Computer Science B Homework #2 Due Monday February 9, 2004, 13:30

Size: px
Start display at page:

Download "Computer Science B Homework #2 Due Monday February 9, 2004, 13:30"

Transcription

1 Computer Science B Homework #2 Due Monday February 9, 2004, 13:30 In all the problems, all calculations are done mod M where M= in order to limit the size o the integers involved. This way we avoid problems due to overlow. As we have seen in class, the Fibonacci numbers are deined as ollows: n = 1 i n=1,2 n-1 + n-2 i n>2 Thus the most natural way to write a program to compute one uses the next algorithm: ibrec(n) I (n<3) Then return 1 Else return ibrec (n-1)+ ibrec (n-2) [15%] 1) Write a Java program that implements this algorithm. Find the time needed to compute 1, 2, 3, 4, 5, and plot a graph o your results. What is the largest n or which you can compute n within 1 second? The running time should be exponential. Indeed, the running time is Ω( n ) as explained in class beore.

2 An iterative way o computing the same values only keeps track o the last two values and use them to compute the new ones : ibit(n) :=1; g:=1 For k:=2 to n do := +g g:= -g Return [15%] 2 Write a Java program that implements this algorithm. Find the time needed to compute 1, 2, 3, 4, 5, and plot a graph o your results. What is the largest n or which you can compute n within 1 second? The running time should be linear, i.e. O(n). An alternate deinition we have NOT seen in class or the Fibonacci numbers is: 1 i n=1,2 n = 2 2 n n 12 i n>2, n odd 2 2 n 2 +1 n2 1 i n>2, n even

3 [15%] 3a) Prove by mathematical induction that this new deinition o n is correct. basis case: n=1,2: 1 = 2 =1 induction step: Let n>2 and assume the ormulas are correct or all k, 0<k<n. Then notation: F= 2 n odd, (n-1 even, n-2 odd) n even, (n-1 odd, n-2 even) n = n-1 + n-2 = * [F (n-1)/2+1 -F (n-1)/2-1 ]+[F (n-1)/2 +F (n-3)/2 ] = F (n+1)/2 -F (n-3)/2 +F (n-1)/2 +F (n-3)/2 = F (n+1)/2 +F (n-1)/2 NOTE : = * indicates use o the induction hypothesis. All other steps are simple algebraic manipulations. n = n-1 + n-2 = * [F n/2 +F (n-2)/2 ]+[F (n-2)/2+1 -F (n-2)/2-1 ] = F n/2 +F n/2-1 +F n/2 -F n/2-2 = * 2F n/2 +[ n/2 - n/2-2 ] 2 -F n/2-2 = 2F n/2 +[F n/2-2 n/2 n/2-2 +F n/2-2 ]-F n/2-2 = F n/2 +2F n/2-2 n/2 n/2-2 = * n/2 [ n/2 +2 n/2-2 n/2-2 ] = n/2 [ n/2 +2 n/2-1 ] = [ n/2+1 - n/2-1 ] [ n/2+1 + n/2-1 ] = * F n/2+1 -F n/2-1 [15%] 3b) Write a Java program that implements this algorithm. Find the time needed to compute 1, 2, 3, 4, 5, and plot a graph o your results. What is the largest n or which you can compute n within 1 second? The running time should be linear, i.e. O(n). [15%] 4a) Prove the ollowing by mathematical induction or all n> n = n 1 n n n+1

4 basis case: n=1,2 : = , = induction step: Let n>2 and assume the ormula is correct or n-1. Then 0 1 n = n = * n 2 n 1 = n 1 + n 2 n 1 = n 1 n n n+1 n 1 n n + n 1 n A natural way o computing this exponentiation is to use a method similar to the one we used in Homework #1 or numbers (below I stands or the 2 by 2 identity matrix): ExpMOD(A,b) I (b=0) Then return I Else I (b mod 2)=0 Then return ExpMOD( A 2, b/2 ) Else return A( ExpMOD(A 2, (b-1)/2 ) )

5 [15%] 4b) Write a Java program that implements this algorithm. Find the time needed to compute 1, 2, 3, 4, 5, and plot a graph o your results. What is the largest n or which you can compute n within 1 second (give an estimate i n is too big )? The running time should be logarithmic, i.e. O(log n). [10%] 5) I M is rather small (say M<1000) and you wish to compute the value n mod M; ind a very ast algorithm to compute this value, even or very large values o n. hint: Show that there exists an integer R, 0<R<M 2 such that n mod M = n mod R mod M. Since the value o n mod M is completely deined by n-1 mod M and n-2 mod M it is clear that whenever n-1 = n+r-1 mod M and n-2 = n+r-2 mod M then n = n+r mod M. Thereore i we ind a value R such that R+1 = 1 (= 1 ) mod M and R+2 = 1 (= 2 ) mod M then or any positive n we have n = n+r mod M and thus n mod M = n mod R mod M. All is let to prove is that there exists an integer R, 0<R<M 2 such that R+1 = 1 mod M and R+2 = 1 mod M. I we consider the sequence 1 mod M, 2 mod M, 3 mod M,, M 2 mod M, M 2 +1 mod M, M 2 +2 mod M we enumerate M 2 +1 pairs ( i mod M, i+1 mod M) o consecutive values o the Fibonacci sequence. Now since only M 2 such pairs (x,y) exist, there must exist an i and a j such that ( i mod M, i+1 mod M) = ( j mod M, j+1 mod M). Let R=i-j<M 2. Notice that i we start with ( i mod M, i+1 mod M) = ( j mod M, j+1 mod M) then i-1 mod M = j-1 mod M as well because n-1 = n+1 n. We obtain ( i mod M, i+1 mod M) = ( j mod M, j+1 mod M) which means that ( i mod M, i+1 mod M) = ( i+r mod M, i+r+1 mod M) which implies that ( i-1 mod M, i mod M) = ( i+r-1 mod M, i+r mod M) which implies that ( i-2 mod M, i-1 mod M) = ( i+r-2 mod M, i+r-1 mod M) which implies by induction that ( 1 mod M, 2 mod M) = ( R+1 mod M, R+2 mod M).

6 Pre-processing: FindR(M) :=1; g:=2; R:=1 While NOT (=1 and g=1) do := +g mod M g:= -g mod M R:=R+1 Return R Given constant R: FastFib(n) Return(Fibit(n mod R))

MATH CSE20 Homework 5 Due Monday November 4

MATH CSE20 Homework 5 Due Monday November 4 MATH CSE20 Homework 5 Due Monday November 4 Assigned reading: NT Section 1 (1) Prove the statement if true, otherwise find a counterexample. (a) For all natural numbers x and y, x + y is odd if one of

More information

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Maximum Flow Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Flow Network A low network G ( V, E) is a directed graph with a source node sv, a sink node tv, a capacity unction c. Each edge ( u,

More information

201-1A5-MT - Mathematics Summer 2015 HOMEWORK 2 Deadline : Sunday, August 30, 2015 at 12 :30.

201-1A5-MT - Mathematics Summer 2015 HOMEWORK 2 Deadline : Sunday, August 30, 2015 at 12 :30. 01-1A5-MT - Mathematics Summer 015 HOMEWORK Deadline : Sunday, August 30, 015 at 1 :30. Instructions : The assignment consists of five questions, each worth 0 points. Only hardcopy submissions of your

More information

Induction. Induction. Induction. Induction. Induction. Induction 2/22/2018

Induction. Induction. Induction. Induction. Induction. Induction 2/22/2018 The principle of mathematical induction is a useful tool for proving that a certain predicate is true for all natural numbers. It cannot be used to discover theorems, but only to prove them. If we have

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Exam in Discrete Mathematics

Exam in Discrete Mathematics Exam in Discrete Mathematics First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design June 4th, 018, 9.00-1.00 This exam consists of 11 numbered pages with 14 problems.

More information

Section 4.1: Sequences and Series

Section 4.1: Sequences and Series Section 4.1: Sequences and Series In this section, we shall introduce the idea of sequences and series as a necessary tool to develop the proof technique called mathematical induction. Most of the material

More information

Circuit Complexity / Counting Problems

Circuit Complexity / Counting Problems Lecture 5 Circuit Complexity / Counting Problems April 2, 24 Lecturer: Paul eame Notes: William Pentney 5. Circuit Complexity and Uniorm Complexity We will conclude our look at the basic relationship between

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Problem Set 5 Solutions Section 4.. Use mathematical induction to prove each of the following: a) For each natural number n with n, n > + n. Let P n) be the statement n > + n. The base case, P ), is true

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

CS220/MATH320 Applied Discrete Math Fall 2018 Instructor: Marc Pomplun. Assignment #3. Sample Solutions

CS220/MATH320 Applied Discrete Math Fall 2018 Instructor: Marc Pomplun. Assignment #3. Sample Solutions CS22/MATH2 Applied Discrete Math Fall 28 Instructor: Marc Pomplun Assignment # Sample Solutions Question : The Boston Powerlower Botanists at UMass Boston recently discovered a new local lower species

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki Assignment #2 COMP 3200 Spring 2012 Prof. Stucki 1) Construct deterministic finite automata accepting each of the following languages. In (a)-(c) the alphabet is = {0,1}. In (d)-(e) the alphabet is ASCII

More information

Math 2412 Activity 1(Due by EOC Sep. 17)

Math 2412 Activity 1(Due by EOC Sep. 17) Math 4 Activity (Due by EOC Sep. 7) Determine whether each relation is a unction.(indicate why or why not.) Find the domain and range o each relation.. 4,5, 6,7, 8,8. 5,6, 5,7, 6,6, 6,7 Determine whether

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Remainders. We learned how to multiply and divide in elementary

Remainders. We learned how to multiply and divide in elementary Remainders We learned how to multiply and divide in elementary school. As adults we perform division mostly by pressing the key on a calculator. This key supplies the quotient. In numerical analysis and

More information

MATH10040: Numbers and Functions Homework 1: Solutions

MATH10040: Numbers and Functions Homework 1: Solutions MATH10040: Numbers and Functions Homework 1: Solutions 1. Prove that a Z and if 3 divides into a then 3 divides a. Solution: The statement to be proved is equivalent to the statement: For any a N, if 3

More information

Theorem Let J and f be as in the previous theorem. Then for any w 0 Int(J), f(z) (z w 0 ) n+1

Theorem Let J and f be as in the previous theorem. Then for any w 0 Int(J), f(z) (z w 0 ) n+1 (w) Second, since lim z w z w z w δ. Thus, i r δ, then z w =r (w) z w = (w), there exist δ, M > 0 such that (w) z w M i dz ML({ z w = r}) = M2πr, which tends to 0 as r 0. This shows that g = 2πi(w), which

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS Problem Set Problems on Unordered Summation Math 5323, Fall 2001 Februray 15, 2001 ANSWERS i 1 Unordered Sums o Real Terms In calculus and real analysis, one deines the convergence o an ininite series

More information

CIS 121 Data Structures and Algorithms with Java Spring Big-Oh Notation Monday, January 22/Tuesday, January 23

CIS 121 Data Structures and Algorithms with Java Spring Big-Oh Notation Monday, January 22/Tuesday, January 23 CIS 11 Data Structures and Algorithms with Java Spring 018 Big-Oh Notation Monday, January /Tuesday, January 3 Learning Goals Review Big-Oh and learn big/small omega/theta notations Discuss running time

More information

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS:

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS: Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS: 1 EXPONENT REVIEW PROBLEMS: 2 1. 2x + x x + x + 5 =? 2. (x 2 + x) (x + 2) =?. The expression 8x (7x 6 x 5 ) is equivalent to?.

More information

CS383, Algorithms Spring 2009 HW1 Solutions

CS383, Algorithms Spring 2009 HW1 Solutions Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ 21 Campanella Way, room 569 alvarez@cs.bc.edu Computer Science Department voice: (617) 552-4333 Boston College fax: (617) 552-6790 Chestnut Hill,

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee Algorithm Analysis Recurrence Relation Chung-Ang University, Jaesung Lee Recursion 2 Recursion 3 Recursion in Real-world Fibonacci sequence = + Initial conditions: = 0 and = 1. = + = + = + 0, 1, 1, 2,

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite CHAPTER 9 Exponential and Logarithmic Functions 9. The Algebra o Functions; Composite Functions 9.2 Inverse Functions 9.3 Exponential Functions 9.4 Exponential Growth and Decay Functions 9.5 Logarithmic

More information

Algorithms (II) Yu Yu. Shanghai Jiaotong University

Algorithms (II) Yu Yu. Shanghai Jiaotong University Algorithms (II) Yu Yu Shanghai Jiaotong University Chapter 1. Algorithms with Numbers Two seemingly similar problems Factoring: Given a number N, express it as a product of its prime factors. Primality:

More information

z-axis SUBMITTED BY: Ms. Harjeet Kaur Associate Professor Department of Mathematics PGGCG 11, Chandigarh y-axis x-axis

z-axis SUBMITTED BY: Ms. Harjeet Kaur Associate Professor Department of Mathematics PGGCG 11, Chandigarh y-axis x-axis z-ais - - SUBMITTED BY: - -ais - - - - - - -ais Ms. Harjeet Kaur Associate Proessor Department o Mathematics PGGCG Chandigarh CONTENTS: Function o two variables: Deinition Domain Geometrical illustration

More information

Due date: Monday, February 6, 2017.

Due date: Monday, February 6, 2017. Modern Analysis Homework 3 Solutions Due date: Monday, February 6, 2017. 1. If A R define A = {x R : x A}. Let A be a nonempty set of real numbers, assume A is bounded above. Prove that A is bounded below

More information

1.2 Start Thinking. 1.2 Warm Up. 1.2 Cumulative Review Warm Up

1.2 Start Thinking. 1.2 Warm Up. 1.2 Cumulative Review Warm Up 1.2 Start Thinking In 2007, the average American high school student spent 6.8 hours on homework per week. Suppose you kept track of the amount of time you spent on homework from last Monday through last

More information

Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary

Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary Complexity Analysis Complexity Theory Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary Output TRUE or FALSE Time and Space

More information

McGill University Faculty of Science. Solutions to Practice Final Examination Math 240 Discrete Structures 1. Time: 3 hours Marked out of 60

McGill University Faculty of Science. Solutions to Practice Final Examination Math 240 Discrete Structures 1. Time: 3 hours Marked out of 60 McGill University Faculty of Science Solutions to Practice Final Examination Math 40 Discrete Structures Time: hours Marked out of 60 Question. [6] Prove that the statement (p q) (q r) (p r) is a contradiction

More information

Math 283 Spring 2013 Presentation Problems 4 Solutions

Math 283 Spring 2013 Presentation Problems 4 Solutions Math 83 Spring 013 Presentation Problems 4 Solutions 1. Prove that for all n, n (1 1k ) k n + 1 n. Note that n means (1 1 ) 3 4 + 1 (). n 1 Now, assume that (1 1k ) n n. Consider k n (1 1k ) (1 1n ) n

More information

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006 Divisibility in the Fibonacci Numbers Stefan Erickson Colorado College January 27, 2006 Fibonacci Numbers F n+2 = F n+1 + F n n 1 2 3 4 6 7 8 9 10 11 12 F n 1 1 2 3 8 13 21 34 89 144 n 13 14 1 16 17 18

More information

Recursive Definitions

Recursive Definitions Recursive Definitions Example: Give a recursive definition of a n. a R and n N. Basis: n = 0, a 0 = 1. Recursion: a n+1 = a a n. Example: Give a recursive definition of n i=0 a i. Let S n = n i=0 a i,

More information

Tricks of the Trade in Combinatorics and Arithmetic

Tricks of the Trade in Combinatorics and Arithmetic Tricks of the Trade in Combinatorics and Arithmetic Zachary Friggstad Programming Club Meeting Fast Exponentiation Given integers a, b with b 0, compute a b exactly. Fast Exponentiation Given integers

More information

MAT 243 Test 2 SOLUTIONS, FORM A

MAT 243 Test 2 SOLUTIONS, FORM A MAT 24 Test 2 SOLUTIONS, FORM A 1. [1 points] Prove the following using Mathematical Induction. L 2 i = L n L n+1 + 2 where L is the Lucas sequence: L 0 = 2 L 1 = 1 L n = L n 1 + L n 2, n 2 Solution: Let

More information

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values Supplementary material or Continuous-action planning or discounted ininite-horizon nonlinear optimal control with Lipschitz values List o main notations x, X, u, U state, state space, action, action space,

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

Part 1. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

Part 1. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form Commutative Algebra Homework 3 David Nichols Part 1 Exercise 2.6 For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form m 0 + m

More information

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 1 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 2 Section 5.1 3 Section Summary Mathematical Induction Examples of

More information

Induction and recursion. Chapter 5

Induction and recursion. Chapter 5 Induction and recursion Chapter 5 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms Mathematical Induction Section 5.1

More information

Enumerating Binary Strings

Enumerating Binary Strings International Mathematical Forum, Vol. 7, 2012, no. 38, 1865-1876 Enumerating Binary Strings without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University Melbourne,

More information

Induction and Recursion

Induction and Recursion . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Induction and Recursion

More information

CMSC Discrete Mathematics SOLUTIONS TO FIRST MIDTERM EXAM October 18, 2005 posted Nov 2, 2005

CMSC Discrete Mathematics SOLUTIONS TO FIRST MIDTERM EXAM October 18, 2005 posted Nov 2, 2005 CMSC-37110 Discrete Mathematics SOLUTIONS TO FIRST MIDTERM EXAM October 18, 2005 posted Nov 2, 2005 Instructor: László Babai Ryerson 164 e-mail: laci@cs This exam contributes 20% to your course grade.

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

1. Definition: Order Statistics of a sample.

1. Definition: Order Statistics of a sample. AMS570 Order Statistics 1. Deinition: Order Statistics o a sample. Let X1, X2,, be a random sample rom a population with p.d.. (x). Then, 2. p.d.. s or W.L.O.G.(W thout Loss o Ge er l ty), let s ssu e

More information

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:16 AM 3.: Mean Value Theorem 1 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed

More information

Solution Set 2. Problem 1. [a] + [b] = [a + b] = [b + a] = [b] + [a] ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b + c])

Solution Set 2. Problem 1. [a] + [b] = [a + b] = [b + a] = [b] + [a] ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b + c]) Solution Set Problem 1 (1) Z/nZ is the set of equivalence classes of Z mod n. Equivalence is determined by the following rule: [a] = [b] if and only if b a = k n for some k Z. The operations + and are

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Chapter 5.1: Induction

Chapter 5.1: Induction Chapter.1: Induction Monday, July 1 Fermat s Little Theorem Evaluate the following: 1. 1 (mod ) 1 ( ) 1 1 (mod ). (mod 7) ( ) 8 ) 1 8 1 (mod ). 77 (mod 19). 18 (mod 1) 77 ( 18 ) 1 1 (mod 19) 18 1 (mod

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 14. Recursive algorithm

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 14. Recursive algorithm Discrete Mathematics: Logic Discrete Mathematics: Lecture 14. Recursive algorithm recursive algorithms a n = a a a a a a a = a a n-1 power (a, n) = a power (a, n-1) basis step: if n = 0, power(a, 0) =

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

UNIVERSITY OF CAMBRIDGE

UNIVERSITY OF CAMBRIDGE UNIVERSITY OF CAMBRIDGE DOWNING COLLEGE MATHEMATICS FOR ECONOMISTS WORKBOOK This workbook is intended for students coming to Downing College Cambridge to study Economics 2018/ 19 1 Introduction Mathematics

More information

Recurrence Relations and Recursion: MATH 180

Recurrence Relations and Recursion: MATH 180 Recurrence Relations and Recursion: MATH 180 1: Recursively Defined Sequences Example 1: The sequence a 1,a 2,a 3,... can be defined recursively as follows: (1) For all integers k 2, a k = a k 1 + 1 (2)

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 6

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 6 Ma 4: Introduction to Lebesgue Integration Solutions to Homework Assignment 6 Pro. Wickerhauser Due Thursda, April 5th, 3 Please return our solutions to the instructor b the end o class on the due date.

More information

Fall 2017 November 10, Written Homework 5

Fall 2017 November 10, Written Homework 5 CS1800 Discrete Structures Profs. Aslam, Gold, & Pavlu Fall 2017 November 10, 2017 Assigned: Mon Nov 13 2017 Due: Wed Nov 29 2017 Instructions: Written Homework 5 The assignment has to be uploaded to blackboard

More information

Algorithm efficiency analysis

Algorithm efficiency analysis Algorithm efficiency analysis Mădălina Răschip, Cristian Gaţu Faculty of Computer Science Alexandru Ioan Cuza University of Iaşi, Romania DS 2017/2018 Content Algorithm efficiency analysis Recursive function

More information

MA/CSSE 473 Day 05. Factors and Primes Recursive division algorithm

MA/CSSE 473 Day 05. Factors and Primes Recursive division algorithm MA/CSSE 473 Day 05 actors and Primes Recursive division algorithm MA/CSSE 473 Day 05 HW 2 due tonight, 3 is due Monday Student Questions Asymptotic Analysis example: summation Review topics I don t plan

More information

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations Telescoping Decomposition Method or Solving First Order Nonlinear Dierential Equations 1 Mohammed Al-Reai 2 Maysem Abu-Dalu 3 Ahmed Al-Rawashdeh Abstract The Telescoping Decomposition Method TDM is a new

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission.

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission. CSE 5 Homework Due: Monday October 9, 7 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in this

More information

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Catie Baker Spring 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Catie Baker Spring 2015 CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Catie Baker Spring 2015 Today Registration should be done. Homework 1 due 11:59pm next Wednesday, April 8 th. Review math

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION Predrag Terzic Podgorica, Montenegro pedja.terzic@hotmail.com Abstract. We present deterministic primality test for Fermat numbers, F

More information

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective Numerical Solution o Ordinary Dierential Equations in Fluctuationlessness Theorem Perspective NEJLA ALTAY Bahçeşehir University Faculty o Arts and Sciences Beşiktaş, İstanbul TÜRKİYE TURKEY METİN DEMİRALP

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

Test 4 also includes review problems from earlier sections so study test reviews 1, 2, and 3 also.

Test 4 also includes review problems from earlier sections so study test reviews 1, 2, and 3 also. MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 4 (1.1-10.1, not including 8.2) Test 4 also includes review problems from earlier sections so study test reviews 1, 2, and 3 also. 1. Factor completely: a 2

More information

Recitation 7: Existence Proofs and Mathematical Induction

Recitation 7: Existence Proofs and Mathematical Induction Math 299 Recitation 7: Existence Proofs and Mathematical Induction Existence proofs: To prove a statement of the form x S, P (x), we give either a constructive or a non-contructive proof. In a constructive

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 17

STEP Support Programme. Hints and Partial Solutions for Assignment 17 STEP Support Programme Hints and Partial Solutions for Assignment 7 Warm-up You need to be quite careful with these proofs to ensure that you are not assuming something that should not be assumed. For

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 5

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 5 CS 70 Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 5 Modular Arithmetic In several settings, such as error-correcting codes and cryptography, we sometimes wish to work over a

More information

HOMEWORK #2 - MATH 3260

HOMEWORK #2 - MATH 3260 HOMEWORK # - MATH 36 ASSIGNED: JANUARAY 3, 3 DUE: FEBRUARY 1, AT :3PM 1) a) Give by listing the sequence of vertices 4 Hamiltonian cycles in K 9 no two of which have an edge in common. Solution: Here is

More information

Register machines L2 18

Register machines L2 18 Register machines L2 18 Algorithms, informally L2 19 No precise definition of algorithm at the time Hilbert posed the Entscheidungsproblem, just examples. Common features of the examples: finite description

More information

Algebra 1 Unit 6 Notes

Algebra 1 Unit 6 Notes Algebra 1 Unit 6 Notes Name: Day Date Assignment (Due the next class meeting) Monday Tuesday Wednesday Thursday Friday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods Numerical Methods - Lecture 1 Numerical Methods Lecture. Analysis o errors in numerical methods Numerical Methods - Lecture Why represent numbers in loating point ormat? Eample 1. How a number 56.78 can

More information

(4.2) Equivalence Relations. 151 Math Exercises. Malek Zein AL-Abidin. King Saud University College of Science Department of Mathematics

(4.2) Equivalence Relations. 151 Math Exercises. Malek Zein AL-Abidin. King Saud University College of Science Department of Mathematics King Saud University College of Science Department of Mathematics 151 Math Exercises (4.2) Equivalence Relations Malek Zein AL-Abidin 1440 ه 2018 Equivalence Relations DEFINITION 1 A relation on a set

More information

Arithmetic Algorithms, Part 1

Arithmetic Algorithms, Part 1 Arithmetic Algorithms, Part 1 DPV Chapter 1 Jim Royer EECS January 18, 2019 Royer Arithmetic Algorithms, Part 1 1/ 15 Multiplication à la Français function multiply(a, b) // input: two n-bit integers a

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Warm-up Simple methods Linear recurrences. Solving recurrences. Misha Lavrov. ARML Practice 2/2/2014

Warm-up Simple methods Linear recurrences. Solving recurrences. Misha Lavrov. ARML Practice 2/2/2014 Solving recurrences Misha Lavrov ARML Practice 2/2/2014 Warm-up / Review 1 Compute 100 k=2 ( 1 1 ) ( = 1 1 ) ( 1 1 ) ( 1 1 ). k 2 3 100 2 Compute 100 k=2 ( 1 1 ) k 2. Homework: find and solve problem Algebra

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2

On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2 On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2 Johan Nilsson LIPN Université Paris 13 93430

More information

! " k x 2k$1 # $ k x 2k. " # p $ 1! px! p " p 1 # !"#$%&'"()'*"+$",&-('./&-/. !"#$%&'()"*#%+!'",' -./#")'.,&'+.0#.1)2,'!%)2%! !"#$%&'"%(")*$+&#,*$,#

!  k x 2k$1 # $ k x 2k.  # p $ 1! px! p  p 1 # !#$%&'()'*+$,&-('./&-/. !#$%&'()*#%+!',' -./#)'.,&'+.0#.1)2,'!%)2%! !#$%&'%()*$+&#,*$,# "#$%&'()"*#%+'",' -./#")'.,&'+.0#.1)2,' %)2% "#$%&'"()'*"+$",&-('./&-/. Taylor Series o a unction at x a is " # a k " # " x a# k k0 k It is a Power Series centered at a. Maclaurin Series o a unction is

More information

Quiz 3 Reminder and Midterm Results

Quiz 3 Reminder and Midterm Results Quiz 3 Reminder and Midterm Results Reminder: Quiz 3 will be in the first 15 minutes of Monday s class. You can use any resources you have during the quiz. It covers all four sections of Unit 3. It has

More information

Computing Fibonacci Numbers Fast using the Chinese Remainder Theorem

Computing Fibonacci Numbers Fast using the Chinese Remainder Theorem Computing Fibonacci Numbers Fast using the Chinese Remainder Theorem Adam Murakami Oregon State University Advisor: Paul Cull Oregon State University August 15, 003 Abstract The purpose of this paper is

More information

SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Last quarter, we introduced the closed diagonal condition or a prevariety to be a prevariety, and the universally closed condition or a variety to be complete.

More information

Nordhaus-Gaddum Theorems for k-decompositions

Nordhaus-Gaddum Theorems for k-decompositions Nordhaus-Gaddum Theorems for k-decompositions Western Michigan University October 12, 2011 A Motivating Problem Consider the following problem. An international round-robin sports tournament is held between

More information

Adam Blank Spring 2017 CSE 311. Foundations of Computing I. * All slides are a combined effort between previous instructors of the course

Adam Blank Spring 2017 CSE 311. Foundations of Computing I. * All slides are a combined effort between previous instructors of the course Adam Blank Spring 2017 CSE 311 Foundations of Computing I * All slides are a combined effort between previous instructors of the course HW 3 De-Brief HW 3 De-Brief PROOFS! HW 3 De-Brief Proofs This is

More information

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises PUTNAM TRAINING MATHEMATICAL INDUCTION (Last updated: December 11, 017) Remark. This is a list of exercises on mathematical induction. Miguel A. Lerma 1. Prove that n! > n for all n 4. Exercises. Prove

More information

A NOTE ON HENSEL S LEMMA IN SEVERAL VARIABLES

A NOTE ON HENSEL S LEMMA IN SEVERAL VARIABLES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 11, November 1997, Pages 3185 3189 S 0002-9939(97)04112-9 A NOTE ON HENSEL S LEMMA IN SEVERAL VARIABLES BENJI FISHER (Communicated by

More information

Midterm Exam Solutions February 27, 2009

Midterm Exam Solutions February 27, 2009 Midterm Exam Solutions February 27, 2009 (24. Deine each o the ollowing statements. You may assume that everyone knows the deinition o a topological space and a linear space. (4 a. X is a compact topological

More information