On The Solution of Ordinary Differential Equation with Variable Coefficients using Aboodh Transform

Size: px
Start display at page:

Download "On The Solution of Ordinary Differential Equation with Variable Coefficients using Aboodh Transform"

Transcription

1 Aances in Theoretical and Applied Mathematics ISSN Volume 11, Number 4 (2016), pp Research India Publications On The Solution of Ordinary Differential Equation with Variable Coefficients using Aboodh Transform 1,3 Mohand M. Abdelrahim Mahgoub, 1,4 Khalid Suliman Aboodh, 2,3 Abdelbagy A.Alshikh 1 Department of Mathematics, Faculty of Science & technology, Omdurman Islamic Uniersity, Khartoum, Sudan. 2 Mathematics Department Faculty of Education Alzaeim Alazhari Uniersity- Khartoum Sudan. 3 Mathematics Department Faculty of Sciences and Arts Almikwah -Albaha Uniersity- Saudi Arabia. 4 Department of Mathematics, Bisha Faculty of Science & Arts King Khalid Uniersity, Saudi Arabia. Abstract In this paper, we apply a new integral transform '' Aboodh transform'' to sole some ordinary differential equation with ariable coefficients, The result reeals that the proposed method is ery efficient, simple and can be applied to linear and nonlinear differential equations. Keyword: Aboodh transform- differential equations 1. INTRODUCTION There are seeral integral transforms [1] like, Laplace Transform, Fourier Transform, Sumudu Transform [2-3], Elzaki Transform [4-6], ZZ Transform [7], Natural Transform and Aboodh Transform, to crack the DEs and IEs. Of these the most widely used transform is Laplace Transform. Recently, Khalid Aboodh, has introduced a new integral transform, named the Aboodh transform[8-11],and it has further applied to the solution of ordinary and partial differential equations. This transformation has deeper connection with the

2 384 Mohand M. Abdelrahim Mahgoub et al. Laplace and Elzaki Transform. The main objectie is to introduce solution of Ordinary Differential Equation with Variable Coefficients by using Aboodh transform.the plane of the paper is as follows: In section 2, we introduce the basic idea of Aboodh transform, Application in 3 and conclusion in 4, respectiely. 2. DEFINITIONS AND STANDARD RUSELTS Aboodh transform : Definition : A new transform called the Aboodh transform defined for function of exponential order we consider functions in the set A, defined by: A = {f(t): M, k 1, k 2 > 0, f(t) < Me t For a gien function in the set M must be finite number,k 1, k 2 may be finite or infinite. Aboodh transform which is defined by the integral equation A[f(t)] = K() = 1 0 f(t)e t dt t 0, k 1 k 2 (1) Aboodh transform of some functions : A(1) = 1 2, A(tn ) = n! n+2, A(eat ) = 1 2 a A(sin(at)) = a ( 2 +a 2 ), A(cos(at)) = 1 ( 2 +a 2 ) Aboodh transform of deriaties : Theorem I If Aboodh transform of the function f(t) gien by A[f(t)] = K(), then: 1) A[f (t)] = K() f(0), A[f (t)] = 2 K() f (0) f(0) A[f (n) (t)] = n K() 2) (i) A{tf(t)} = d k() 1 k() (ii) A{tf (t)} = d n 1 f (k) (0) k=0. 2 n+k f(0) [k() ] 1 f(0) [k() ],

3 On The Solution of Ordinary Differential Equation with Variable Coefficients 385 (iii) A{tf (t)} = d [2 k() f (0) f(0)] 1 [2 k() f (0) f(0)] () A{t 2 f (t)} = d2 k() 2 (i) A{t 2 f (t)} = 2 d2 k() d k() 2 f(0) d k() + 2k() 2 f (0) 3 Proof 2) (i) A[f(t)] = K() = 1 0 f(t)e t dt d K() = du K () = d 1 0 f(t)e t = ( 1 e t ) 0 = A(tf(t)) 1 K() (tf(t))dt + A(tf(t)) = d du K() 1 A(K()). dt = d (1 e t ) f(t)dt e t f(t)dt (i) A{t 2 f (t)} = d [ 2 d k() + 2k() f (0) 2 ] = ( 2 d2 k() 2 = 2 d2 k() 2 2 d k() + 4 d k() + 2k() 2 f (0) 3 2 d k() 2k() + 2 f (0) 3 ) 3. APPLICATION In this section: we apply the aboe theorem to find Aboodh transform for some differential equations Example I Sole the differential equation: y + ty y = 0 (2) With the initial condition, y(0) = 0, y (0) = 1 (3)

4 386 Mohand M. Abdelrahim Mahgoub et al. Solution Using the differential property of Aboodh transform Eq.(2) can be written as 2 K() 1 d k() k() k() = 0 d k() 3k() + 2 k() = 1 d k() ( 3)k() = 1 2 (4) This is a linear differential equation for unknown function k, hae the Solution in the form k() = ce1 2 2 and C = 0, then: k() = 1 3 (5) By using the inerse Aboodh transform we obtain the Solution in the form of y(t) = t (6) Example II Sole the differential equation: y + ty 4y = 6 (7) With the initial condition, y(0) = 0, y (0) = 0 (8) Solution Using the differential property of Aboodh transform Eq.(7) can be written as 2 K() 2 d [k() 2k() 4k()] = d k() 8k() + 2 k() = 6 2 d k() ( ) k() = 3 3 (9)

5 On The Solution of Ordinary Differential Equation with Variable Coefficients 387 This is a linear differential equation for unknown function k, hae the Solution in the form k() = Ce and C = 0, then: k() = 6 4 (10) By using the inerse Aboodh transform we obtain the Solution in the form of y(t) = 3t 2 (11) Example III Sole the differential equation: t y + (1 2t)y 2y = 0 (12) With the initial condition, y(0) = 1, y (0) = 2 (13) Solution Using the differential property of Aboodh transform Eq.(12) can be written as d [ k()] + 1 [ k()] +k() 1 2 [ d [1 k()]] + 1 [1 k()] 2k() = d k() + 2 d k() 2k() + 2k() = 0 ( 2 2) d k() (2 2)k() = 0 (14) This is a linear differential equation for unknown function k, hae the Solution in the form k() = C 2 2 and C = 1, then:k() = (15) By using the inerse Aboodh transform we obtain the Solution in the form of y(t) = e 2t (16)

6 388 Mohand M. Abdelrahim Mahgoub et al. Example IV Sole the differential equation: t 2 y + 4ty + 2y = 12t 2 (17) With the initial condition, y(0) = 0, y (0) = 0 (18) Solution Using the differential property of Aboodh transform Eq.(17) can be written as 2 d2 k() d k() + 2k() 4 d k() 4k() + 2k() = 24 4 By simplifying aboe equation, we hae d 2 k() 2 = 24 6 (19) The solution of this equation can be written in the form. k() = c 1 + c 0 (20) By substituting the initial condition (30) into equation (32) we get k() = = (21) By using the inerse Aboodh transform we obtain the Solution in the form of y(t) = 3 5 t2 (22) CONCLUSION The '' Aboodh transform, whose fundamental properties are presented in this paper, is little known and not widely used. In this paper, we apply a new integral transform '' Aboodh transform'' to sole some ordinary differential equation with ariable coefficients, The result reeals that the proposed method is ery efficient, simple and can be applied to linear and nonlinear differential equations

7 On The Solution of Ordinary Differential Equation with Variable Coefficients 389 REFERENCES [1] Lokenath Debnath and D. Bhatta. Integral transform and their Application second Edition, Chapman & Hall /CRC (2006). [2] G.K.watugala, simudu transform- a new integral transform to Sole differential equation and control engineering problems.math.engrg Induct.6 (1998),no 4, [3] Hassan Eltayeb and Adem kilicman, A Note on the Sumudu Transforms and differential Equations, Applied Mathematical Sciences, VOL, 4,2010, no.22, [4] Tarig M. Elzaki, (2011), The New Integral Transform Elzaki Transform Global Journal of Pure and Applied Mathematics, ISSN , Number 1, pp [5] Mohand M. AbdelrahimMahgob and Tarig M. Elzaki, Elzaki Transform And Power Series Expansion On A Bulge Heaiside Step Function, Global Journal of Pure and Applied Mathematics. ISSN Volume 11, Number 3 (2015), pp [6] Tarig M. Elzaki&Salih M. Elzaki, (2011), On the Elzaki Transform and Ordinary Differential Equation With Variable Coefficients, Aances in Theoretical and Applied Mathematics. ISSN Volume 6, Number 1, pp [7] Zain Ul Abadin Zafar, ZZ Transform method, IJAEGT, 4(1), , Jan (2016).. [8] K. S. Aboodh, The New Integral Transform Aboodh Transform Global Journal of pure and Applied Mathematics, 9(1), 35-43(2013). [9] K. S. Aboodh, Application of New Transform Aboodh transform to Partial Differential Equations, Global Journal of pure and Applied Math, 10(2), (2014). [10] Abdelilah K. Hassan Sedeeg and Mohand M. Abdelrahim Mahgoub, Aboodh Transform Homotopy Perturbation Method For Soling System Of Nonlinear Partial Differential Equations, Mathematical Theory and Modeling Vol.6, No.8, 2016, [11] Abdelbagy A. Alshikhand Mohand M. Abdelrahim Mahgoub, A Comparatie Study Between Laplace Transform and Two New Integrals ELzaki Transform and Aboodh Transform, Pure and Applied Mathematics Journal2016; 5(5):

8 390 Mohand M. Abdelrahim Mahgoub et al.

The New Integral Transform ''Mohand Transform''

The New Integral Transform ''Mohand Transform'' Advances in Theoretical and Applied Mathematics ISSN 973-4554 Volume 12, Number 2 (217), pp. 113-12 Research India Publications http://www.ripublication.com The New Integral Transform ''Mohand Transform''

More information

The Use of Kamal Transform for Solving Partial Differential Equations

The Use of Kamal Transform for Solving Partial Differential Equations Adances in Theoretical and Applied Mathematics ISSN 973-4554 Volume 12, Number 1 (217), pp. 7-13 Research India Publications http://www.ripublication.com The Use of Kamal Transform for Soling Partial Differential

More information

On The Relationship Between Aboodh Transform and New Integral Transform " ZZ Transform"

On The Relationship Between Aboodh Transform and New Integral Transform  ZZ Transform On The Relationhip Between Aboodh Tranform and New Integral Tranform " ZZ Tranform" 1,2 Mohand M. Abdelrahim Mahgob and 1,3 Abdelbagy A. Alhikh 1Mathematic Department Faclty of Science and Art-Almikwah

More information

Solution of Partial Integro-Differential Equations by using Aboodh and Double Aboodh Transform Methods

Solution of Partial Integro-Differential Equations by using Aboodh and Double Aboodh Transform Methods Global Journal of Pure and Applied Mathematics ISSN 0973-1768 Volume 13, Number 8 (2017), pp 4347-4360 Research India Publications http://wwwripublicationcom Solution of Partial Integro-Differential Equations

More information

Application of the Differential Transform Method for the Nonlinear Differential Equations

Application of the Differential Transform Method for the Nonlinear Differential Equations American Journal of Applied Mathematics 27; 5(): 4- http://www.sciencepublishinggroup.com//aam doi:.64/.aam.275.2 ISSN: 233-43 (Print); ISSN: 233-6X (Online) Application of the Differential Transform Method

More information

On the Connections Between Laplace and ELzaki Transforms

On the Connections Between Laplace and ELzaki Transforms Adances in Theoretical and Applied Mathematics. ISSN 973-4554 Volume 6, Number (), pp. Research India Publications http://www.ripublication.com/atam.htm On the Connections Between Laplace and ELzaki Transforms

More information

An Application of MAHGOUB Transform in Cryptography

An Application of MAHGOUB Transform in Cryptography Advances in Theoretical and Applied Mathematics ISSN 0973-4554 Volume 13, Number 2 (2018), pp. 91-99 Research India Publications http://www.ripublication.com An Application of MAHGOUB Transform in Cryptography

More information

International Journal of Theoretical and Applied Mathematics

International Journal of Theoretical and Applied Mathematics International Journal of Theoretical and Applied Mathematics 2016; 2(2): 45-51 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20160202.14 A Comparative Study of Homotopy Perturbation

More information

[Aggarwal, 6(3): March 2019] ISSN DOI /zenodo Impact Factor

[Aggarwal, 6(3): March 2019] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES APPLICATION OF KAMAL TRANSFORM FOR SOLVING ABEL S INTEGRAL EQUATION Sudhanshu Aggarwal* & Swarg Deep Sharma 2 * Assistant Professor, Department of Mathematics,

More information

Solution of fractional ordinary differential equation by Kamal transform

Solution of fractional ordinary differential equation by Kamal transform 28; (2): 279-284 ISSN: 2456-452 Maths 28; (2): 279-284 28 Stats & Maths www.mathsjournal.com Receied: 2--28 Acceted: 2-2-28 Rachana Khandelwal Maharshi Arind Uniersity, Priyanka Choudhary Jaiur National

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Solving Ordinary differential equations with variable coefficients

Solving Ordinary differential equations with variable coefficients Jornal of Progreive Reearch in Mathematic(JPRM) ISSN: 2395-218 SCITECH Volme 1, Ie 1 RESEARCH ORGANISATION Pblihe online: November 3, 216 Jornal of Progreive Reearch in Mathematic www.citecreearch.com/jornal

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012 Soluion of Telegraph quaion by Modified of Double Sumudu Transform "lzaki Transform" Tarig. M. lzaki * man M. A. Hilal. Mahemaics Deparmen, Faculy of Sciences and Ars-Alkamil, King Abdulaziz Uniersiy,

More information

The method to find a basis of Euler-Cauchy equation by transforms

The method to find a basis of Euler-Cauchy equation by transforms Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 5 (2016), pp. 4159 4165 Research India Publications http://www.ripublication.com/gjpam.htm The method to find a basis of

More information

[Aggarwal, 5(9): September 2018] ISSN DOI /zenodo Impact Factor

[Aggarwal, 5(9): September 2018] ISSN DOI /zenodo Impact Factor [Aggarwal, 5(9): September 208] ISSN 2348 8034 DOI- 0.528/zenodo.43572 Impact Factor- 5.070 GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES APPLICATION OF KAMAL TRANSFORM FOR SOLVING POPULATION GROWTH

More information

Adomian Polynomial and Elzaki Transform Method of Solving Third Order Korteweg-De Vries Equations

Adomian Polynomial and Elzaki Transform Method of Solving Third Order Korteweg-De Vries Equations Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 15, Number 3 (2019), pp 261 277 c Research India Publications http://www.ripublication.com Adomian Polynomial and Elzaki Transform

More information

AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM

AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM Applied Mathematical Sciences, Vol. 1, 27, no. 1, 31-39 AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM Jean M. Tchuenche 1 and Nyimua S. Mbare Mathematics Department, Uniersity of Dar es Salaam P.O. Box

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

Solution of Partial Integro-Differential Equations by using Laplace, Elzaki and Double Elzaki Transform Methods

Solution of Partial Integro-Differential Equations by using Laplace, Elzaki and Double Elzaki Transform Methods Volume: 02 Issue: 03 June-2015 wwwirjetnet p-issn: 2395-0072 Solution of Partial Integro-Differential Equations by using Laplace, Elzaki and Double Elzaki Transform Methods Mrs Gore(Jagtap) Jyotsana S

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method

Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method Applied Mathematical Sciences, Vol. 8, 2014, no. 44, 2195-2210 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4285 Solution of Nonlinear Fractional Differential Equations Using the Homotopy

More information

EXACT SOLUTIONS OF WAVE-TYPE EQUATIONS BY THE ABOODH DECOMPOSITION METHOD

EXACT SOLUTIONS OF WAVE-TYPE EQUATIONS BY THE ABOODH DECOMPOSITION METHOD Stochastic Modeling and Applications Vol.21 No. 1(June 2017) 23-30 EXACT SOLUTIONS OF WAVE-TYPE EQUATIONS BY THE ABOODH DECOMPOSITION METHOD RAHMATULLAH IBRAHIM NURUDDEEN AND AMINU M. NASS* Abstract. This

More information

Laplace Transform Method Solution of Fractional Ordinary Differential Equations

Laplace Transform Method Solution of Fractional Ordinary Differential Equations P P P Faculty P Faculty University of Africa Journal of Sciences (U.A.J.S., Vol.2, 139-160) Laplace Transform Method Solution of Fractional Ordinary Differential Equations Eltayeb. A.M. Yousif P 1 Pand

More information

LESSON 4: INTEGRATION BY PARTS (I) MATH FALL 2018

LESSON 4: INTEGRATION BY PARTS (I) MATH FALL 2018 LESSON 4: INTEGRATION BY PARTS (I) MATH 6 FALL 8 ELLEN WELD. Integration by Parts We introduce another method for ealuating integrals called integration by parts. The key is the following : () u d = u

More information

Curriculum Vitae Hassan Eltayeb Gadain Salaim Institute for Mathematics Research University Putra Malaysia, UPM, Serdang, Selangor

Curriculum Vitae Hassan Eltayeb Gadain Salaim Institute for Mathematics Research University Putra Malaysia, UPM, Serdang, Selangor Curriculum Vitae Hassan Eltayeb Gadain Salaim Institute for Mathematics Research University Putra Malaysia, 43400 UPM, Serdang, Selangor Personal Information Name: Hassan Eltayeb Gadaub Salaim Date of

More information

PAijpam.eu THE TIME SHIFTING THEOREM AND THE CONVOLUTION FOR ELZAKI TRANSFORM

PAijpam.eu THE TIME SHIFTING THEOREM AND THE CONVOLUTION FOR ELZAKI TRANSFORM International Journal of Pure and Applied Mathematics Volume 87 No. 2 213, 261-271 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/1.12732/ijpam.v87i2.6

More information

Chapter 6 The Laplace Transform

Chapter 6 The Laplace Transform Ordinary Differential Equations (Math 2302) 2017-2016 Chapter 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive

More information

Solution of Partial Differential Equations with Variables Coefficients Using Double Sumudu Transform

Solution of Partial Differential Equations with Variables Coefficients Using Double Sumudu Transform International Journal of Scientific and Research Publications, Volume 6, Issue 6, June 2016 37 Solution of Partial Differential Equations with Variables Coefficients Using Double Sumudu Transform Mukhtar

More information

Solution of Population Growth and Decay Problems by Using Mohand Transform

Solution of Population Growth and Decay Problems by Using Mohand Transform Solution of Population Growth and Decay Problems by Using Mohand Transform 1 *Sudhanshu Aggarwal, 2 Nidhi Sharma, 3 Raman Chauhan 1 Assistant Professor, Department of Mathematics, National P.G. College

More information

The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems

The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems Math. Sci. Lett. 5, No., 285-289 (2016) 285 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.18576/msl/05010 The Use of Sumudu Decomposition Method for Solving Predator-Prey

More information

A Note on the Shifting Theorems for the Elzaki Transform

A Note on the Shifting Theorems for the Elzaki Transform Int. Jornal of Mh. Analysis, Vol. 8, 214, no. 1, 481-488 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.214.4248 A Note on the Shifting Theorems for the Elzaki Transform Hwajoon Kim Kyngdong

More information

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ =

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ = Worksheet 9 Math B, GSI: Andrew Hanlon. Show that for each of the following pairs of differential equations and functions that the function is a solution of a differential equation. (a) y 2 y + y 2 ; Ce

More information

Elzaki Decomposition Method and its Applications in Solving Linear and Nonlinear Schrodinger Equations

Elzaki Decomposition Method and its Applications in Solving Linear and Nonlinear Schrodinger Equations Sohag J. Math. 4 No. 2 31-35 (2017 31 Sohag Journal of Mathematics An International Journal http://dx.doi.org/10.18576/sjm/040201 Elzaki Decomposition Method and its Applications in Solving Linear and

More information

First and Second Order Differential Equations Lecture 4

First and Second Order Differential Equations Lecture 4 First and Second Order Differential Equations Lecture 4 Dibyajyoti Deb 4.1. Outline of Lecture The Existence and the Uniqueness Theorem Homogeneous Equations with Constant Coefficients 4.2. The Existence

More information

Analytical Investigation of Soliton Solutions to Three Quantum Zakharov-Kuznetsov Equations

Analytical Investigation of Soliton Solutions to Three Quantum Zakharov-Kuznetsov Equations Commun. Theor. Phys. 70 (2018) 405 412 Vol. 70 No. 4 October 1 2018 Analytical Investigation of Soliton Solutions to Three Quantum Zakharov-Kuznetsov Equations Rahmatullah Ibrahim Nuruddeen 1 Khalid Suliman

More information

Velocity, Acceleration and Equations of Motion in the Elliptical Coordinate System

Velocity, Acceleration and Equations of Motion in the Elliptical Coordinate System Aailable online at www.scholarsresearchlibrary.com Archies of Physics Research, 018, 9 (): 10-16 (http://scholarsresearchlibrary.com/archie.html) ISSN 0976-0970 CODEN (USA): APRRC7 Velocity, Acceleration

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Numerical Solution of Hybrid Dynamical System using Mixture of Elzaki Transform and Differential Transform Method

Numerical Solution of Hybrid Dynamical System using Mixture of Elzaki Transform and Differential Transform Method International Conference on Mathematical Computer Engineering - ICMCE - 2013 207 Numerical Solution of Hybrid Dynamical System using Mixture of Elzaki Transform and Differential Transform Method M.G.Fajlul

More information

[Abdallah, 5(1): January 2018] ISSN DOI /zenodo Impact Factor

[Abdallah, 5(1): January 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE PHYSICAL INTERPRETATION OF LAGRARGIAN AND KINETIC ENERGY ON THE BASIS OF WORK Mubarak Dirar Abdallah *, Ahmed Abdalla Husain, Mohammed Habeeb A.Elkansi

More information

A Note on Integral Transforms and Partial Differential Equations

A Note on Integral Transforms and Partial Differential Equations Applied Mathematical Sciences, Vol 4, 200, no 3, 09-8 A Note on Integral Transforms and Partial Differential Equations Adem Kılıçman and Hassan Eltayeb Department of Mathematics and Institute for Mathematical

More information

Note on Partial Differential Equations with Non-Constant Coefficients and Convolution Method

Note on Partial Differential Equations with Non-Constant Coefficients and Convolution Method Appl. Math. Inf. Sci. 6, No. 1, 59-63 (2012) 59 Applied Mathematics & Information Sciences An International Journal Note on Partial Differential Equations with Non-Constant Coefficients and Convolution

More information

SOLUTION OF DIFFERENTIAL EQUATIONS BASED ON HAAR OPERATIONAL MATRIX

SOLUTION OF DIFFERENTIAL EQUATIONS BASED ON HAAR OPERATIONAL MATRIX Palestine Journal of Mathematics Vol. 3(2) (214), 281 288 Palestine Polytechnic University-PPU 214 SOLUTION OF DIFFERENTIAL EQUATIONS BASED ON HAAR OPERATIONAL MATRIX Naresh Berwal, Dinesh Panchal and

More information

Polynomial Integral Transform for Solving Differential Equations

Polynomial Integral Transform for Solving Differential Equations EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 9, No. 2, 206, 40-5 ISSN 307-5543 www.ejpam.com Polynomial Integral Transform for Solving Differential Equations Benedict Barnes School of Agriculture

More information

Propagation of Electromagnetic Field From a Pulsed Electric Dipole in a Dielectric Medium

Propagation of Electromagnetic Field From a Pulsed Electric Dipole in a Dielectric Medium CHINESE JOURNAL OF PHYSICS VOL. 39, NO. 2 APRIL 2001 Propagation of Electromagnetic Field From a Pulsed Electric Dipole in a Dielectric Medium Osama M. Abo-Seida 1 and Samira T. Bishay 2 1 Department of

More information

FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE

FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE FLUID DYNAMICS FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE S. A. ODEJIDE 1, Y. A. S. AREGBESOLA 1, O. D. MAKINDE 1 Obafemi Awolowo Uniersity, Department of Mathematics, Faculty of Science, Ile-Ife,

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

Research Article Exact Evaluation of Infinite Series Using Double Laplace Transform Technique

Research Article Exact Evaluation of Infinite Series Using Double Laplace Transform Technique Abstract and Applied Analysis Volume 24, Article ID 327429, 6 pages http://dx.doi.org/.55/24/327429 Research Article Exact Evaluation of Infinite Series Using Double Laplace Transform Technique Hassan

More information

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 (2016), 2419 2433 Research Article Application of new iterative transform method and modified fractional homotopy analysis transform method for

More information

INTEGRAL TRANSFORMS and THEIR APPLICATIONS

INTEGRAL TRANSFORMS and THEIR APPLICATIONS INTEGRAL TRANSFORMS and THEIR APPLICATIONS Lokenath Debnath Professor and Chair of Mathematics and Professor of Mechanical and Aerospace Engineering University of Central Florida Orlando, Florida CRC Press

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int J Pure Appl Sci Technol, 15(2) (2013), pp 62-67 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at wwwijopaasatin Research Paper Operation Transform

More information

Bessel s Equation and Bessel Functions: Solution to Schrödinger Equation in a Neumann and Hankel Functions

Bessel s Equation and Bessel Functions: Solution to Schrödinger Equation in a Neumann and Hankel Functions International ournal of Noel Research in Physics Chemistry & Mathematics Vol. 3, Issue 1, pp: (43-48), Month: anuary-april 2016, Aailable at: www.noeltyjournals.com Bessel s Equation and Bessel Functions:

More information

On general error distributions

On general error distributions ProbStat Forum, Volume 6, October 3, Pages 89 95 ISSN 974-335 ProbStat Forum is an e-journal. For details please isit www.probstat.org.in On general error distributions R. Vasudea, J. Vasantha Kumari Department

More information

The Representation of Energy Equation by Laplace Transform

The Representation of Energy Equation by Laplace Transform Int. Journal of Math. Analysis, Vol. 8, 24, no. 22, 93-97 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ijma.24.442 The Representation of Energy Equation by Laplace Transform Taehee Lee and Hwajoon

More information

Symmetric Functions and Difference Equations with Asymptotically Period-two Solutions

Symmetric Functions and Difference Equations with Asymptotically Period-two Solutions International Journal of Difference Equations ISSN 0973-532, Volume 4, Number, pp. 43 48 (2009) http://campus.mst.edu/ijde Symmetric Functions Difference Equations with Asymptotically Period-two Solutions

More information

Lecture 2. Classification of Differential Equations and Method of Integrating Factors

Lecture 2. Classification of Differential Equations and Method of Integrating Factors Math 245 - Mathematics of Physics and Engineering I Lecture 2. Classification of Differential Equations and Method of Integrating Factors January 11, 2012 Konstantin Zuev (USC) Math 245, Lecture 2 January

More information

v v Downloaded 01/11/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

v v Downloaded 01/11/16 to Redistribution subject to SEG license or copyright; see Terms of Use at The pseudo-analytical method: application of pseudo-laplacians to acoustic and acoustic anisotropic wae propagation John T. Etgen* and Serre Brandsberg-Dahl Summary We generalize the pseudo-spectral method

More information

Efficient solution of interval optimization problem

Efficient solution of interval optimization problem Math Meth Oper Res (212) 76:273 288 DOI 1.17/s186-12-399- ORIGINAL ARTICLE Efficient solution of interal optimization problem A. K. Bhurjee G. Panda Receied: 6 June 212 / Accepted: 4 August 212 / Published

More information

Homotopy perturbation and Elzaki transform for solving Sine-Gorden and Klein-Gorden equations

Homotopy perturbation and Elzaki transform for solving Sine-Gorden and Klein-Gorden equations Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 2013 Homotopy perturbation and Elzaki transform for solving Sine-Gorden and Klein-Gorden equations Habibolla Latifizadeh,

More information

Homotopy Perturbation and Elzaki Transform for Solving. Nonlinear Partial Differential Equations

Homotopy Perturbation and Elzaki Transform for Solving. Nonlinear Partial Differential Equations Mathematical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol, No3, 1 Homotopy Perturbatio ad Elzaki Trasform for Solig Noliear Partial Differetial Equatios Tarig M Elzaki 1* & Ema M A Hilal 1

More information

Comparisons between the Solutions of the Generalized Ito System by Different Methods

Comparisons between the Solutions of the Generalized Ito System by Different Methods Comparisons between the Solutions of the Generalized Ito System by Different Methods Hassan Zedan 1&2, Wafaa Albarakati 1 and Eman El Adrous 1 1 Department of Mathematics, Faculty of Science, king Abdualziz

More information

Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle

Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle Int. J. Contemp. Math. Sciences, Vol., 007, no. 9, 943-950 Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle Muhammad Bhatti Department of Physics and Geology University of Texas

More information

SOLVING DIFFERENTIAL EQUATIONS BY POLYNOMIAL INTEGRAL TRANSFORM

SOLVING DIFFERENTIAL EQUATIONS BY POLYNOMIAL INTEGRAL TRANSFORM IJARIIE-ISSN O)-2395-4396 SOLVING DIFFERENTIAL EQUATIONS BY POLYNOMIAL INTEGRAL TRANSFORM S.Kalaivani 1, N.Karthikeyan 2 1 Research Scholar, Department of Mathematics 2 Assistant Professor, Department

More information

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method American Journal of Theoretical and Applied Statistics 2015; 4(6): 534-538 Published online October 29, 2015 (http://wwwsciencepublishinggroupcom/j/ajtas) doi: 1011648/jajtas2015040624 ISSN: 2326-8999

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Solution to 1-D consolidation of non-homogeneous soft clay *

Solution to 1-D consolidation of non-homogeneous soft clay * Xie et al. / J Zhejiang Uni SCI 25 6A(Suppl. I):29-34 29 Journal of Zhejiang Uniersity SCIENCE ISSN 19-395 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn Solution to 1-D consolidation of non-homogeneous

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Available online  Journal of Scientific and Engineering Research, 2016, 3(6): Research Article Aailable online www.jsaer.com, 06, 3(6):70-74 Research Article ISSN: 394-630 CODEN(USA): JSERBR Second Order Lagrangian Hassaballa M Abdalgadir *, Mubarak Dirar, Zoalnoon A Abeid Allah, Lutfi M Abdalgadir

More information

Solution of fractional oxygen diffusion problem having without singular kernel

Solution of fractional oxygen diffusion problem having without singular kernel Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 1 (17), 99 37 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa Solution of fractional oxygen diffusion

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Definition: A differential equation is an equation involving the derivative of a function. If the function depends on a single variable, then only ordinary derivatives appear and

More information

Econometrics II - EXAM Outline Solutions All questions have 25pts Answer each question in separate sheets

Econometrics II - EXAM Outline Solutions All questions have 25pts Answer each question in separate sheets Econometrics II - EXAM Outline Solutions All questions hae 5pts Answer each question in separate sheets. Consider the two linear simultaneous equations G with two exogeneous ariables K, y γ + y γ + x δ

More information

1 In-class part. 1.1 Problems. Practice Final, Math 3350

1 In-class part. 1.1 Problems. Practice Final, Math 3350 Practice Final, Math 3350 1 In-class part The in-class part of the final is 2 1 hours, and will be roughly the size of this practice test. At least 2 one problem from this practice in-class test will appear

More information

India

India italian journal of pure and applied mathematics n. 36 216 (819 826) 819 ANALYTIC SOLUTION FOR RLC CIRCUIT OF NON-INTGR ORDR Jignesh P. Chauhan Department of Applied Mathematics & Humanities S.V. National

More information

SPACE-TIME HOLOMORPHIC TIME-PERIODIC SOLUTIONS OF NAVIER-STOKES EQUATIONS. 1. Introduction We study Navier-Stokes equations in Lagrangean coordinates

SPACE-TIME HOLOMORPHIC TIME-PERIODIC SOLUTIONS OF NAVIER-STOKES EQUATIONS. 1. Introduction We study Navier-Stokes equations in Lagrangean coordinates Electronic Journal of Differential Equations, Vol. 2013 2013, No. 218, pp. 1 5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SPACE-TIME HOLOMORPHIC

More information

Nonexistence of Plane Symmetric Micro Model in Presence of Cosmological Constant in Barber s Modified Theory of General Relativity

Nonexistence of Plane Symmetric Micro Model in Presence of Cosmological Constant in Barber s Modified Theory of General Relativity International Journal of Adanced Research in Physical Science (IJARPS) Volume, Issue, February 05, PP -0 ISSN 9-787 (Print) & ISSN 9-788 (Online) www.arcjournals.org Nonexistence of Plane Symmetric Micro

More information

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination II April 7, 2014 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations International Journal of Modern Mathematical Sciences, 2013, 7(1): 26-40 International Journal of Modern Mathematical Sciences Journal homepage:wwwmodernscientificpresscom/journals/ijmmsaspx ISSN:2166-286X

More information

Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method

Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method Emrah Ünal a, Ahmet Gödoğan b a Department of Elementary Mathematics Education, Artvin Çoruh University,

More information

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b]. 1.) If G(x) = x. f(t)dt = F (b) F (a) where F is any antiderivative

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b]. 1.) If G(x) = x. f(t)dt = F (b) F (a) where F is any antiderivative 1 Calulus pre-requisites you must know. Derivative = slope of tangent line = rate. Integral = area between curve and x-axis (where area can be negative). The Fundamental Theorem of Calculus: Suppose f

More information

Lect-19. In this lecture...

Lect-19. In this lecture... 19 1 In this lecture... Helmholtz and Gibb s functions Legendre transformations Thermodynamic potentials The Maxwell relations The ideal gas equation of state Compressibility factor Other equations of

More information

Lecture 2: Differential-Delay equations.

Lecture 2: Differential-Delay equations. Lecture : Differential-Delay equations. D. Gurarie A differential equation, or syste:, ; of the syste:, 0 0 0 0 y f y t y t y, predicts a (near) future state 0 0 y t dt y f y t dt, fro its current state,

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

Effect of stray capacitances on single electron tunneling in a turnstile

Effect of stray capacitances on single electron tunneling in a turnstile Effect of stray capacitances on single electron tunneling in a turnstile Young Bong Kang Department of Physics, Cheju National Uniersity, Cheju 690-756, Korea G. Y. Hu and R. F. O Connell a) Department

More information

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

r/lt.i Ml s. ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died. $ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -

More information

The Power Series Expansion on a Bulge Heaviside Step Function

The Power Series Expansion on a Bulge Heaviside Step Function Applied Mathematical Science, Vol 9, 05, no 3, 5-9 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/am054009 The Power Serie Expanion on a Bulge Heaviide Step Function P Haara and S Pothat Department of

More information

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS Hossein Jafari & M. A. Firoozjaee Young Researchers club, Islamic Azad University, Jouybar Branch, Jouybar, Iran

More information

Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev collocation method

Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev collocation method NTMSCI 1, No 1, 33-46 2016) 33 Journal of Abstract and Computational Mathematics http://wwwntmscicom/jacm Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev

More information

Cubic B-spline collocation method for solving time fractional gas dynamics equation

Cubic B-spline collocation method for solving time fractional gas dynamics equation Cubic B-spline collocation method for solving time fractional gas dynamics equation A. Esen 1 and O. Tasbozan 2 1 Department of Mathematics, Faculty of Science and Art, Inönü University, Malatya, 44280,

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

The Homotopy Perturbation Sumudu Transform Method For Solving The Nonlinear Partial Differential Equations

The Homotopy Perturbation Sumudu Transform Method For Solving The Nonlinear Partial Differential Equations The Homotopy Perturbation Sumudu Transform Method For Solving The Nonlinear Partial Differential Equations HANAN M. ABED RAHMAN Higher Technological Institute Department of Basic Sciences Tenth Of Ramadan

More information

D DAVID PUBLISHING. Banach Saks Property and Property β InCesàro Sequence Spaces. 1. Introduction. Nafisa Algorashy Mohammed 1, 2

D DAVID PUBLISHING. Banach Saks Property and Property β InCesàro Sequence Spaces. 1. Introduction. Nafisa Algorashy Mohammed 1, 2 Journal of Materials Science and Engineering A 8 (1-2) (2018) 25-31 doi: 10.17265/2161-6213/2018.1-2.004 D DAVID PUBLISHING Banach Saks Property and Property β InCesàro Sequence Spaces Nafisa Algorashy

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Chapter 2 Resistive Circuits

Chapter 2 Resistive Circuits Chapter esistie Circuits Goal. Sole circuits by combining resistances in Series and Parallel.. Apply the Voltage-Diision and Current-Diision Principles.. Sole circuits by the Node-Voltage Technique.. Sole

More information

Group and Renormgroup Symmetry of Quasi-Chaplygin Media

Group and Renormgroup Symmetry of Quasi-Chaplygin Media Nonlinear Mathematical Physics 1996, V.3, N 3 4, 351 356. Group and Renormgroup Symmetry of Quasi-Chaplygin Media Vladimir F. KOVALEV Institute for Mathematical Modelling, Miusskaya 4-A, Moscow, 125047,

More information

TheRoleofComplexElectricPermittivityandMagneticPermeabilityinLeftHandedMaterials

TheRoleofComplexElectricPermittivityandMagneticPermeabilityinLeftHandedMaterials Global Journal of Science Frontier Research: A Physics and Space Science Volume 17 Issue 5 Version 1.0 Year 2017 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems

Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems Abstract Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems MukeshGrover grover.mukesh@yahoo.com Department of Mathematics G.Z.S.C.E.T

More information

Transmission lines using a distributed equivalent circuit

Transmission lines using a distributed equivalent circuit Cambridge Uniersity Press 978-1-107-02600-1 - Transmission Lines Equialent Circuits, Electromagnetic Theory, and Photons Part 1 Transmission lines using a distributed equialent circuit in this web serice

More information

Continued Fractions Expansion of D and Pell Equation x 2 Dy 2 = 1

Continued Fractions Expansion of D and Pell Equation x 2 Dy 2 = 1 Mathematica Moravica Vol. 5-2 (20), 9 27 Continued Fractions Expansion of D and Pell Equation x 2 Dy 2 = Ahmet Tekcan Abstract. Let D be a positive non-square integer. In the first section, we give some

More information

Math 341 Fall 2008 Friday December 12

Math 341 Fall 2008 Friday December 12 FINAL EXAM: Differential Equations Math 341 Fall 2008 Friday December 12 c 2008 Ron Buckmire 1:00pm-4:00pm Name: Directions: Read all problems first before answering any of them. There are 17 pages in

More information