Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems

Size: px
Start display at page:

Download "Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems"

Transcription

1 Abstract Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems MukeshGrover Department of Mathematics G.Z.S.C.E.T Bathinda, Dr.ArunKumarTomer 2 tomer4@rediffmail.com Department of Mathematics, S.M.D.R.S.D College Pathankot, Punjab, India In this work, we consider special problem consisting of twelfth order two-point boundary value by using the Optimal Homotopy Asymptotic Method and Homotopy Perturbation Method. Now, we discuss the comparison in between Optimal Homotopy Asymptotic Method and Homotopy Perturbation Method. These proposed methods have been thoroughly tested on problems of all kinds and shows very accurate results. A numerical eample is present and approimate is compared with eact solution and the error is compared with Optimal Homotopy Asymptotic Method and Homotopy Perturbation Method to assess the efficiency of the Optimal Homotopy Asymptotic Method at 2 th order Boundary values problems. Keywords Twelfth order boundary value problems, Approimate analytical solution, homotopy perturbation Method, optimal homotopy Asymptotic method, Ordinary Differential Equations, Error Estimates.. Introduction In literature different techniques are available for the numerical solution of twelfth order boundary value problems. The motivation of this problem is to etend Optimal Homotopy Asymptotic Method to solve linear and non linear tenth order boundary value problems. We also compared the results obtained from these techniques with the available eact solution in different literatures. Some properties of solutions of a given differential equation may be determined without finding their eact form in especially in nonlinear behavior. If as self-contained formula for the solution is not available, the solution may be numerically approimated using computers. To overcome these difficulties, a modified form of the perturbation method called homotopy perturbation method.hpm has since then been effectively utilized in obtaining approimate analytical solutions to many linear and nonlinear problems arising in engineering and science, such as nonlinear oscillators with discontinuities [3], nonlinear Volterra Fredholm integral equations [], Twelfth order differential equations have several important applications in engineering. Solution of linear and nonlinear boundary value problems of twelfth-order was implemented by Wazwaz using Adomian decomposition method. Chandrasekhar [9] showed that when an infinite horizontal layer of fluid is put into rotation and simultaneously subjected to heat from below and a uniform magnetic field across the fluid in the same direction as gravity, instability will occur. Several researchers developed numerical techniques for solving twelfth order differential equations. The Adomian Decomposition Method [, 4], the Differential Transform Method [5], the Variational Iteration Method, the successive iteration, the splines [5, 6], the Homotopy Perturbation Method [7], the Homotopy Analysis Method etc Recently Vasile Marinca et al. [,2,4] introduced OHAM for approimate solution of nonlinear problems of thin film flow of a fourth grade fluid down a vertical cylinder. OHAM is straight forward, reliable and it does not need to look for h curves like HPM. Moreover, this method provides a convenient way to control the convergence of the series solution. Most recently, Javed Ali et al. used OHAM for the solutions of multi-point boundary value problems. The results of OHAM presented in this work are compared with those of eact solution HPM. ISSN : Vol. 3 No. 7 July

2 2. Basic Idea of Homotopy-Perturbation Method To clarify the basic ideas of the homotopy perturbation method [3], we consider the following nonlinear differential equation with boundary conditions A (u) f (r) =, r Ω () B (u, ) =, r Γ (2) where A is a general differential operator, B is a boundary operator, u is a known analytical function, and Γ is the boundary of the domain Ω. The operator A can be divided into two parts L and N, where L is linear, while N is nonlinear. Therefore () can be rewritten as follows L (u) + N(u) f(r) =. (3) By the homotopy technique, we can construct a homotopy V (r, p): Ω [, ] R which satisfies H (v, p) = ( p) [L (v) L (u )] + p [A (v) f(r)] =, pϵ [, ] Ω (4) or H (v, p) = L (v) L (u ) + p L (u ) + p [N (v) f(r)] =, (5) where r Γ and p [, ] is an embedding parameter, u is an initial approimation of (), which satisfies the boundary conditions. Obviously, from Equations (4) and (5) we will have: H (v, ) = L (v) L (u ) =, (6) H (v, ) = A (v) f(r) =, (7) and the changing process of p from zero to unity is just that of H(v, p) from L(v) L(u ) to A(v) f(r). In topology, this is called deformation, L (v) L (u ) and A (v) f(r) is called homotopic. The embedding parameter p is introduced much more naturally, unaffected by artificial factors. Furthermore, it can be considered as a small parameter for < p. So it is very natural to assume that the solution of (4, 5) can be epressed as v = v + pv + p 2 v 2 +. Therefore, when p=, the approimate solution of above equation can be readily obtained as follows: u = lim v + v + v 2 +. p The combination of the perturbation method and the homotopy method is called the HPM, which eliminates the drawbacks of the traditional perturbation methods while keeping all its advantages. The above series is convergent for most cases. Using the transformation y = y, = y 2, = y 3,., = y 2n (8) Using the boundary conditions we can be written as a system of integral equations: ISSN : Vol. 3 No. 7 July 2 274

3 y = a + y, y 2 = b + y, y 3 = c + y 2n = d + f{t, y (t),y (t),y (t),.y (t)}dt 3. Optimal Homotopy Asymptotic Method Analysis y... The general differential equation is considered as, L (u()) +g() +N (u()), B (u, ) = (9) where L is a linear operator, denotes independent variable, u() is an unknown function, g() is a known function, N (u()) is a nonlinear operator and B is a boundary operator. A family of equations is constructed using (OHAM) which is given by ( p)l (f (, p) + g() = H (p) (L (f (, p) + g() + N (f (, p)) B (f (, p),f (, p) / ). () Where p [,] is an embedding parameter, H (p) is a nonzero auiliary function for p and H() =,f (, p) is an unknown function, respectively. Obviously, when p= and p =, it holds f (,) = u (), f (,) = u (), () respectively. Thus, as p increases from to, the solution f (, p) varies from u () to the solution u (), where u () is obtained from equation () for p=: L (u ()) +g() =, B (u, d u /d ) = (2) Auiliary function H (p) is chosen in the form H p = pc + p 2 c (3) where constants c, c 2,... can be determined latter by the method of least squares. Let us consider the solution of Eq. () in the form to get an approimate solution; we used Taylor s series to epand f(, p, C i ) in p which becomes f(, p, c ) = u () +u (, c,c,c, c )p (4) Now substituting Eq. (4) into Eq. () and equating the coefficients of like powers of p,, we obtain the following linear equations. Zeroth order problem is given by Eq. (2) and the first order problem is given by L (u ()) +g() = C N (u ()), B (u, du ) = (5) dn The mth -order problem is given by: L (u m ()) - L (u m- ()) = C m N (u () + m i c i [L u m ()+N m u (), u (), u 2 (),.,u m ()] (6) Here m varies 2, 3, 4..B (u m, du m dn ) = where Nm (u (), u (),, u m ()) is the coefficient of p m in the epansion of N(n(, p)) about the embedding parameter p. ISSN : Vol. 3 No. 7 July 2 274

4 Nf(, p, c i ) = N u ()+N m, c, c 2, c 3, c m p m It has been observed that the convergence of the series (4) depends upon the auiliary constants C, C 2,.. If it is convergent at p =, one has m f(, c i ) = u () +u m (c, c 2, c 3, c m ) m The result of the mth-order approimations are given uc, c 2, c 3, c m = u ()+u i, c, c 2, c 3, c i Substituting Eq. (7) into Eq. (9), it results the following residual: m i (7) R, c, c 2, c 3, c m = L(u, c, c 2, c 3, c m ) + g()+nu(, c, c 2, c 3, c m ) If R =, then u% will represent the eact solution. Generally it doesn t happen, especially in nonlinear problems. To have a minimum value of R for the values, C i here i =, 2, 3 various methods for instance the weighted residual method or variational methods etc. can be used. By using the Least squares method we obtain the following equation b R a, c, c 2, c 3, c m R c i d = (8) while the Galerkin s method gives b R a, c, c 2, c 3, c m R c i d = (9) where a and b are in the domain of the problem. For the given value of all constants we can easily determine the approimate solution of order m. 4. NUMERICAL EXAMPLES Eample : Consider the following linear twelfth order boundary value problem y 2 () = - y()- 3 e -23e -2e with following conditions: =, () =, (2) =, (3) = 3, (4) = 8, (5) = 5 =, () = e, (2) = 4e, (3) = 9e, (4) = 6e, (5) = 25e (2) Eact solution is y () = (- ) e Using the transformation (8) we can rewrite the twelve-order boundary value problem (2) as the system of integral equations: y = + y 2 = + y 3 = + y 2 y 3 y 4 ISSN : Vol. 3 No. 7 July

5 y 4 = -3 + y 5 = -8 + y 6 = -5 + y 7 = a + y 8 = b + y 9 = c + y = d + y = e + y 5 y 6 y 7 y 8 y 9 y y y 2 y 2 = f + { y (t) 2e t 23 te t -t 3 e t }dt Comparing the coefficients of like powers of p, we have: Coefficients of p : y = y 2 = y 3 = y 4 = -3 y 5 = -8 y 6 = -5 y 7 = a y 8 = b y 9 = c y = d y = e y 2 = f Coefficients of p : y = y 2 = y 3 = -3 y 4 = -3-8 y 5 = -8-5 y 6 = -5+a Y 7 = a+ b Y 8 = b +c y 9 = c+ d y = d +e Y = e +f Y 2 = f-e ( ) Coefficients of p 2 : Coefficients of p 3 : y 2 = y 22 = y 32 =-3-2 y 42 = y 52 =-8-5- a 2 2 y 62 = - 5+ a + b 2 2 y 72 = a+ b + c 2 2 y 82 = b+ c + d 2 2 y 92 = c+ d + e 2 2 Y 2 = d+ e + f 2 2 Y 2 = e + 5 +(9 +f) e ( ) Y 22 = f e ( ) y 3 = y 23 = y 33 = y 43 = a 6 3 y 53 =-8-5- a b 6 3 y 63 = - 5+ a + b c 6 3 y 73 = a+ b + c d 6 3 y 83 = b+ c + d f 6 3 y 93 = c+ d + e f 6 3 Y 3 = -9 +d +(5 +e) +.5(9 +f) 2 e ( ) Y 3 = e + 5 +(9 +f) e ( ) ISSN : Vol. 3 No. 7 July

6 Y 23 = f e ( ) y 4 = Coefficients of p 4 : y = y 34 = a4 y 44 = a b4 y 54 =-8-5- a b c4 y 64 = - 5+ a + b c d4 y 74 = a+ b + c d f 4 y 84 = b+ c + d e f 4 y 94 = -92 +c +(-9 +d) +.5(5 +f) 2 e ( )+(9 +f) 6 3 y 4 = -9 +d +(5 +e) +.5(9 +f) 2 e ( ) - 5 y 4 = e + 5 +(9 +f) e ( ) - 4 y = f e ( ) Above procedure is proceeding up to coefficient of p 2.Now, adding above all coefficient of p to p 2, and then we obtain: y 2 () = a b c d e f The coefficients a, b, c, d, e, f can be obtained using the boundary conditions at =, a = , b =35.57, c = , d =63.83, e = , f= The series solution can, thus, be written as y 2 () = ISSN : Vol. 3 No. 7 July

7 Analytical Solution Numerical Solution Errors Table: [.] Eample 2: Consider the following linear twelfth order boundary value problem y 2 () = - y()- 3 e -23e -2e with following conditions: =, () =, () =, () = 3, () = 8, () = 5 =, () = e, () = 4e, () = 9e, () = 6e, () = 25e Eact solution is y () = (- ) e We construct the following zeroth and first-order problems. y () = - y()- 3 e -23e -2e with following conditions: () =, () () =, () () =, () () = 3, () () = 8, () () = 5 () =, () () = e, () () = 4e, () () = 9e, () () = 6e, () () = 25e First-Order Problem: y () = (+ C ) ( ) e + C y () + ( + C ) y () With same above boundaries conditions Solutions to these problems are given by Equations. (2) and (2) respectively y () = ( e e e e e e e 8 ISSN : Vol. 3 No. 7 July

8 e e e ) (2) y (, C ) = C ( e + ( e ) + ( e ) 2 + ( e ) 3 + ( e ) ) (2) Considering the OHAM first-order solution, Y app (, C ) = y () + y (, C ) (22) and using Eq.(8) with a =.5 and b =, we get C = Using this value the first- order solution (22) is well-determined. Analytical Solution Numerical Solution Errors Conclusion Table: [. 2] In this paper, the Comparison of the results obtained by the Homotopy perturbation method and optimal homotopy asymptotic method of Twelfth order boundary value problems. The numerical results in the Tables [.-.2], show that the optimal homotopy asymptotic method provides highly accurate numerical results as compared to Homotopy perturbation method. It can be concluded that optimal homotopy asymptotic method is a highly efficient method for solving 2 th order boundary value problems arising in various fields of engineering and science. References [] Adomian, G., 99. A review of the decomposition method and some recent results for Nonlinear equations. Comput. Math. Appl., -27. [2] He, J.H. (). The Homotopy Perturbation Method for Non-Linear Oscillators with Discontinuities. Applied Maths. Computer [3] He, J.-H., 23. Variational approach to the sith order boundary value problems. Applied Math. Computer, [4] Wazwaz, A.M., 2. Approimate solutions to boundary value problems of higher- order By the modified decomposition method. Computer.Math.Appl [5] Siddique, S.S. and E.H. Twizell, 997. Spline solutions of linear twelfth-order boundary Value Problems Computer Math. Appl., [6] Siddique, S.S. and Ghazala Akram, 28. Solutions of 2th order boundary value problems Using non-polynomial spline technique. Appl. Math.Comput., [7] He, J.-H., 26. Homotopy perturbation methodfor solving boundary value problems ISSN : Vol. 3 No. 7 July

9 [8] Ghotbi, Abdoul R., Barari, A. and Ganji, D. D, (28). Solving Ratio-Dependent Predator-Prey System with Constant Effort Harvesting Using Homotopy Perturbation Method. Math. Prob.Eng., -8. [9] Chandrasekhar, S. (96). Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oford, Reprinted: Dover Books, New York, 98. [] Marinca, V., N. Herisanu and I. Nemes, 28.Optimal homotopy asymptotic method with Application to thin film flow. Cent. Eur. J. Phys [] Ghasemi, M., Tavassoli Kajani,M. and Babolian, E. (27). Numerical Solution of the Nonlinear Volterra Fredholm Integral Equations by using Homotopy Perturbation Method. Appl. Math. Computer [2] Marinca, V. and N. Herisanu, 28. An optimal homotopy asymptotic method for solving Non linear equations arising in heat transfer. Int. Comm. Heat and Mass Tran [3] S. H. Mirmoradi, S. Ghanbarpour, I. Hosseinpour, A. Barari, (29). Application of Homotopy perturbation method and variational iteration method to a nonlinear fourth order Boundary value problem. Int. J.Math.Analysis., -9. [4] Marinca, V., N. Herisanu, C. Bota and B. Marinca,29. An optimal homotopy asymptotic Method applied to the steady flow of fourth-grade fluid pasta porous plate. App.Math.5-5 [5] Islam, S.-U., S. Haq and J. Ali, 29. Numerical solution of special 2th-order boundary Value Problems using differential transform method. Comm. Nonl. Sc. Nu. Sim ISSN : Vol. 3 No. 7 July

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method Applied Mathematical Sciences, Vol. 2, 28, no. 54, 2691-2697 Eact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method J. Biazar 1, M. Eslami and H. Ghazvini

More information

The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation

The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation Computational Methods for Differential Equations http://cmdetabrizuacir Vol 4, No, 206, pp 43-53 The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation

More information

Application of Optimal Homotopy Asymptotic Method for Solving Linear Boundary Value Problems Differential Equation

Application of Optimal Homotopy Asymptotic Method for Solving Linear Boundary Value Problems Differential Equation General Letters in Mathematic, Vol. 1, No. 3, December 2016, pp. 81-94 e-issn 2519-9277, p-issn 2519-9269 Available online at http:\\ www.refaad.com Application of Optimal Homotopy Asymptotic Method for

More information

Homotopy Perturbation Method for Solving Twelfth Order Boundary Value Problems

Homotopy Perturbation Method for Solving Twelfth Order Boundary Value Problems International Journal of Research an Reviews in Applie Sciences ISSN: 276-734X, EISSN: 276-7366 Volume 1, Issue 2(November 29) Homotopy Perturbation Metho for Solving Twelfth Orer Bounary Value Problems

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems Proceedings of the World Congress on Engineering 7 Vol I WCE 7, July 5-7, 7, London, U.K. Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value

More information

He s Homotopy Perturbation Method for Nonlinear Ferdholm Integro-Differential Equations Of Fractional Order

He s Homotopy Perturbation Method for Nonlinear Ferdholm Integro-Differential Equations Of Fractional Order H Saeedi, F Samimi / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 wwwijeracom Vol 2, Issue 5, September- October 22, pp52-56 He s Homotopy Perturbation Method

More information

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method ohamed I. A. Othman, A.. S. ahdy and R.. Farouk / TJCS Vol. No. () 4-7 The Journal of athematics and Computer Science Available online at http://www.tjcs.com Journal of athematics and Computer Science

More information

SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD

SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD Murad Ullah Khan 1*, S. Zuhra 2, M. Alam 3, R. Nawaz 4 ABSTRACT Berman developed the fourth-order nonlinear

More information

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations Applied Mathematical Sciences, Vol 6, 2012, no 96, 4787-4800 Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations A A Hemeda Department of Mathematics, Faculty of Science Tanta

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

arxiv: v1 [math.ds] 16 Oct 2014

arxiv: v1 [math.ds] 16 Oct 2014 Application of Homotopy Perturbation Method to an Eco-epidemic Model arxiv:1410.4385v1 [math.ds] 16 Oct 014 P.. Bera (1, S. Sarwardi ( and Md. A. han (3 (1 Department of Physics, Dumkal College, Basantapur,

More information

The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation

The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 12 (December. 2013), V3 PP 22-27 The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation

More information

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 38-44 Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method H. Mirgolbabaei

More information

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD Arif Rafiq and Amna Javeria Abstract In this paper, we establish

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 1 (211) 233 2341 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Variational

More information

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 1, Issue 1Ver. I. (Jan. 214), PP 8-12 Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation Saad A.

More information

Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics

Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics Journal of Physics: Conference Series Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics To cite this article: Z Y Ma 008 J. Phys.: Conf. Ser. 96 08 View the article online for updates

More information

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Songxin Liang, David J. Jeffrey Department of Applied Mathematics, University of Western Ontario, London,

More information

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind Applied Mathematical Sciences, Vol. 5, 211, no. 16, 799-84 On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind A. R. Vahidi Department

More information

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article Journal of Engineering Science and Technology Review 2 (1) (2009) 118-122 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Thin film flow of non-newtonian fluids on a

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

The variational homotopy perturbation method for solving the K(2,2)equations

The variational homotopy perturbation method for solving the K(2,2)equations International Journal of Applied Mathematical Research, 2 2) 213) 338-344 c Science Publishing Corporation wwwsciencepubcocom/indexphp/ijamr The variational homotopy perturbation method for solving the

More information

Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates

Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates Milad Boostani * - Sadra Azizi - Hajir Karimi Department of Chemical Engineering, Yasouj

More information

EffectofVariableThermalConductivityHeatSourceSinkNearaStagnationPointonaLinearlyStretchingSheetusingHPM

EffectofVariableThermalConductivityHeatSourceSinkNearaStagnationPointonaLinearlyStretchingSheetusingHPM Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume Issue Version. Year Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS Commun. Korean Math. Soc. 24 (29), No. 4, pp. 65 615 DOI 1.4134/CKMS.29.24.4.65 VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS Syed Tauseef Mohyud-Din, Muhammad Aslam Noor,

More information

A New Numerical Scheme for Solving Systems of Integro-Differential Equations

A New Numerical Scheme for Solving Systems of Integro-Differential Equations Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 1, No. 2, 213, pp. 18-119 A New Numerical Scheme for Solving Systems of Integro-Differential Equations Esmail Hesameddini

More information

Homotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems

Homotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems Applied Mathematical Sciences, Vol 3, 2009, no 31, 1519-1524 Homotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems M A Jafari and A Aminataei Department

More information

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length Australian Journal of Basic and Applied Sciences, 4(6): 173-181, 1 ISSN 1991-8178 Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in

More information

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Journal of mathematics and computer Science 7 (23) 38-43 Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Article history: Received March 23 Accepted Apri

More information

The approximation of solutions for second order nonlinear oscillators using the polynomial least square method

The approximation of solutions for second order nonlinear oscillators using the polynomial least square method Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 1 (217), 234 242 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa The approximation of solutions

More information

Homotopy Perturbation Method for Solving the Second Kind of Non-Linear Integral Equations. 1 Introduction and Preliminary Notes

Homotopy Perturbation Method for Solving the Second Kind of Non-Linear Integral Equations. 1 Introduction and Preliminary Notes International Mathematical Forum, 5, 21, no. 23, 1149-1154 Homotopy Perturbation Method for Solving the Second Kind of Non-Linear Integral Equations Seyyed Mahmood Mirzaei Department of Mathematics Faculty

More information

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients Cent. Eur. J. Eng. 4 24 64-7 DOI:.2478/s353-3-4-6 Central European Journal of Engineering The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

More information

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method S. Salman Nourazar, Mohsen Soori, Akbar Nazari-Golshan To cite this version: S. Salman Nourazar, Mohsen Soori,

More information

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 4 (2009), No. 2, pp. 219-234 EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS BY SYED TAUSEEF MOHYUD-DIN,

More information

Solution of Seventh Order Boundary Value Problem by Differential Transformation Method

Solution of Seventh Order Boundary Value Problem by Differential Transformation Method World Applied Sciences Journal 16 (11): 1521-1526, 212 ISSN 1818-4952 IDOSI Publications, 212 Solution of Seventh Order Boundary Value Problem by Differential Transformation Method Shahid S. Siddiqi, Ghazala

More information

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 6, 2012, no. 10, 487-497 Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations A. R. Vahidi a and B. Jalalvand b (a) Department

More information

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation Ahmet Yildirim Department of Mathematics, Science Faculty, Ege University, 351 Bornova-İzmir, Turkey Reprint requests

More information

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 2011 The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation Habibolla Latifizadeh, Shiraz

More information

Study of Couette and Poiseuille flows of an Unsteady MHD Third Grade Fluid

Study of Couette and Poiseuille flows of an Unsteady MHD Third Grade Fluid J. Appl. Environ. Biol. Sci., 4(10)12-21, 2014 2014, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Study of Couette and Poiseuille flows

More information

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation J. Basic. Appl. Sci. Res., 2(12)12236-12241, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Adomian Decomposition Method with Laguerre

More information

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction 0 The Open Mechanics Journal, 007,, 0-5 Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations N. Tolou, D.D. Ganji*, M.J. Hosseini and Z.Z. Ganji Department

More information

On the coupling of Homotopy perturbation method and Laplace transformation

On the coupling of Homotopy perturbation method and Laplace transformation Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 011 On the coupling of Homotopy perturbation method and Laplace transformation Habibolla Latifizadeh, Shiraz University of

More information

Solving Two Emden Fowler Type Equations of Third Order by the Variational Iteration Method

Solving Two Emden Fowler Type Equations of Third Order by the Variational Iteration Method Appl. Math. Inf. Sci. 9, No. 5, 2429-2436 215 2429 Applied Mathematics & Information Sciences An International Journal http://d.doi.org/1.12785/amis/9526 Solving Two Emden Fowler Type Equations of Third

More information

New interpretation of homotopy perturbation method

New interpretation of homotopy perturbation method From the SelectedWorks of Ji-Huan He 26 New interpretation of homotopy perturbation method Ji-Huan He, Donghua University Available at: https://works.bepress.com/ji_huan_he/3/ International Journal of

More information

Numerical Solution of Fourth Order Boundary-Value Problems Using Haar Wavelets

Numerical Solution of Fourth Order Boundary-Value Problems Using Haar Wavelets Applied Mathematical Sciences, Vol. 5, 20, no. 63, 33-346 Numerical Solution of Fourth Order Boundary-Value Problems Using Haar Wavelets Fazal-i-Haq Department of Maths/Stats/CS Khyber Pukhtoon Khwa Agricultral

More information

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate Physics Letters A 37 007) 33 38 www.elsevier.com/locate/pla Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate M. Esmaeilpour, D.D. Ganji

More information

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 (2016), 2419 2433 Research Article Application of new iterative transform method and modified fractional homotopy analysis transform method for

More information

Application of Homotopy Analysis Method for Linear Integro-Differential Equations

Application of Homotopy Analysis Method for Linear Integro-Differential Equations International Mathematical Forum, 5, 21, no. 5, 237-249 Application of Homotopy Analysis Method for Linear Integro-Differential Equations Zulkifly Abbas a, Saeed Vahdati a,1, Fudziah Ismail a,b and A.

More information

SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS

SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Volumen 52, Número 1, 2011, Páginas 143 148 SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS SYED TAUSEEF MOHYUD-DIN Abstract. In this paper, we apply He s

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction International Journal of Analysis and Applications ISSN 229-8639 Volume 0, Number (206), 9-6 http://www.etamaths.com HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION MOUNTASSIR

More information

VARIATIONAL ITERATION HOMOTOPY PERTURBATION METHOD FOR THE SOLUTION OF SEVENTH ORDER BOUNDARY VALUE PROBLEMS

VARIATIONAL ITERATION HOMOTOPY PERTURBATION METHOD FOR THE SOLUTION OF SEVENTH ORDER BOUNDARY VALUE PROBLEMS VARIATIONAL ITERATION HOMOTOPY PERTURBATION METHOD FOR THE SOLUTION OF SEVENTH ORDER BOUNDARY VALUE PROBLEMS SHAHID S. SIDDIQI 1, MUZAMMAL IFTIKHAR 2 arxiv:131.2915v1 [math.na] 1 Oct 213 Abstract. The

More information

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method Nonlinear Analysis: Real World Applications, Vol. 10, Nº 1, 416-427 (2009) Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method A. Beléndez, C. Pascual,

More information

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD * Nader Rafatimaleki Department of Mathematics, College of Science, Islamic Azad University, Tabriz Branch,

More information

NEW ANALYTICAL SOLUTION FOR NATURAL CONVECTION OF DARCIAN FLUID IN POROUS MEDIA PRESCRIBED SURFACE HEAT FLUX

NEW ANALYTICAL SOLUTION FOR NATURAL CONVECTION OF DARCIAN FLUID IN POROUS MEDIA PRESCRIBED SURFACE HEAT FLUX THERMAL SCIENCE, Year 11, Vol. 15, Suppl., pp. S1-S7 1 Introduction NEW ANALYTICAL SOLUTION FOR NATURAL CONVECTION OF DARCIAN FLUID IN POROUS MEDIA PRESCRIBED SURFACE HEAT FLUX by Davood Domairy GANJI

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 58 (29) 27 26 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Study on

More information

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method Australian Journal of Basic and Applied Sciences, 3(3): 2249-2254, 2009 ISSN 1991-8178 Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method A.R. Vahidi Department

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. I1 (Sep. - Oct. 2017), PP 90-97 www.iosrjournals.org Approximate Solution of an Integro-Differential

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Temperature Dependent Viscosity of a thin film fluid on a Vertical Belt with slip boundary conditions

Temperature Dependent Viscosity of a thin film fluid on a Vertical Belt with slip boundary conditions J. Appl. Environ. Biol. Sci., 5(2)157-162, 2015 2015, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Temperature Dependent Viscosity of a

More information

Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus

Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus T.S.L Radhika, Aditya Vikram Singh Abstract In this paper, the flow of an incompressible non Newtonian

More information

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems Weonbae Kim a and Changbum Chun b a Department of Mathematics, Daejin University, Pocheon, Gyeonggi-do

More information

Analytical Solution to Intra-Phase Mass Transfer in Falling Film Contactors via Homotopy Perturbation Method

Analytical Solution to Intra-Phase Mass Transfer in Falling Film Contactors via Homotopy Perturbation Method International Mathematical Forum, Vol. 6, 2011, no. 67, 3315-3321 Analytical Solution to Intra-Phase Mass Transfer in Falling Film Contactors via Homotopy Perturbation Method Hooman Fatoorehchi 1 and Hossein

More information

Application of homotopy perturbation method to non-homogeneous parabolic partial and non linear differential equations

Application of homotopy perturbation method to non-homogeneous parabolic partial and non linear differential equations ISSN 1 746-733, England, UK World Journal of Modelling and Simulation Vol. 5 (009) No. 3, pp. 5-31 Application of homotopy perturbation method to non-homogeneous parabolic partial and non linear differential

More information

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017, pp. 1072 1087 Applications and Applied Mathematics: An International Journal (AAM Analytical solution

More information

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions Applied Mathematical Sciences, Vol. 5, 211, no. 3, 113-123 The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions M. Ghoreishi School of Mathematical

More information

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations Computers and Mathematics with Applications 6 (21) 1868 1872 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A modified

More information

Exact Analytic Solutions for Nonlinear Diffusion Equations via Generalized Residual Power Series Method

Exact Analytic Solutions for Nonlinear Diffusion Equations via Generalized Residual Power Series Method International Journal of Mathematics and Computer Science, 14019), no. 1, 69 78 M CS Exact Analytic Solutions for Nonlinear Diffusion Equations via Generalized Residual Power Series Method Emad Az-Zo bi

More information

Adaptation of Taylor s Formula for Solving System of Differential Equations

Adaptation of Taylor s Formula for Solving System of Differential Equations Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 2, 95-107 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.51144 Adaptation of Taylor s Formula for Solving System of Differential

More information

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4 ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.172014 No.1,pp.84-90 Exact Solution of Partial Differential Equation Using Homo-Separation of Variables Abdolamir Karbalaie

More information

DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF LANE-EMDEN TYPE

DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF LANE-EMDEN TYPE Mathematical and Computational Applications, Vol, No 3, pp 35-39, 7 Association for Scientific Research DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF LANE-EMDEN TYPE Vedat Suat

More information

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model Int. Journal of Math. Analysis, Vol. 6, 2012, no. 16, 753-759 A Study of the Variational Iteration Method for Solving Three Species Food Web Model D. Venu Gopala Rao Home: Plot No.159, Sector-12, M.V.P.Colony,

More information

Numerical solution for chemical kinetics system by using efficient iterative method

Numerical solution for chemical kinetics system by using efficient iterative method International Journal of Advanced Scientific and Technical Research Issue 6 volume 1, Jan Feb 2016 Available online on http://wwwrspublicationcom/ijst/indexhtml ISSN 2249-9954 Numerical solution for chemical

More information

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS (c) Romanian RRP 66(No. Reports in 2) Physics, 296 306 Vol. 2014 66, No. 2, P. 296 306, 2014 ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS A. JAFARIAN 1, P. GHADERI 2, ALIREZA K.

More information

A new modification to homotopy perturbation method for solving Schlömilch s integral equation

A new modification to homotopy perturbation method for solving Schlömilch s integral equation Int J Adv Appl Math and Mech 5(1) (217) 4 48 (ISSN: 2347-2529) IJAAMM Journal homepage: wwwijaammcom International Journal of Advances in Applied Mathematics and Mechanics A new modification to homotopy

More information

Numerical Solution of Nonlinear Diffusion Equation with Convection Term by Homotopy Perturbation Method

Numerical Solution of Nonlinear Diffusion Equation with Convection Term by Homotopy Perturbation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-3008, p-issn:2319-7676. Volume 10, Issue Ver.1. (Jan. 2014), PP 13-17 Numerical Solution of Nonlinear Diffusion Equation with Convection Term by Homotopy

More information

Properties of BPFs for Approximating the Solution of Nonlinear Fredholm Integro Differential Equation

Properties of BPFs for Approximating the Solution of Nonlinear Fredholm Integro Differential Equation Applied Mathematical Sciences, Vol. 6, 212, no. 32, 1563-1569 Properties of BPFs for Approximating the Solution of Nonlinear Fredholm Integro Differential Equation Ahmad Shahsavaran 1 and Abar Shahsavaran

More information

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems Applied Mathematics & Information Sciences 2(2) (28), 135 141 An International Journal c 28 Dixie W Publishing Corporation, U. S. A. Variation of Parameters Method for Solving Fifth-Order Boundary Value

More information

Numerical Solutions of Volterra Integral Equations Using Galerkin method with Hermite Polynomials

Numerical Solutions of Volterra Integral Equations Using Galerkin method with Hermite Polynomials Proceedings of the 3 International Conference on Applied Mathematics and Computational Methods in Engineering Numerical of Volterra Integral Equations Using Galerkin method with Hermite Polynomials M.

More information

Basic Ideas and Brief History of the Homotopy Analysis Method

Basic Ideas and Brief History of the Homotopy Analysis Method 1 Basic Ideas and Brief History of the Homotopy Analysis Method 1 Introduction Nonlinear equations are much more difficult to solve than linear ones, especially by means of analytic methods. In general,

More information

International Journal of Modern Mathematical Sciences, 2012, 3(2): International Journal of Modern Mathematical Sciences

International Journal of Modern Mathematical Sciences, 2012, 3(2): International Journal of Modern Mathematical Sciences Article International Journal of Modern Mathematical Sciences 2012 3(2): 63-76 International Journal of Modern Mathematical Sciences Journal homepage:wwwmodernscientificpresscom/journals/ijmmsaspx On Goursat

More information

An analytic approach to solve multiple solutions of a strongly nonlinear problem

An analytic approach to solve multiple solutions of a strongly nonlinear problem Applied Mathematics and Computation 169 (2005) 854 865 www.elsevier.com/locate/amc An analytic approach to solve multiple solutions of a strongly nonlinear problem Shuicai Li, Shi-Jun Liao * School of

More information

ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS

ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS IJRRAS August ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS A. Fereidoon, D.D. Ganji, H.D. Kaliji & M. Ghadimi,* Department of Mechanical Engineering, Faculty of Engineering, Semnan University, Iran

More information

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 013 Variational iteration method for Nonlinear Oscillators: A comment on Application of Laplace Iteration method to Study

More information

On Using the Homotopy Perturbation Method for Finding the Travelling Wave Solutions of Generalized Nonlinear Hirota- Satsuma Coupled KdV Equations

On Using the Homotopy Perturbation Method for Finding the Travelling Wave Solutions of Generalized Nonlinear Hirota- Satsuma Coupled KdV Equations ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.7(2009) No.2,pp.159-166 On Using the Homotopy Perturbation Method for Finding the Travelling Wave Solutions of Generalized

More information

Optimal Homotopy Asymptotic Method for Solving Gardner Equation

Optimal Homotopy Asymptotic Method for Solving Gardner Equation Applied Mathematical Sciences, Vol. 9, 2015, no. 53, 2635-2644 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52145 Optimal Homotopy Asymptotic Method for Solving Gardner Equation Jaharuddin

More information

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2016, No. 5, pp. 875-887 875 UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM by Fazal GHANI a, Taza

More information

An Implicit Method for Numerical Solution of Second Order Singular Initial Value Problems

An Implicit Method for Numerical Solution of Second Order Singular Initial Value Problems Send Orders for Reprints to reprints@benthamscience.net The Open Mathematics Journal, 2014, 7, 1-5 1 Open Access An Implicit Method for Numerical Solution of Second Order Singular Initial Value Problems

More information

Chapter 2 Analytical Approximation Methods

Chapter 2 Analytical Approximation Methods Chapter 2 Analytical Approximation Methods 2.1 Introduction As we mentioned in the previous chapter, most of the nonlinear ODEs have no explicit solutions, i.e., solutions, which are expressible in finite

More information

Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-3

Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-3 Discrete Dynamics in Nature and Society Volume, Article ID 474, pages doi:.55//474 Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Inde- Melike Karta and

More information

Differential Transform Technique for Higher Order Boundary Value Problems

Differential Transform Technique for Higher Order Boundary Value Problems Modern Applied Science; Vol. 9, No. 13; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Differential Transform Technique for Higher Order Boundary Value Problems

More information

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method International Mathematical Forum, Vol. 7, 2012, no. 17, 799 814 A New Technique of Initial Boundary Value Problems Using Adomian Decomposition Method Elaf Jaafar Ali Department of Mathematics, College

More information

Problem Set 9 Solutions

Problem Set 9 Solutions 8.4 Problem Set 9 Solutions Total: 4 points Problem : Integrate (a) (b) d. ( 4 + 4)( 4 + 5) d 4. Solution (4 points) (a) We use the method of partial fractions to write A B (C + D) = + +. ( ) ( 4 + 5)

More information

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method American Journal of Theoretical and Applied Statistics 2015; 4(6): 534-538 Published online October 29, 2015 (http://wwwsciencepublishinggroupcom/j/ajtas) doi: 1011648/jajtas2015040624 ISSN: 2326-8999

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

On the convergence of the homotopy analysis method to solve the system of partial differential equations

On the convergence of the homotopy analysis method to solve the system of partial differential equations Journal of Linear and Topological Algebra Vol. 04, No. 0, 015, 87-100 On the convergence of the homotopy analysis method to solve the system of partial differential equations A. Fallahzadeh a, M. A. Fariborzi

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

An Analytical Study of Nonlinear Vibrations of Buckled EulerBernoulli Beams

An Analytical Study of Nonlinear Vibrations of Buckled EulerBernoulli Beams Vol. 23 (23) ACTA PHYSICA POLONICA A No. An Analytical Study of Nonlinear Vibrations of Buckled EulerBernoulli Beams I. Pakar and M. Bayat Department of Civil Engineering, Mashhad Branch, Islamic Azad

More information