimetic Control Research Center (RIKEN), 7-, Anagahora, Shimoshidami, Moriyama-ku, Nagoya (JAPAN) mail:mansournagoyarikengojp,ohnishisheratonohnishinuienagoya-uacjp

More information

Shigetaka Fujita. Rokkodai, Nada, Kobe 657, Japan. Haruhiko Nishimura. Yashiro-cho, Kato-gun, Hyogo , Japan. Abstract

Shigetaka Fujita. Rokkodai, Nada, Kobe 657, Japan. Haruhiko Nishimura. Yashiro-cho, Kato-gun, Hyogo , Japan. Abstract KOBE-TH-94-07 HUIS-94-03 November 1994 An Evolutionary Approach to Associative Memory in Recurrent Neural Networks Shigetaka Fujita Graduate School of Science and Technology Kobe University Rokkodai, Nada,

More information

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling Li Ding and Pinaki Mazumder Department of Electrical Engineering and Computer Science The University of Michigan,

More information

Blind channel deconvolution of real world signals using source separation techniques

Blind channel deconvolution of real world signals using source separation techniques Blind channel deconvolution of real world signals using source separation techniques Jordi Solé-Casals 1, Enric Monte-Moreno 2 1 Signal Processing Group, University of Vic, Sagrada Família 7, 08500, Vic

More information

Nature-inspired Analog Computing on Silicon

Nature-inspired Analog Computing on Silicon Nature-inspired Analog Computing on Silicon Tetsuya ASAI and Yoshihito AMEMIYA Division of Electronics and Information Engineering Hokkaido University Abstract We propose CMOS analog circuits that emulate

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

y(n) Time Series Data

y(n) Time Series Data Recurrent SOM with Local Linear Models in Time Series Prediction Timo Koskela, Markus Varsta, Jukka Heikkonen, and Kimmo Kaski Helsinki University of Technology Laboratory of Computational Engineering

More information

FREQUENCY-DOMAIN IMPLEMENTATION OF BLOCK ADAPTIVE FILTERS FOR ICA-BASED MULTICHANNEL BLIND DECONVOLUTION

FREQUENCY-DOMAIN IMPLEMENTATION OF BLOCK ADAPTIVE FILTERS FOR ICA-BASED MULTICHANNEL BLIND DECONVOLUTION FREQUENCY-DOMAIN IMPLEMENTATION OF BLOCK ADAPTIVE FILTERS FOR ICA-BASED MULTICHANNEL BLIND DECONVOLUTION Kyungmin Na, Sang-Chul Kang, Kyung Jin Lee, and Soo-Ik Chae School of Electrical Engineering Seoul

More information

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ BLIND SEPARATION OF NONSTATIONARY AND TEMPORALLY CORRELATED SOURCES FROM NOISY MIXTURES Seungjin CHOI x and Andrzej CICHOCKI y x Department of Electrical Engineering Chungbuk National University, KOREA

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University

Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University Abnormal Activity Detection and Tracking 1 The Problem Goal: To track activities

More information

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8 EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»

More information

Relative Irradiance. Wavelength (nm)

Relative Irradiance. Wavelength (nm) Characterization of Scanner Sensitivity Gaurav Sharma H. J. Trussell Electrical & Computer Engineering Dept. North Carolina State University, Raleigh, NC 7695-79 Abstract Color scanners are becoming quite

More information

TAU' Low-power CMOS clock drivers. Mircea R. Stan, Wayne P. Burleson.

TAU' Low-power CMOS clock drivers. Mircea R. Stan, Wayne P. Burleson. TAU'95 149 Low-power CMOS clock drivers Mircea R. Stan, Wayne P. Burleson mstan@risky.ecs.umass.edu, burleson@galois.ecs.umass.edu http://www.ecs.umass.edu/ece/vspgroup/index.html Abstract The clock tree

More information

On Information Maximization and Blind Signal Deconvolution

On Information Maximization and Blind Signal Deconvolution On Information Maximization and Blind Signal Deconvolution A Röbel Technical University of Berlin, Institute of Communication Sciences email: roebel@kgwtu-berlinde Abstract: In the following paper we investigate

More information

Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation

Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation Hsiao-Chun Wu and Jose C. Principe Computational Neuro-Engineering Laboratory Department of Electrical and Computer Engineering

More information

Sea Surface. Bottom OBS

Sea Surface. Bottom OBS ANALYSIS OF HIGH DIMENSIONAL TIME SERIES: OCEAN BOTTOM SEISMOGRAPH DATA Genshiro Kitagawa () and Tetsuo Takanami (2) () The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 06-8569

More information

a 22(t) a nn(t) Correlation τ=0 τ=1 τ=2 (t) x 1 (t) x Time(sec)

a 22(t) a nn(t) Correlation τ=0 τ=1 τ=2 (t) x 1 (t) x Time(sec) A METHOD OF BLIND SEPARATION ON TEMPORAL STRUCTURE OF SIGNALS Shiro Ikeda and Noboru Murata Email:fShiro.Ikeda,Noboru.Muratag@brain.riken.go.jp RIKEN Brain Science Institute Hirosawa -, Wako, Saitama 3-98,

More information

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing Kernel PCA Pattern Reconstruction via Approximate Pre-Images Bernhard Scholkopf, Sebastian Mika, Alex Smola, Gunnar Ratsch, & Klaus-Robert Muller GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany fbs,

More information

John P.F.Sum and Peter K.S.Tam. Hong Kong Polytechnic University, Hung Hom, Kowloon.

John P.F.Sum and Peter K.S.Tam. Hong Kong Polytechnic University, Hung Hom, Kowloon. Note on the Maxnet Dynamics John P.F.Sum and Peter K.S.Tam Department of Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon. April 7, 996 Abstract A simple method is presented

More information

To appear in Proceedings of the ICA'99, Aussois, France, A 2 R mn is an unknown mixture matrix of full rank, v(t) is the vector of noises. The

To appear in Proceedings of the ICA'99, Aussois, France, A 2 R mn is an unknown mixture matrix of full rank, v(t) is the vector of noises. The To appear in Proceedings of the ICA'99, Aussois, France, 1999 1 NATURAL GRADIENT APPROACH TO BLIND SEPARATION OF OVER- AND UNDER-COMPLETE MIXTURES L.-Q. Zhang, S. Amari and A. Cichocki Brain-style Information

More information

Efficient Use Of Sparse Adaptive Filters

Efficient Use Of Sparse Adaptive Filters Efficient Use Of Sparse Adaptive Filters Andy W.H. Khong and Patrick A. Naylor Department of Electrical and Electronic Engineering, Imperial College ondon Email: {andy.khong, p.naylor}@imperial.ac.uk Abstract

More information

A Canonical Genetic Algorithm for Blind Inversion of Linear Channels

A Canonical Genetic Algorithm for Blind Inversion of Linear Channels A Canonical Genetic Algorithm for Blind Inversion of Linear Channels Fernando Rojas, Jordi Solé-Casals, Enric Monte-Moreno 3, Carlos G. Puntonet and Alberto Prieto Computer Architecture and Technology

More information

x x2 H11 H y y2 H22 H

x x2 H11 H y y2 H22 H .5.5 5 5.5.5 5 5 2 3 4 5 6 7 H 2 3 4 5 6 7 H2 5 5 x 5 5 x2.5.5.5.5.5.5.5.5 2 3 4 5 6 7 H2 2 3 4 5 6 7 H22.5.5 y.5.5 y2 Figure : Mixing coef.: H [k], H 2 [k], H 2 [k], H 22 [k]. Figure 3: Observations and

More information

Linear stochastic approximation driven by slowly varying Markov chains

Linear stochastic approximation driven by slowly varying Markov chains Available online at www.sciencedirect.com Systems & Control Letters 50 2003 95 102 www.elsevier.com/locate/sysconle Linear stochastic approximation driven by slowly varying Marov chains Viay R. Konda,

More information

Remaining energy on log scale Number of linear PCA components

Remaining energy on log scale Number of linear PCA components NONLINEAR INDEPENDENT COMPONENT ANALYSIS USING ENSEMBLE LEARNING: EXPERIMENTS AND DISCUSSION Harri Lappalainen, Xavier Giannakopoulos, Antti Honkela, and Juha Karhunen Helsinki University of Technology,

More information

Computational Intelligence Lecture 6: Associative Memory

Computational Intelligence Lecture 6: Associative Memory Computational Intelligence Lecture 6: Associative Memory Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational Intelligence

More information

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Stability

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Design of Stable Fuzzy-logic-controlled Feedback Systems P.A. Ramamoorthy and Song Huang Department of Electrical & Computer Engineering, University of Cincinnati, M.L. #30 Cincinnati, Ohio 522-0030 FAX:

More information

Parallel VLSI CAD Algorithms. Lecture 1 Introduction Zhuo Feng

Parallel VLSI CAD Algorithms. Lecture 1 Introduction Zhuo Feng Parallel VLSI CAD Algorithms Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 513 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee5900spring2012.html

More information

Wavelet de-noising for blind source separation in noisy mixtures.

Wavelet de-noising for blind source separation in noisy mixtures. Wavelet for blind source separation in noisy mixtures. Bertrand Rivet 1, Vincent Vigneron 1, Anisoara Paraschiv-Ionescu 2 and Christian Jutten 1 1 Institut National Polytechnique de Grenoble. Laboratoire

More information

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs NANO: Brief Reports and Reviews Vol. 2, No. 4 (27) 233 237 c World Scientific Publishing Company ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs MICHAEL L. P. TAN, ISMAIL

More information

Analytical solution of the blind source separation problem using derivatives

Analytical solution of the blind source separation problem using derivatives Analytical solution of the blind source separation problem using derivatives Sebastien Lagrange 1,2, Luc Jaulin 2, Vincent Vigneron 1, and Christian Jutten 1 1 Laboratoire Images et Signaux, Institut National

More information

Rate-Distortion Based Temporal Filtering for. Video Compression. Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801

Rate-Distortion Based Temporal Filtering for. Video Compression. Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801 Rate-Distortion Based Temporal Filtering for Video Compression Onur G. Guleryuz?, Michael T. Orchard y? University of Illinois at Urbana-Champaign Beckman Institute, 45 N. Mathews Ave., Urbana, IL 68 y

More information

Temporal Backpropagation for FIR Neural Networks

Temporal Backpropagation for FIR Neural Networks Temporal Backpropagation for FIR Neural Networks Eric A. Wan Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract The traditional feedforward neural network is a static

More information

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract BUMPLESS SWITCHING CONTROLLERS William A. Wolovich and Alan B. Arehart 1 December 7, 1995 Abstract This paper outlines the design of bumpless switching controllers that can be used to stabilize MIMO plants

More information

Static Electromigration Analysis for Signal Interconnects

Static Electromigration Analysis for Signal Interconnects Static Electromigration Analysis for Signal Interconnects Chanhee Oh, David Blaauw*, Murat Becer, Vladimir Zolotov, Rajendran Panda, Aurobindo Dasgupta** Motorola, Inc, Austin TX, *University of Michigan,

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

1 Introduction 198; Dugard et al, 198; Dugard et al, 198) A delay matrix in such a lower triangular form is called an interactor matrix, and almost co

1 Introduction 198; Dugard et al, 198; Dugard et al, 198) A delay matrix in such a lower triangular form is called an interactor matrix, and almost co Multivariable Receding-Horizon Predictive Control for Adaptive Applications Tae-Woong Yoon and C M Chow y Department of Electrical Engineering, Korea University 1, -a, Anam-dong, Sungbu-u, Seoul 1-1, Korea

More information

mobility reduction design rule series resistance lateral electrical field transversal electrical field

mobility reduction design rule series resistance lateral electrical field transversal electrical field Compact Modelling of Submicron CMOS D.B.M. Klaassen Philips Research Laboratories, Eindhoven, The Netherlands ABSTRACT The accuracy of present-day compact MOS models and relevant benchmark criteria are

More information

Submitted to Electronics Letters. Indexing terms: Signal Processing, Adaptive Filters. The Combined LMS/F Algorithm Shao-Jen Lim and John G. Harris Co

Submitted to Electronics Letters. Indexing terms: Signal Processing, Adaptive Filters. The Combined LMS/F Algorithm Shao-Jen Lim and John G. Harris Co Submitted to Electronics Letters. Indexing terms: Signal Processing, Adaptive Filters. The Combined LMS/F Algorithm Shao-Jen Lim and John G. Harris Computational Neuro-Engineering Laboratory University

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

Equivalent Circuit Model Extraction for Interconnects in 3D ICs

Equivalent Circuit Model Extraction for Interconnects in 3D ICs Equivalent Circuit Model Extraction for Interconnects in 3D ICs A. Ege Engin Assistant Professor, Department of ECE, San Diego State University Email: aengin@mail.sdsu.edu ASP-DAC, Jan. 23, 213 Outline

More information

IMPLEMENTATION OF SIGNAL POWER ESTIMATION METHODS

IMPLEMENTATION OF SIGNAL POWER ESTIMATION METHODS IMPLEMENTATION OF SIGNAL POWER ESTIMATION METHODS Sei-Yeu Cheng and Joseph B. Evans Telecommunications & Information Sciences Laboratory Department of Electrical Engineering & Computer Science University

More information

THE PROBLEMS OF ROBUST LPC PARAMETRIZATION FOR. Petr Pollak & Pavel Sovka. Czech Technical University of Prague

THE PROBLEMS OF ROBUST LPC PARAMETRIZATION FOR. Petr Pollak & Pavel Sovka. Czech Technical University of Prague THE PROBLEMS OF ROBUST LPC PARAMETRIZATION FOR SPEECH CODING Petr Polla & Pavel Sova Czech Technical University of Prague CVUT FEL K, 66 7 Praha 6, Czech Republic E-mail: polla@noel.feld.cvut.cz Abstract

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

(z) UN-1(z) PN-1(z) Pn-1(z) - z k. 30(z) 30(z) (a) (b) (c) x y n ...

(z) UN-1(z) PN-1(z) Pn-1(z) - z k. 30(z) 30(z) (a) (b) (c) x y n ... Minimum Memory Implementations of the Lifting Scheme Christos Chrysas Antonio Ortega HewlettPackard Laboratories Integrated Media Systems Center 151 Page Mill Road, Bldg.3U3 University of Southern California

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

ADAPTIVE LATERAL INHIBITION FOR NON-NEGATIVE ICA. Mark Plumbley

ADAPTIVE LATERAL INHIBITION FOR NON-NEGATIVE ICA. Mark Plumbley Submitteed to the International Conference on Independent Component Analysis and Blind Signal Separation (ICA2) ADAPTIVE LATERAL INHIBITION FOR NON-NEGATIVE ICA Mark Plumbley Audio & Music Lab Department

More information

Unit 8: Introduction to neural networks. Perceptrons

Unit 8: Introduction to neural networks. Perceptrons Unit 8: Introduction to neural networks. Perceptrons D. Balbontín Noval F. J. Martín Mateos J. L. Ruiz Reina A. Riscos Núñez Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

More information

Training Multi-Layer Neural Networks. - the Back-Propagation Method. (c) Marcin Sydow

Training Multi-Layer Neural Networks. - the Back-Propagation Method. (c) Marcin Sydow Plan training single neuron with continuous activation function training 1-layer of continuous neurons training multi-layer network - back-propagation method single neuron with continuous activation function

More information

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC

More information

SPARSE REPRESENTATION AND BLIND DECONVOLUTION OF DYNAMICAL SYSTEMS. Liqing Zhang and Andrzej Cichocki

SPARSE REPRESENTATION AND BLIND DECONVOLUTION OF DYNAMICAL SYSTEMS. Liqing Zhang and Andrzej Cichocki SPARSE REPRESENTATON AND BLND DECONVOLUTON OF DYNAMCAL SYSTEMS Liqing Zhang and Andrzej Cichocki Lab for Advanced Brain Signal Processing RKEN Brain Science nstitute Wako shi, Saitama, 351-198, apan zha,cia

More information

A Fast Algorithm for. Nonstationary Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong

A Fast Algorithm for. Nonstationary Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong A Fast Algorithm for Nonstationary Delay Estimation H. C. So Department of Electronic Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong Email : hcso@ee.cityu.edu.hk June 19,

More information

Solving Updated Systems of Linear Equations in Parallel

Solving Updated Systems of Linear Equations in Parallel Solving Updated Systems of Linear Equations in Parallel P. Blaznik a and J. Tasic b a Jozef Stefan Institute, Computer Systems Department Jamova 9, 1111 Ljubljana, Slovenia Email: polona.blaznik@ijs.si

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Dynamic Inversion Design II

Dynamic Inversion Design II Lecture 32 Dynamic Inversion Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics Summary of Dynamic Inversion Design Advantages Issues

More information

MITIGATING UNCORRELATED PERIODIC DISTURBANCE IN NARROWBAND ACTIVE NOISE CONTROL SYSTEMS

MITIGATING UNCORRELATED PERIODIC DISTURBANCE IN NARROWBAND ACTIVE NOISE CONTROL SYSTEMS 17th European Signal Processing Conference (EUSIPCO 29) Glasgow, Scotland, August 24-28, 29 MITIGATING UNCORRELATED PERIODIC DISTURBANCE IN NARROWBAND ACTIVE NOISE CONTROL SYSTEMS Muhammad Tahir AKHTAR

More information

ADALINE for Pattern Classification

ADALINE for Pattern Classification POLYTECHNIC UNIVERSITY Department of Computer and Information Science ADALINE for Pattern Classification K. Ming Leung Abstract: A supervised learning algorithm known as the Widrow-Hoff rule, or the Delta

More information

PAD MODELING BY USING ARTIFICIAL NEURAL NETWORK

PAD MODELING BY USING ARTIFICIAL NEURAL NETWORK Progress In Electromagnetics Research, PIER 74, 167 180, 2007 PAD MODELING BY USING ARTIFICIAL NEURAL NETWORK X. P. Li School of Telecommunication Engineering Beijing University of Posts and Telecommunications

More information

Lecture 2: CMOS technology. Energy-aware computing

Lecture 2: CMOS technology. Energy-aware computing Energy-Aware Computing Lecture 2: CMOS technology Basic components Transistors Two types: NMOS, PMOS Wires (interconnect) Transistors as switches Gate Drain Source NMOS: When G is @ logic 1 (actually over

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS B. Venkata Sreecharan 1, C. Venkata Sudhakar 2 1 M.TECH (VLSI DESIGN)

More information

Final EE290G Intro to MEMS 12/16/98

Final EE290G Intro to MEMS 12/16/98 Final EE290G Intro to MEMS 12/16/98 Name SID 1. (20 points) Using poly1 in the MCNC/MUMPS process: Fx Fy L b L a x y cxx = c yx c xy c yy Fx F y (1) (a) Calculate c xy, the constant relating the force

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Static Electromigration Analysis for On-Chip Signal Interconnects

Static Electromigration Analysis for On-Chip Signal Interconnects IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 1, JANUARY 2003 39 Static Electromigration Analysis for On-Chip Signal Interconnects David T. Blaauw, Member,

More information

Transistor Sizing for Radiation Hardening

Transistor Sizing for Radiation Hardening Transistor Sizing for Radiation Hardening Qug Zhou and Kartik Mohanram Department of Electrical and Computer Engineering Rice University, Houston, TX 775 E-mail: {qug, kmram}@rice.edu Abstract This paper

More information

An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations

An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations 2038 JOURNAL OF APPLIED METEOROLOGY An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations HONGPING LIU, V.CHANDRASEKAR, AND GANG XU Colorado State University, Fort Collins,

More information

TAU 2014 Contest Pessimism Removal of Timing Analysis v1.6 December 11 th,

TAU 2014 Contest Pessimism Removal of Timing Analysis v1.6 December 11 th, TU 2014 Contest Pessimism Removal of Timing nalysis v1.6 ecember 11 th, 2013 https://sites.google.com/site/taucontest2014 1 Introduction This document outlines the concepts and implementation details necessary

More information

In: Proc. BENELEARN-98, 8th Belgian-Dutch Conference on Machine Learning, pp 9-46, 998 Linear Quadratic Regulation using Reinforcement Learning Stephan ten Hagen? and Ben Krose Department of Mathematics,

More information

Novel VLSI Implementation for Triplet-based Spike-Timing Dependent Plasticity

Novel VLSI Implementation for Triplet-based Spike-Timing Dependent Plasticity Novel LSI Implementation for Triplet-based Spike-Timing Dependent Plasticity Mostafa Rahimi Azghadi, Omid Kavehei, Said Al-Sarawi, Nicolangelo Iannella, and Derek Abbott Centre for Biomedical Engineering,

More information

Geometric Inference for Probability distributions

Geometric Inference for Probability distributions Geometric Inference for Probability distributions F. Chazal 1 D. Cohen-Steiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA Sophia-Antipolis 2009 July 8 F. Chazal, D. Cohen-Steiner, Q.

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

Filter Banks with Variable System Delay. Georgia Institute of Technology. Atlanta, GA Abstract

Filter Banks with Variable System Delay. Georgia Institute of Technology. Atlanta, GA Abstract A General Formulation for Modulated Perfect Reconstruction Filter Banks with Variable System Delay Gerald Schuller and Mark J T Smith Digital Signal Processing Laboratory School of Electrical Engineering

More information

y 2 a 12 a 1n a 11 s 2 w 11 f n a 21 s n f n y 1 a n1 x n x 2 x 1

y 2 a 12 a 1n a 11 s 2 w 11 f n a 21 s n f n y 1 a n1 x n x 2 x 1 Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA Barak A. Pearlmutter Computer Science Dept, FEC 33 University of Ne Mexico Albuquerque, NM 873 bap@cs.unm.edu Lucas

More information

A general theory of discrete ltering. for LES in complex geometry. By Oleg V. Vasilyev AND Thomas S. Lund

A general theory of discrete ltering. for LES in complex geometry. By Oleg V. Vasilyev AND Thomas S. Lund Center for Turbulence Research Annual Research Briefs 997 67 A general theory of discrete ltering for ES in complex geometry By Oleg V. Vasilyev AND Thomas S. und. Motivation and objectives In large eddy

More information

Case Studies of Logical Computation on Stochastic Bit Streams

Case Studies of Logical Computation on Stochastic Bit Streams Case Studies of Logical Computation on Stochastic Bit Streams Peng Li 1, Weikang Qian 2, David J. Lilja 1, Kia Bazargan 1, and Marc D. Riedel 1 1 Electrical and Computer Engineering, University of Minnesota,

More information

Undercomplete Independent Component. Analysis for Signal Separation and. Dimension Reduction. Category: Algorithms and Architectures.

Undercomplete Independent Component. Analysis for Signal Separation and. Dimension Reduction. Category: Algorithms and Architectures. Undercomplete Independent Component Analysis for Signal Separation and Dimension Reduction John Porrill and James V Stone Psychology Department, Sheeld University, Sheeld, S10 2UR, England. Tel: 0114 222

More information

MONTE CARLO ANALYSIS OF se FILTERS

MONTE CARLO ANALYSIS OF se FILTERS MONTE CARLO ANALYSIS OF se FILTERS 1. GAAL Institute of Communication Electronics, Technical University, H-1521 Budapest Received December 15, 1985 Presented by Prof. S. Csibi Summary Tbe Monte Carlo method

More information

Bandgap References and Discrete Time Signals (chapter 8 + 9)

Bandgap References and Discrete Time Signals (chapter 8 + 9) Bandgap References and Discrete Time Signals (chapter 8 + 9) Tuesday 9th of February, 2010 Snorre Aunet, sa@ifi.uio.no Nanoelectronics Group, Dept. of Informatics Office 3432 Last time Tuesday 2nd of February,

More information

Experimental evidence showing that stochastic subspace identication methods may fail 1

Experimental evidence showing that stochastic subspace identication methods may fail 1 Systems & Control Letters 34 (1998) 303 312 Experimental evidence showing that stochastic subspace identication methods may fail 1 Anders Dahlen, Anders Lindquist, Jorge Mari Division of Optimization and

More information