Due date: Monday, February 6, 2017.

Size: px
Start display at page:

Download "Due date: Monday, February 6, 2017."

Transcription

1 Modern Analysis Homework 3 Solutions Due date: Monday, February 6, If A R define A = {x R : x A}. Let A be a nonempty set of real numbers, assume A is bounded above. Prove that A is bounded below and inf( A) = sup A. Solution. Notice that x A if and only if x A. Since A is non empty and bounded above, sup A exists. Let σ = sup A. If x A, then x A, hence x σ, thus x = ( x) σ, proving σ is a lower bound of A. In particular, A is bounded below and inf( A) σ. Let τ = inf( A), so σ τ. Just as we proved that σ was a lower bound of A, we can now prove that τ is an upper bound of A, hence σ τ, implying σ τ. It follows that σ = τ. 2. Let A, B be two sets of real numbers; assume both are nonempty, assume R = A B, and a < b for all a A, b B. Prove: A is bounded above B is bounded below and sup A = inf B. Solution. Let s concentrate on one of the sets, say B. Since A is not empty and every element of A is less than every element of B, it follows that B is bounded below (by all the elements of A). As a non-empty set that is bounded below, inf B exists. Because every element of A is a lower bound of B we have also x inf B for all x A, thus inf B is an upper bound of A. It follows that sup A infb. Assume sup A < infb. There is then x, sup A < x < inf B; for example x = (sup A + inf B)/2. But x > sup A implies x / A; x < inf B implies x / B, contradicting that R = A B. This proves that we must have inf B = sup A. bounded above 3. Let D be a non=empty set and let f : D R. We say f is bounded below bounded bounded above if and only if the range f(d) = {f(x) : x D} is bounded below. bounded One defines (if they exist) sup f(x) = sup f(d), x D inf f(x) = inf f(d). x D Prove one of the two following statements (they are both essentially equivalent) and answer the posed question: Let f, g : D R be bounded above. Prove f + g is bounded above and sup(f(x) + g(x)) sup f(x) + sup g(x). (1) x D x D x D

2 2 Can one replace in (1) by =? Solution. For every x D we have f(x) sup x D f(x), g(x) sup x D g(x), hence f(x) + g(x) sup x D f(x) + sup x D g(x). It follows that sup x D f(x)+sup x D g(x) is an upper bound for the range of f + g, hence sup x D (f(x) + g(x)) sup x D f(x) + sup x D g(x). Equality does not necessarily hold. For example if D = {0, 1}, f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 0. Then f(x) + g(x) = 1 for all x D, thus sup x D f(x) + g(x) = 1 < 2 = = sup x D f(x) + sup x D g(x). Let f, g : D R be bounded below. Prove f + g is bounded below and inf (f(x) + g(x)) inf f(x) + sup g(x). (2) x D x D x D Can one replace in (2) by =? Solution. For every x D we have f(x) inf x D f(x), g(x) inf x D g(x), hence f(x)+g(x) inf x D f(x)+inf x D g(x). It follows that inf x D f(x)+inf x D g(x) is a lower bound for the range of f +g, hence inf x D (f(x) + g(x)) inf x D f(x) + inf x D g(x). Equality does not necessarily hold. For example if D = {0, 1}, f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 0. Then f(x) + g(x) = 1 for all x D, thus inf x D f(x) + g(x) = 1 > 0 = = inf x D f(x) + inf x D g(x). 4. Let G be a subset of R; assume 0 G and assume that whenever x, y G, then x y G. Let G + = {x G : x > 0}. Prove: If G + is not empty and inf G + = 0, then G is dense in R in the sense that if a, b R and a < b, there exists g G such that a < g < b. Hint: prove that G is closed under addition and that if x G, then mx G for all m Z. Then imitate the proof that the rational numbers are dense in R. Incidentally,examples of sets G satisfying the hypotheses are; R, Q, G = {m + nα : m, n Z} where α is an irrational number, and many more. Solution. Incidentally, in my notes on some rules on how to write proofs, I wrote out most of the proof of this exercise. We show first that G is closed under addition. In fact, since 0 G, if x G we also have x G. If x, y G, then x, y G, hence x+y = y ( x) G. We can now prove by induction that if x G, then nx G for all n N. This is clearly true if n = 1, so assume it holds for some n N. Then nx G, x G implies (n + 1)x = nx + x G. By induction nx G

3 3 for all n N. If now m Z and m < 0, let n = m. so n G. Then mx = nx = 0 nx G. Finally, 0x = 0 G. Assume now G + and inf G + = 0. Let a, b R, a < b. Then b a > 0 = inf G + ; thus b a cannot be a lower bound of G +, hence there is x G + such that x < b a. Notice that by virtue of being in G +, x > 0. Claim: There is m Z such that mx a < (m + 1)x. There are many ways of establishing this claim. Here is one, not necessarily the shortest one. The Archimedean property states that N is not bounded above; an immediate consequence is that Z is not bounded below. There is thus some integer M such that M < a/x. There is also (again by the Archimedean property) an integer N such that a/x < N. The set of integers {k : M k N} is a finite set (of N M + 1 integers), thus so is its subset C = {k Z : M k a/x}. This set is not empty (M is in it) so being finite it contains its supremum; that is, there is an integer m such that m a/x and k m if M k a/x. Now m + 1 / C since it is larger than sup C. But m + 1 > M; so m + 1 / C implies m + 1 > a/x. We thus have mx a < (m = 1)x as claimed. Since x G, m Z, we have that g = (m + 1)x G. Also a < g by construction. Finally g = (m + 1)x = mx + x a + x < a + (b a) = b. 5. Let α R and let G + = {x : x = m + nα for some m, n Z and x > 0}. Prove: inf G + = 0 if and only if α is irrational. I won t grade this exercise. Notice that this set G satisfies the conditions of exercise 4. Let d = inf G +. Assume first d > 0. Claim: Then G = {md : m Z}. In fact, first of all we notice that in this case d G +. In fact, suppose d G +. Now 3d/2 > d, so there exists x G +, 3d/2 > x d; since d / G, it actually is 3d/2 > x > d. Since x > d, there is y G, x > y > d. Now 0 < x y < 3d 2 d d = 2 ; contradicting the definition of d since x y G + thus cannot be less than the inf of G +. With d G, we have already G {md : m Z}. For the converse inclusion let x G. Since d > 0 proceeding as in the proof of Exercise 4, there is m Z such that md x < (m + 1)d. Now 0 x md < d. If x md, then x md is an element of G + that is less than d; not possible. It follows that G = {md : m Z} as claimed. Since 1 = 1 + 0α G, there exists m Z such that 1 = md so d = 1/m. Since α = α G, there is n such that α = nd = n/m Q. This concludes the proof that if inf G + > 0, then α Q.

4 4 Conversely, assume α = a/b is in Q; a, b Z; we may assume that gcd(a, b) = 1 and b > 0. If n Z, we can invoke the division algorithm to write na = bq + r, where b, q Z, 0 r < b. Thus m + nα = m + na b = m + q + r b. Notice that r b < 1, so the only way that m + nα > 0 is if m + q 0. From this it becomes obvious that the infimum of G is precisely 1/b > Find a real number M such that Solution. sup{ x 3 21x x : 2 x 10} M. x 3 21x x x x x It should be clear that if 2 x 10, then 0 x 10, so the largest value of the right hand side of the displayed inequality will be reached for x = 10. Thus x 3 21x 2 +86x+264 x x x = Thus M = 4224 works. 7. The online textbook defines convergence of a sequence {x n } of real numbers to a number x R as follows: Prove the following statements are equivalent for a sequence {x n } of real numbers and x R. (a) The sequence {x n } converges to x in the sense of Definition (b) For every ɛ > 0 there is M R such that x n x < ɛ for all n M. (c) For every ɛ > 0 there is M N such that x n x ɛ for all n > M. (d) For every r > 0 the set {n N : x n / (x r, x + r)} is finite. Proof. (a) (b) Assume (a). Let ɛ > 0 be given. By (a), there is M N such that x n x < ɛ if n M. Since M N implies M R, it should be clear that (b) will hold.

5 5 (b) (c) Assume (b). Let ɛ > 0 be given. By (b), there is M R such that x n x < ɛ if n M. Let N = max{1, M }. Then N N and N > M. If n N then n M, hence x n x < ɛ; in particular, x n x ɛ. This proves (c). (c) (d) Assume (c). let r > 0 be given. Let ɛ = r/2; then ɛ > 0 and by (c) there exists M N such that x n x ɛ < r if n M. Thus x n / (x r, x + r) implies n < M; there are at most M 1 terms of the sequence not in (x r, x + r). (d) follows. (d) (a) Assume (d). Let ɛ > 0 be given. Let r = ɛ so that by (d) the interval (x ɛ, x + ɛ)contains all but a finite number of terms of the sequence. Since there is only a finite number of terms of the sequence not in this interval, there is a largest index M for which x M (x ɛ, x + ɛ); implying that x n (x ɛ, x + ɛ); i.e., x n x < ɛ for n M Let {a n }, {b n } be two sequences of real numbers, both converging to the same limit L. Form a new sequence {c n } by { ak, if n = 2k 1 is odd, c n = b k, if n = 2k is even. Prove {c n } converges to L. Solution. In the proof provided below, if you extract what is written in red, it is the definition of limit. The red sentences (or equivalent ones) will be present in any proof based on the definition of limit. Of course, they need to be connected by valid and legal statements. The things I wrote in blue are comments; they are not really part of the proof and if I were a student (instead of the instructor) and this a homework to be handed in, I would remove them. Let ɛ > 0 be given. Because {a n } converges to L, there is M 1 N such that a n L < ɛ if n M 1. Similarly, because {b n } converges to L, there is M 2 N such that b n L < ɛ if n M 2. Now here is a little subtlety, or thing to think about. Let s say M 1 = M 2 = 10. It could be; or it could be something else, but let s suppose it is. That means that after ten terms into the two sequences we are at ɛ from L. But now look at the composite sequence, that goes a 1, b 1, a 2, b 2, a 3, b 3, a 4, b 4, a 5, b 5, a 6, b 6,.... After 10 terms we are only 5 terms deep into either original sequence. We might still be at more than ɛ from L. This should explain the factor of 2 in the definition of M. Set M = 2 max{m 1, M 2 }. Assume n M, so n 2M 1 and n 2M 2. If n = 2k 1 is odd, then n 2M 1 implies 2k 1 2M 1, thus 2k 2M 1 +1;

6 6 in particular k M 1. Then c n L = a k L < ɛ. If n = 2k is even, then n 2M 2 implies k M 2 and hence c n L = b k L < ɛ. Since a natural number is either even or od, we see that in every case c n L < ɛ. We are done.

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 Real Number Summary of terminology and theorems: Definition: (Supremum & infimum) A supremum (or least upper bound) of a non-empty

More information

REAL ANALYSIS: INTRODUCTION

REAL ANALYSIS: INTRODUCTION REAL ANALYSIS: INTRODUCTION DR. RITU AGARWAL EMAIL: RAGARWAL.MATHS@MNIT.AC.IN MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. The real number system 1 2. Field Axioms 1 3. Order Axioms 2 4.

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008 Studying Rudin s Principles of Mathematical Analysis Through Questions Mesut B. Çakır c August 4, 2008 ii Contents 1 The Real and Complex Number Systems 3 1.1 Introduction............................................

More information

4130 HOMEWORK 4. , a 2

4130 HOMEWORK 4. , a 2 4130 HOMEWORK 4 Due Tuesday March 2 (1) Let N N denote the set of all sequences of natural numbers. That is, N N = {(a 1, a 2, a 3,...) : a i N}. Show that N N = P(N). We use the Schröder-Bernstein Theorem.

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers Chapter 3 Real numbers The notion of real number was introduced in section 1.3 where the axiomatic denition of the set of all real numbers was done and some basic properties of the set of all real numbers

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005 POL502: Foundations Kosuke Imai Department of Politics, Princeton University October 10, 2005 Our first task is to develop the foundations that are necessary for the materials covered in this course. 1

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

The Real Numbers. Chapter The Completeness Property of R

The Real Numbers. Chapter The Completeness Property of R Chapter 1 The Real Numbers 1.1 The Completeness Property of R Example 1.1.1 (Bartle 2.3.5 (a) Page 39). A nonempty set S 1 with a finite number of elements will have a least element, say u, and a largest

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

Suppose R is an ordered ring with positive elements P.

Suppose R is an ordered ring with positive elements P. 1. The real numbers. 1.1. Ordered rings. Definition 1.1. By an ordered commutative ring with unity we mean an ordered sextuple (R, +, 0,, 1, P ) such that (R, +, 0,, 1) is a commutative ring with unity

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

1 Numbers and Functions

1 Numbers and Functions 1 Numbers and Functions Let us begin at the beginning. When we learn the script of a language, such as the English language, we begin with the letters of the alphabet A, B, C,...; when we learn the sounds

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

1 Homework. Recommended Reading:

1 Homework. Recommended Reading: Analysis MT43C Notes/Problems/Homework Recommended Reading: R. G. Bartle, D. R. Sherbert Introduction to real analysis, principal reference M. Spivak Calculus W. Rudin Principles of mathematical analysis

More information

Chapter One. The Real Number System

Chapter One. The Real Number System Chapter One. The Real Number System We shall give a quick introduction to the real number system. It is imperative that we know how the set of real numbers behaves in the way that its completeness and

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

That is, there is an element

That is, there is an element Section 3.1: Mathematical Induction Let N denote the set of natural numbers (positive integers). N = {1, 2, 3, 4, } Axiom: If S is a nonempty subset of N, then S has a least element. That is, there is

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MATH 131A: REAL ANALYSIS (BIG IDEAS) MATH 131A: REAL ANALYSIS (BIG IDEAS) Theorem 1 (The Triangle Inequality). For all x, y R we have x + y x + y. Proposition 2 (The Archimedean property). For each x R there exists an n N such that n > x.

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Foundations of Mathematical Analysis

Foundations of Mathematical Analysis Foundations of Mathematical Analysis Fabio Bagagiolo Dipartimento di Matematica, Università di Trento email:fabio.bagagiolo@unitn.it Contents 1 Introduction 2 2 Basic concepts in mathematical analysis

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k) MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence

More information

Practice Test III, Math 314, Spring 2016

Practice Test III, Math 314, Spring 2016 Practice Test III, Math 314, Spring 2016 Dr. Holmes April 26, 2016 This is the 2014 test reorganized to be more readable. I like it as a review test. The students who took this test had to do four sections

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

MATH 2400: PRACTICE PROBLEMS FOR EXAM 1

MATH 2400: PRACTICE PROBLEMS FOR EXAM 1 MATH 2400: PRACTICE PROBLEMS FOR EXAM 1 PETE L. CLARK 1) Find all real numbers x such that x 3 = x. Prove your answer! Solution: If x 3 = x, then 0 = x 3 x = x(x + 1)(x 1). Earlier we showed using the

More information

Introduction to Mathematical Analysis I. Second Edition. Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam

Introduction to Mathematical Analysis I. Second Edition. Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam Introduction to Mathematical Analysis I Second Edition Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam Introduction to Mathematical Analysis I Second Edition Beatriz Lafferriere Gerardo Lafferriere

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

Math 341 Summer 2016 Midterm Exam 2 Solutions. 1. Complete the definitions of the following words or phrases:

Math 341 Summer 2016 Midterm Exam 2 Solutions. 1. Complete the definitions of the following words or phrases: Math 34 Summer 06 Midterm Exam Solutions. Complete the definitions of the following words or phrases: (a) A sequence (a n ) is called a Cauchy sequence if and only if for every ɛ > 0, there exists and

More information

Solutions to Homework Set 1

Solutions to Homework Set 1 Solutions to Homework Set 1 1. Prove that not-q not-p implies P Q. In class we proved that A B implies not-b not-a Replacing the statement A by the statement not-q and the statement B by the statement

More information

Lecture 2. Econ August 11

Lecture 2. Econ August 11 Lecture 2 Econ 2001 2015 August 11 Lecture 2 Outline 1 Fields 2 Vector Spaces 3 Real Numbers 4 Sup and Inf, Max and Min 5 Intermediate Value Theorem Announcements: - Friday s exam will be at 3pm, in WWPH

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Supremum and Infimum

Supremum and Infimum Supremum and Infimum UBC M0 Lecture Notes by Philip D. Loewen The Real Number System. Work hard to construct from the axioms a set R with special elements O and I, and a subset P R, and mappings A: R R

More information

MT804 Analysis Homework II

MT804 Analysis Homework II MT804 Analysis Homework II Eudoxus October 6, 2008 p. 135 4.5.1, 4.5.2 p. 136 4.5.3 part a only) p. 140 4.6.1 Exercise 4.5.1 Use the Intermediate Value Theorem to prove that every polynomial of with real

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable?

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable? Name: Instructions. Show all work in the space provided. Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading. No books

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Metric Space Topology (Spring 2016) Selected Homework Solutions. HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y)

Metric Space Topology (Spring 2016) Selected Homework Solutions. HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y) Metric Space Topology (Spring 2016) Selected Homework Solutions HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y) d(z, w) d(x, z) + d(y, w) holds for all w, x, y, z X.

More information

Sequences CHAPTER 3. Definition. A sequence is a function f : N R.

Sequences CHAPTER 3. Definition. A sequence is a function f : N R. CHAPTER 3 Sequences 1. Limits and the Archimedean Property Our first basic object for investigating real numbers is the sequence. Before we give the precise definition of a sequence, we will give the intuitive

More information

Elementary Analysis Math 140D Fall 2007

Elementary Analysis Math 140D Fall 2007 Elementary Analysis Math 140D Fall 2007 Bernard Russo Contents 1 Friday September 28, 2007 1 1.1 Course information............................ 1 1.2 Outline of the course........................... 1

More information

Important Properties of R

Important Properties of R Chapter 2 Important Properties of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3 Math 551 Measure Theory and Functional Analysis I Homework Assignment 3 Prof. Wickerhauser Due Monday, October 12th, 215 Please do Exercises 3*, 4, 5, 6, 8*, 11*, 17, 2, 21, 22, 27*. Exercises marked with

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics

MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics Class Meetings: MW 9:30-10:45 am in EMS E424A, September 3 to December 10 [Thanksgiving break November 26 30; final

More information

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases September 22, 2018 Recall from last week that the purpose of a proof

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

1 The Real Number System

1 The Real Number System 1 The Real Number System The rational numbers are beautiful, but are not big enough for various purposes, and the set R of real numbers was constructed in the late nineteenth century, as a kind of an envelope

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S.

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S. 1 Notation For those unfamiliar, we have := means equal by definition, N := {0, 1,... } or {1, 2,... } depending on context. (i.e. N is the set or collection of counting numbers.) In addition, means for

More information

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3 APPENDIX A EXERCISES In Exercises 1 12, list the all of the elements of the given set. 1. The set of all prime numbers less than 20 2. The set of all positive integers whose square roots are less than

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

Introductory Analysis I Fall 2014 Homework #5 Solutions

Introductory Analysis I Fall 2014 Homework #5 Solutions Introductory Analysis I Fall 2014 Homework #5 Solutions 6. Let M be a metric space, let C D M. Now we can think of C as a subset of the metric space M or as a subspace of the metric space D (D being a

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline 1 Non POMI Based s 2 Some Contradiction s 3

More information

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers Sequences We know that the functions can be defined on any subsets of R. As the set of positive integers Z + is a subset of R, we can define a function on it in the following manner. f: Z + R f(n) = a

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

MATH10040: Numbers and Functions Homework 1: Solutions

MATH10040: Numbers and Functions Homework 1: Solutions MATH10040: Numbers and Functions Homework 1: Solutions 1. Prove that a Z and if 3 divides into a then 3 divides a. Solution: The statement to be proved is equivalent to the statement: For any a N, if 3

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

Homework 3 Solutions, Math 55

Homework 3 Solutions, Math 55 Homework 3 Solutions, Math 55 1.8.4. There are three cases: that a is minimal, that b is minimal, and that c is minimal. If a is minimal, then a b and a c, so a min{b, c}, so then Also a b, so min{a, b}

More information

Math 140: Foundations of Real Analysis. Todd Kemp

Math 140: Foundations of Real Analysis. Todd Kemp Math 140: Foundations of Real Analysis Todd Kemp Contents Part 1. Math 140A 5 Chapter 1. Ordered Sets, Ordered Fields, and Completeness 7 1. Lecture 1: January 5, 2016 7 2. Lecture 2: January 7, 2016

More information

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 1. Real Number System 1.1. Introduction. Numbers are at the heart of mathematics. By now you must be fairly familiar with

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

MATH 131A: REAL ANALYSIS

MATH 131A: REAL ANALYSIS MATH 131A: REAL ANALYSIS NICKOLAS ANDERSEN The textbook for the course is Ross, Elementary Analysis [2], but in these notes I have also borrowed from Tao, Analysis I [3], and Abbott, Understanding Analysis

More information

MTH 299 In Class and Recitation Problems SUMMER 2016

MTH 299 In Class and Recitation Problems SUMMER 2016 MTH 299 In Class and Recitation Problems SUMMER 2016 Last updated on: May 13, 2016 MTH299 - Examples CONTENTS Contents 1 Week 1 3 1.1 In Class Problems.......................................... 3 1.2 Recitation

More information