DIFFERENTIAL CROSS SECTION FOR COMPTON SCATTERING. 1. introduction. 2. Differential cross section with respect to the square of momentum transfer

Size: px
Start display at page:

Download "DIFFERENTIAL CROSS SECTION FOR COMPTON SCATTERING. 1. introduction. 2. Differential cross section with respect to the square of momentum transfer"

Transcription

1 DIFFERENTIAL CROSS SECTION FOR COMPTON SCATTERING E. LIZARAZO Abstract. The i erential cross section for Compton scattering (e e ) in Feynman gauge has been calculate. Results are shown with respect to two i erent variables: square momentum transfer an cosine of the scattere angle. For completeness the i erential cross section is given both in the centre of mass an the fixe target frames.. introuction The i erential cross section for Compton scattering (e e ) -c.f Fig. - is investigate. Section gives the basic steps to calculate the formula for the i erential cross section with respect to the square of momentum transfer, leaving the square matrix element as a variable to be calculate. In section 3 the square matrix element is worke out in Feynman gauge by means of the algebraic properties of the gamma matrices, section shows how to work out the i erential cross section as a function of the cosine of the scattere angle by two i erent methos: by evaluating the phase space integral in the fixe target frame, an irect substitution. Finally, in section 5 the i erential cross section is calculate for three energy regimes: non relativistic, relativistic an ultra relativistic.. Differential cross section with respect to the square of momentum transfer The relation between the S-matrix elements an cross section for Compton scattering is given by Eq. () = LIPS X p M () k CM s LIPS = ( ) k 0 0 k 0 0 (p s k 0 k) 0 3 k 0 3 k 0 ()

2 E. LIZARAZO where the photon an electron are represente by the subinices an respectively, unprime variables are given to the incoming particles, prime variables to the outgoing particles, k represents four momentum, k inicates three momentum, s =(k +k ),anlips is the -boy Lorentz-invariant phase-space measure which in the centre of mass frame (CM) is given by (3) LIPS = = ( ) EE 0 0 ( ) EE 0 0 (E 0 + E 0 (E 0 + E 0 p s) 3 (k 0 + k 0 ) 3 k 0 3 k 0 (3) p s) 3 k 0 () Integrating Eq. (3) over 3 k 0 results in Eq. (). It shoul be highlighte that this integration transforms Eq. (5), that is, the original E 0 of Eq. (3) into Eq. (6). q E 0 = m 0 + k 0 q E 0 = m 0 + k 0 (5) (6) Now, in terms of the soli angle CM it is possible to rewrite 3 k 0 as Eq. (7). Substituting this into Eq. () an integrating the resulting equation over k 0 the -boy Lorentz-invariant phase-space measure Eq. (8) is obtaine. 3 k 0 = k 0 k 0 CM (7) LIPS = k0 6 p s CM (8) Substituting Eq. (8) in Eq. () the i erential cross section Eq. (9) is obtaine. = k0 CM 6s k X M (9) Now, by i erentiating the square momentum transfer t Eq. (0) with respect to the cosine of the angle between k an k 0 Eq. () is obtaine. This can be rewritten as aerivativeoft in terms of soli angle Eq. (), which can then be use to rewrite Eq. (9) in terms of t Eq. (3)

3 DIFFERENTIAL CROSS SECTION FOR COMPTON SCATTERING 3, k, k 0, k e, k 0 e, k e, k 0 e, k, k 0 Figure. Feynman iagrams for Compton scattering t =(k k 0 ) = E E 0 + k k 0 cos (0) t cos = k k 0 () t = CM k k 0 () t = X M (3) 6 s k 3. The square matrix element The matrix element M Eq. () for Compton scattering is obtaine by applying Feynman rules to the two iagrams -c.f Fig. -, apple µ M = e µ(k) 0 (k )ū(k) 0 /k + µ k + k k /k 0 µ + k µ k k 0 u(k ) () where (k ), µ(k 0 ), u(k )anū(k 0 ) are the initial an final polarisation vectors for photons an electrons respectively. X u(k )ū(k )= /k + m (5) X polarizations µ g µ (6)

4 E. LIZARAZO By using the ientity Eq. (5) an the replacement Eq. (6), the average square matrix element Eq. (7) is obtaine X M = e g µ g Tr apple (/k + m) (/k 0 + m) /k + k k k + apple µ /k + µ k k k + Evaluating the traces of Eq. (7) results in Eq. (8) /k 0 + k k k 0 /k 0 µ + k µ k k 0 (7) " X # M =e k k 0 +m + m k k k k k 0 k k k k 0 k (8). Differential cross section with respect to scattering angle.. From phase-integral in lab-frame. Eq. (9) follows from conservation of - momentum, an the Minkowski norm k 0 = m.solvingthisequationfortheenergy of the final photon 0 gives Eq. (0) m = m +m( 0 ) 0 ( cos ) (9) 0 m = (0) m + ( cos ) where m is the mass of the electron an is the energy of the incoming photon. Di erentiating Eq. (0) with respect to cos Eq. () is obtaine by rewriting 3 k 0 as Eq. () 0 = 0 cos m () 3 k 0 = 0 0 FT () substituting this in Eq. (), an integrating with respect to 3 k 0,thefixetarget frame -boy Lorentz-invariant phase space measure Eq. (3) is obtaine,

5 DIFFERENTIAL CROSS SECTION FOR COMPTON SCATTERING 5 LIPS = 0 FT ( 0 ) ( 0 + E 0 ( ) 3 0 E 0 m ) (3) = cos 8 ( 0 ) m () where E 0 = p m + +( 0 ) 0 cos, Eq. () follows from integration of Eq. (3) with respect to 0,anusingEq.(0)tosimplify. ReplacingEq.(3)an Eq. (5) into Eq. () results in Eq. (6). The Klein-Nishima formula Eq. (7) follows from Eq. (6) by evaluating Eq. (8) with k k = m an k 0 k = 0 m. m k FT = p s k CM (5) cos = (0 ) X M (6) 3 m apple cos = (0 ) 0 3 m + sin (7) 0.. Direct conversion of t into cos. The Manelstam variables satisfy Eq. (8), which i erentiate with respect to 0 gives Eq. (9) t =m s u =m( 0 ) (8) t =m 0 (9) From Eq. (9) an Eq. (5) it follows that Eq. (3) can be rewritten as Eq. (30) cos = (0 ) X M 3 m (30) which turns into the Klein Nishima formula Eq. (7) when the average square matrix is evaluate. Using the ientity R f(x) (g(x))x = P ((x i )/ g 0 (x i ) ). This is the relation between the magnitue of the 3-momentum of the photon in the fixe target an the centre of mass frames.

6 6 E. LIZARAZO 0.5 σ / cos(θ) [b] s =.m e s = m e s = 5 m e cos(θ) Figure. / cos as a function of cos for i erent centre of mass energy square s 5. Differential cross section for ifferent energies The i erential cross section was evaluate for three i erent energies, s<<m, s m an s>>m,theresultsfor / cos against cos an /t against t are shown in Fig. an Fig. 3 respectively. In Fig. it can be seen that for low energies, that is s<<m,thescatteringprobabilityisnearlysymmetricaboutcos =0, which implies that it is almost equally likely for a photon to be scattere in the forwar or backwar irection. However as the energy increases, the scattering becomes more likely in the backwars irection, with an almost constant scattering probability with respect to cos in the forwar irection. Fig. 3 shows also that for low energies there is symmetry of the scattering probability for the square momentum transfer roughly about the mipoint of the t interval, however this symmetry breaks for higher energies. In particular, for the ultra relativistic regime -i.e s>>m e- the scattering probability is nearly constant for the right half of the interval, an increases rapily on its left half.

7 DIFFERENTIAL CROSS SECTION FOR COMPTON SCATTERING 7.5 x 08 σ / t [b/gev ] t [GeV ] x 0 9 (a) s =.m e 5.5 x 06 5 σ / t [b/gev ] t [GeV ] x 0 7 (b) s =m e 7 x 05 6 σ / t [b/gev ] t [GeV ] x 0 7 (c) s =5m e Figure 3. /t as a function of the square momentum transfer t for i erent centre of mass energy square s

8 8 E. LIZARAZO 6. Conclusion The square matrix element for Compton scattering has been calculate in Feynman gauge, the resulting element was use to fin an expression for the i erential cross section with respect to the square momentum transfer in the centre of mass frame. The i erential cross section was also foun with respect to the cosine of the scattering angle in two i erent ways: Firstly, by performing the phase space integral in the fixe target frame, an seconly, by irect conversion of the infinitesimal element t into cos, bothmethosyielethesameresult. References [] M. E. Peskin an D. V. Schroeer, An Introuction To Quantum Fiel Theory (Frontiers in Physics). Westview Press, 995. [] M. Srenicki, Quantum Fiel Theory. Cambrige University Press, e., February 007.

Calculating cross-sections in Compton scattering processes

Calculating cross-sections in Compton scattering processes Calculating cross-sections in Compton scattering processes Fredrik Björkeroth School of Physics & Astronomy, University of Southampton January 6, 4. Abstract We consider the phenomenon of Compton scattering

More information

Scattering amplitudes and the Feynman rules

Scattering amplitudes and the Feynman rules Scattering amplitudes and the Feynman rules based on S-10 We have found Z( J ) for the phi-cubed theory and now we can calculate vacuum expectation values of the time ordered products of any number of

More information

HIGH ENERGY ASTROPHYSICS - Lecture 7. PD Frank Rieger ITA & MPIK Heidelberg Wednesday

HIGH ENERGY ASTROPHYSICS - Lecture 7. PD Frank Rieger ITA & MPIK Heidelberg Wednesday HIGH ENERGY ASTROPHYSICS - Lecture 7 PD Frank Rieger ITA & MPIK Heidelberg Wednesday 1 (Inverse) Compton Scattering 1 Overview Compton Scattering, polarised and unpolarised light Di erential cross-section

More information

Physics 523, Quantum Field Theory II Midterm Examination

Physics 523, Quantum Field Theory II Midterm Examination Physics 53, Quantum Fiel Theory II Miterm Examination Due Monay, 9 th March 004 Jacob Lewis Bourjaily University of Michigan, Department of Physics, Ann Arbor, MI 4809-0 PHYSICS 53: QUANTUM FIELD THEORY

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Moller Scattering. I would like to thank Paul Leonard Große-Bley for pointing out errors in the original version of this document.

Moller Scattering. I would like to thank Paul Leonard Große-Bley for pointing out errors in the original version of this document. : Moller Scattering Particle Physics Elementary Particle Physics in a Nutshell - M. Tully February 16, 017 I would like to thank Paul Leonard Große-Bley for pointing out errors in the original version

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II Physics 704/804 Electromagnetic Theory II G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 04-13-10 4-Vectors and Proper Time Any set of four quantities that transform

More information

Lorentz Invariance and Second Quantization

Lorentz Invariance and Second Quantization Lorentz Invariance and Second Quantization By treating electromagnetic modes in a cavity as a simple harmonic oscillator, with the oscillator level corresponding to the number of photons in the system

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

1 Spinor-Scalar Scattering in Yukawa Theory

1 Spinor-Scalar Scattering in Yukawa Theory Physics 610 Homework 9 Solutions 1 Spinor-Scalar Scattering in Yukawa Theory Consider Yukawa theory, with one Dirac fermion ψ and one real scalar field φ, with Lagrangian L = ψ(i/ m)ψ 1 ( µφ)( µ φ) M φ

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 7 From Dirac equation to Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Dirac equation* The Dirac equation - the wave-equation for free relativistic fermions

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics

A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics Declan Millar D.Millar@soton.ac.uk School of Physics and Astronomy, University of Southampton,

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Lecture XVI: Symmetrical spacetimes

Lecture XVI: Symmetrical spacetimes Lecture XVI: Symmetrical spacetimes Christopher M. Hirata Caltech M/C 350-17, Pasaena CA 91125, USA (Date: January 4, 2012) I. OVERVIEW Our principal concern this term will be symmetrical solutions of

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

Helicity amplitudes and crossing relations for antiproton proton reactions

Helicity amplitudes and crossing relations for antiproton proton reactions Helicity amplitudes and crossing relations for antiproton proton reactions arxiv:hep-ph/07048v4 4 Apr 007 N. H. Buttimore and E. Jennings School of Mathematics, Trinity College, Dublin, Ireland February,

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics PHY-494: Applied Relativity ecture 5 Relativistic Particle Kinematics Richard J. Jacob February, 003. Relativistic Two-body Decay.. π 0 Decay ets return to the decay of an object into two daughter objects.

More information

Analysis of Instantaneous Center of Zero Acceleration of Rigid Body in Planar Motion

Analysis of Instantaneous Center of Zero Acceleration of Rigid Body in Planar Motion Moern pplie Science pril, 009 nalysis of Instantaneous Center of Zero cceleration of Rigi Boy in Planar Motion Haibin Sun (Corresponing author) & Tingting Liu Department of Physics an Electronics Taishan

More information

1. Kinematics, cross-sections etc

1. Kinematics, cross-sections etc 1. Kinematics, cross-sections etc A study of kinematics is of great importance to any experiment on particle scattering. It is necessary to interpret your measurements, but at an earlier stage to determine

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Alpha Particle scattering

Alpha Particle scattering Introuction Alpha Particle scattering Revise Jan. 11, 014 In this lab you will stuy the interaction of α-particles ( 4 He) with matter, in particular energy loss an elastic scattering from a gol target

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

The Dirac Equation. H. A. Tanaka

The Dirac Equation. H. A. Tanaka The Dirac Equation H. A. Tanaka Relativistic Wave Equations: In non-relativistic quantum mechanics, we have the Schrödinger Equation: H = i t H = p2 2m 2 = i 2m 2 p t i Inspired by this, Klein and Gordon

More information

Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

We start with a reminder of a few basic concepts in probability. Let x be a discrete random variable with some probability function p(x).

We start with a reminder of a few basic concepts in probability. Let x be a discrete random variable with some probability function p(x). 1 Probability We start with a reminder of a few basic concepts in probability. 1.1 discrete random variables Let x be a discrete random variable with some probability function p(x). 1. The Expectation

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Week 8 Lecture: Concepts of Quantum Field Theory (QFT) Klein-Gordon Green s Functions and Raising/Lowering Operators

Week 8 Lecture: Concepts of Quantum Field Theory (QFT) Klein-Gordon Green s Functions and Raising/Lowering Operators Week 8 Lecture: Concepts of Quantum Fiel Theory (QFT) Anrew Forrester February 29, 2008 Klein-Goron Green s Functions an aising/lowering Operators This Week s Questions How o the Green s functions of the

More information

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10 Some vector algebra an the generalize chain rule Ross Bannister Data Assimilation Research Centre University of Reaing UK Last upate 10/06/10 1. Introuction an notation As we shall see in these notes the

More information

γ+e γ+e Section 14.4 Compton scattering CHAPTER 14 - APPLICATIONS : QED OUTLINE of the chapter

γ+e γ+e Section 14.4 Compton scattering CHAPTER 14 - APPLICATIONS : QED OUTLINE of the chapter CHAPTER 14 - APPLICATIONS : QED OUTLINE of the chapter 14.1 Scattering in a Coulomb field 14.2 Form factors 14.3 The Rosenbluth formula 14.4 Compton scattering 14.5 Inverse Compton scattering 14.6 Processes

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 8 Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Photon propagator Electron-proton scattering by an exchange of virtual photons ( Dirac-photons ) (1) e - virtual

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 004 Problem Solving 4 Solutions: Magnetic Force, Torque, an Magnetic Moments OJECTIVES 1. To start with the magnetic force on a moving

More information

Physics 217 Solution Set #5 Fall 2016

Physics 217 Solution Set #5 Fall 2016 Physics 217 Solution Set #5 Fall 2016 1. Repeat the computation of problem 3 of Problem Set 4, but this time use the full relativistic expression for the matrix element. Show that the resulting spin-averaged

More information

Cross-sections. Kevin Cahill for 524 January 24, There are two standard ways of normalizing states. We have been using continuum normalization

Cross-sections. Kevin Cahill for 524 January 24, There are two standard ways of normalizing states. We have been using continuum normalization Cross-sections Kevin Cahill for 54 January 4, 013 1 Fermi s Golden Rule There are two standard ways of normalizing states. We have been using continuum normalization p p = δ (3) (p p). (1) The other way

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Units and dimensions

Units and dimensions Particles and Fields Particles and Antiparticles Bosons and Fermions Interactions and cross sections The Standard Model Beyond the Standard Model Neutrinos and their oscillations Particle Hierarchy Everyday

More information

Gravitation & Cosmology. Exercises # µ x = 0 (1)

Gravitation & Cosmology. Exercises # µ x = 0 (1) Gravitation & Cosmology. Exercises # 4.1 - Geoesics a) Show that the Euler-Lagrange equations for the Lagrangian L τ ẋ L µ x = 0 (1) µ L = 1 2 g µνẋ µ ẋ ν (2) are the geoesic equations where, as usual,

More information

Jackson, Classical Electrodynamics, Section 14.8 Thomson Scattering of Radiation

Jackson, Classical Electrodynamics, Section 14.8 Thomson Scattering of Radiation High Energy Cross Sections by Monte Carlo Quadrature Thomson Scattering in Electrodynamics Jackson, Classical Electrodynamics, Section 14.8 Thomson Scattering of Radiation Jackson Figures 14.17 and 14.18:

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 11. Synchrotron Radiation & Compton Scattering Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Synchrotron Self-Absorption synchrotron emission is accompanied

More information

Transition Matrix Elements for Pion Photoproduction

Transition Matrix Elements for Pion Photoproduction Transition Matrix Elements for Pion Photoproduction Mohamed E. Kelabi 1 Abstract We have obtained the transition matrix elements for pion photoproduction by considering the number of gamma matrices involved.

More information

[1+ m2 c 4 4EE γ. The equations of conservation of energy and momentum are. E + E γ p p γ

[1+ m2 c 4 4EE γ. The equations of conservation of energy and momentum are. E + E γ p p γ Physics 403: Relativity Homework Assignment 2 Due 12 February 2007 1. Inverse Compton scattering occurs whenever a photon scatters off a particle moving with a speed very nearly equal to that of light.

More information

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions Calculus for the Life Sciences II c Functions Joseph M. Mahaffy, mahaffy@math.ssu.eu Department of Mathematics an Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Particle Notes. Ryan D. Reece

Particle Notes. Ryan D. Reece Particle Notes Ryan D. Reece July 9, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation that

More information

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate post-graduate course in High Energy Physics Paper 1: The Standard Model

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

Luciano Maiani: Quantum Electro Dynamics, QED. Basic

Luciano Maiani: Quantum Electro Dynamics, QED. Basic Luciano Maiani:. Lezione Fermi 10 Quantum Electro Dynamics, QED. Basic 1. Fiels, waves an particles 2. Complex Fiels an phases 3. Lowest orer QED processes 4. Loops an ivergent corrections 5. Two preictions

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

Spin-orbit coupling: Dirac equation

Spin-orbit coupling: Dirac equation Dirac equation : Dirac equation term couples spin of the electron σ = 2S/ with movement of the electron mv = p ea in presence of electrical field E. H SOC = e 4m 2 σ [E (p ea)] c2 The maximal coupling

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Physics 772 Peskin and Schroeder Problem 3.4.! R R (!,! ) = 1 ı!!

Physics 772 Peskin and Schroeder Problem 3.4.! R R (!,! ) = 1 ı!! Physics 77 Peskin and Schroeder Problem 3.4 Problem 3.4 a) We start with the equation ı @ ım = 0. Define R L (!,! ) = ı!!!! R R (!,! ) = ı!! +!! Remember we showed in class (and it is shown in the text)

More information

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field Slie 1 / 29 Slie 2 / 29 lectric Potential Slie 3 / 29 Work one in a Uniform lectric Fiel Slie 4 / 29 Work one in a Uniform lectric Fiel point a point b The path which the particle follows through the uniform

More information

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing.

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing. Physics 27 FINAL EXAM SOLUTIONS Fall 206. The helicity spinor u(p, λ satisfies u(p,λu(p,λ = 2m. ( In parts (a and (b, you may assume that m 0. (a Evaluate u(p,λ by any method of your choosing. Using the

More information

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Dr. A. Mitov Particle Physics 1 Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Cambridge Particle Physics Courses PART II Particle and Nuclear Physics Dr. Potter Introductory course PART

More information

The Pauli/Dirac Matrices

The Pauli/Dirac Matrices The Pauli/Dirac Matrices By Flamenco Chuck Keyser 1/6/17 BuleriaChk@aol.com Flamenco Chuck Latest Revision /1/17 11:1 AM PST This document shows the relationship of the Pauli/Dirac matrices to the relativistic

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012 Particle Physics, Fall Solutions to Final Exam December, Part I: Short Answer [ points] For each of the following, give a short answer (- sentences, or a formula). [5 points each]. [This one might be har

More information

Special Relativity. Chapter The geometry of space-time

Special Relativity. Chapter The geometry of space-time Chapter 1 Special Relativity In the far-reaching theory of Special Relativity of Einstein, the homogeneity and isotropy of the 3-dimensional space are generalized to include the time dimension as well.

More information

Units. In this lecture, natural units will be used:

Units. In this lecture, natural units will be used: Kinematics Reminder: Lorentz-transformations Four-vectors, scalar-products and the metric Phase-space integration Two-body decays Scattering The role of the beam-axis in collider experiments Units In this

More information

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 5 Scattering theory, Born Approximation SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Scattering amplitude We are going to show here that we can obtain the differential cross

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Bair, faculty.uml.eu/cbair University of Massachusetts Lowell 1. Pre-Einstein Relativity - Einstein i not invent the concept of relativity,

More information

Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff

Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff E. Daw April 4, 2012 1 Review of Lecture 4 Last time we studied use of 4 vectors, particularly the 4 momentum, in relativity calculations. We

More information

Extending the 4 4 Darbyshire Operator Using n-dimensional Dirac Matrices

Extending the 4 4 Darbyshire Operator Using n-dimensional Dirac Matrices International Journal of Applied Mathematics and Theoretical Physics 2015; 1(3): 19-23 Published online February 19, 2016 (http://www.sciencepublishinggroup.com/j/ijamtp) doi: 10.11648/j.ijamtp.20150103.11

More information

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino Cosmology & CMB Set2: Linear Perturbation Theory Davide Maino Covariant Perturbation Theory Covariant = takes same form in all coordinate systems Invariant = takes the same value in all coordinate systems

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

MITOCW watch?v=wr88_vzfcx4

MITOCW watch?v=wr88_vzfcx4 MITOCW watch?v=wr88_vzfcx4 PROFESSOR: So we're building this story. We had the photoelectric effect. But at this moment, Einstein, in the same year that he was talking about general relativity, he came

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision)

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision) Particle Physics Michaelmas Term 2011 Prof. Mark Thomson + e - e + - + e - e + - + e - e + - + e - e + - Handout 2 : The Dirac Equation Prof. M.A. Thomson Michaelmas 2011 45 Non-Relativistic QM (Revision)

More information