Optimal Timing of Maintenance and Rehabilitation in 60-Year Concrete Pavement Design Using the Weibull Distribution

Size: px
Start display at page:

Download "Optimal Timing of Maintenance and Rehabilitation in 60-Year Concrete Pavement Design Using the Weibull Distribution"

Transcription

1 Optimal Timing of Maintenance and Rehabilitation in 60-Year Concrete Pavement Design Using the Weibull Distribution By Bernard Igbafen Izevbekhai, P.E., Ph.D. Research Operations Engineer Minnesota Department of Transportation 25th Annual CTS Transportation Research Conference, May

2 MnDOT 60-Year Concrete Design Philosophy of Get in Get out & Stay out Demo project in 2000: Rangaraju Anticipated Traffic Levels Low Water cement Ratio < 0.4 High Pozzolan Slag /FA > 15% Air content 6.5 ± ft Non-Skewed Panels Steel Dowel Preformed Elastomeric Sealers. Demo on TH 35 W In Richfield MN.

3 Incremental Cost Philosophy Design Improvement and Incremental Benefit if n t s F 0 ttt t sss F 0 t n i=1 i=1 C60 t=0 Cj t=0 > 1 where ts is the time to reach terminal serviceability level trigger level acceptable performance level Ft60 is the performance function of pavements with respect to time based on 60-year design Ft is the performance function of regular pavements with respect to time CC t=0 is the base year referenced summation of the cost for defender C60 t=0 is the base year referenced summation of the cost for defender Chosen with LCCA IBCA, BCA.

4 MnDOT Institutional Repair Schedule For Life Cycle Cost Analysis Concrete Pavement (All Traffic Levels) Service Year Initial Construction 0 Joint Reseal and Minor CPR (partial depth repairs) 17 Minor CPR (PDR) and some full depth repairs (FDR) 27 Major CPR (Full Depth Repair & Diamond Grinding) 40 End of Analysis Period (5 years of remaining life) 50

5 Life Cycle Cost Scenario TH 100 Segment Time (Yrs)

6 LCCA & Incremental B/C A Option EAEC/* $32.64 $28.41 $27.38 $37.18 EAEB $9000 $8000 $10,000 $7000 Annualized B/C Annual Alternative Annual Cost Comp of Incremental Benefit Cost Incremental B/C Ratio (ΔB/ΔC) 3 $27.38 $10, $ and 2 $1.03 -$1, $ $28.41 $9, $ and 1 $5.26 -$2, $ $32.64 $8, $ and 4 $9.80 -$3, $ $37.18 $7, $188.27

7 Incremental Benefit/Cost Guaranteed? If Bi (B1 B2, B3, B4) represent the benefits corresponding to options with NPVi (NPV1; NPV2; NPV3; and NPV4) If B1 =6; B2 =10; C1=4; and C2=7; B1/C1 = 1.5 B2/C2 = Thus B1/C1 > B2/C2; However, incremental benefit B is 4 and incremental cost C is 3. When considering B2 against B1, B/ C= 4/3 which is >1. Lower LCCA does not imply Lower Incremental cost: TEST BOTH!!!

8 Classic 60 Year Design Features P00 P11 Performance Index P10 P22 P21 P33 P44 P32 P43 MTBMA1 MTBMA2 MTBMA 3 MTBMA4 Time (Yrs)

9 Problem Statement MMMMMM ttt CCCCCCC CMMMMMM Benefit f i,m R 0 t + R 1 (t) CCCCCCC + R CMMMMMM 2 (t) EEEEEEE + R CCCCCCC 3 (t) C = Cumulative and tt = terminal perf. time; i = discount rate; m= Market OPTIMIZE: MTBMA 1; MTBMA 2; MTBMA 3; MTBMA 4 Fixes that maximize (Pjj - P j (j-1) Corresponding annualized equivalent cost or LCC Maximize Benefit / Cost : Given the constraints Pjj< P(j-1) (j-1); 4 fixes are assumed. CMTBMA4 < 60 Years but Ctt5= 60 years CCCC + R CEEEEEEE 4 (t)

10 Consider a Somewhat Deterministic Approach Dr. E. H. Waloddi Weibull ( ) Swedish Scientist & Mathematician If I have seen further it is by Standing on the Shoulders of Giants Isaac Newton (1676)

11 Weibull Distribution To The Rescue

12 Typical Weibull Features Probability Density Function (Pdf) ƒ(t) = (β (t- t 0 ) / μ ) exp { - (t- t 0 / μ)} Survival or Reliability Function P(t) = exp { - (t- t 0 / μ) } Hazard Function Z(t) = (β/ μ ) (t- t 0 )

13 Important Weibull Characteristics t 0 Threshold time-to-failure, or guaranteed life. In many cases of wear-out the first failure does not appear until some significant running time t 0 has elapsed. μ= Characteristic life. When t t o = μ, P(t) = exp (-1) = 0.37, μ is the interval between t o and the time at which it can be expected that 63% of the items will have failed(it is pivotal).. β= Shape Factor

14 Characteristics of the Shape Factor Implications in Infrastructure A value of β< 1 indicates Failure Rate Decreases Over Time. Infant Mortality Defective items Failing Early Failure Rate Decreasing over Time A value of β = 1 Constant Failure Rate. Random Events A value of β > 1 Failure Rate Increases with Time. Aging Process, ( Wear out ) Increasing Failure Rate wrt time.

15 PDFS of Various Weibull Shapes Probability Probability PDF with β=0.5 (<1) PDF with β = 1.0 PDF with β =2 (>1) PDF with β =5 (>>1)

16 HAZARD FUNCTION OF A WEIBULL DISTRIBUTION β <1 β =1 β >1 β >>1

17 Finding the Parameters Analytically A single expression dependent on the shape factor β. Shape factor characterize the failure. TTT ppppppppppp ddddddd ffffffff f t = β(t t o) β 1 μ β e t to μ TTT CCCCCCCCCC ppppppppppp ffffffff F t = 1 e t t 0 μ β β

18 Finding the Parameters Analytically From Linear Plot obtain Shape factor LL (LL 1 F(t) 1 = βββ t t 0 + β ln μ β= slope of best line= Shape factor μ = e IIIIIIIII β

19 Data Processing

20 Ranking and Characteristic Life

21 Threshold Time To Failure To determine the actual t o, the curve that approximates best to a straight line has the correct t o. The t o for each MTBMA was then determined

22 Threshold Time To Failure If LL LL 1 F(t) 1 is plotted against ll t t 0 a family of curves is generated. t 0 = t m t m t 1 t 2 t m t 2 t m t m t 1 t m t 2

23 Characteristics of the Shape Factor Implications in Infrastructure A value of β< 1 indicates Failure Rate Decreases Over Time. Infant Mortality Defective items Failing Early Failure Rate Decreasing over Time A value of β = 1 Constant Failure Rate. Random Events A value of β > 1 Failure Rate Increases with Time. Aging Process, ( Wear out ) Increasing Failure Rate wrt time.

24 DATA

25 Closing Remarks & Summary of Results MTBMA1 MTBMA2 MTBMA3 MTBMA4 MnDOT Characteristic Life (µ) Threshold TTF (to) Shape Factor (β) Performance Type Random to Wear Out Log Normal Crack Development Random Random to Wear Out Log Normal Crack Development Wear Out Spalling Punchout Faulting Rocking Panels

26 Shape Factor Implication

27 Closing Remarks A tenable and procedurally deterministic process Meaningful parameters of failure pattern, such as probable minimum time to failure. Characteristic Life and Failure Mode Simple graphical techniques available. Single p.d.f which can be made to represent any of the three types of failure distribution (running-in, purely random, or wearout modes of failure). Meaningful parameters of failure pattern, such as probable minimum time to failure. Simple graphical techniques available.

28 Disclaimer (Weibull Distribution QUACKERY) This Weibull Solves all Your Pavement Performance Problems

29 Multivalent Intellectualism Sir Isaac Newton Natural Philosopher Father of Science Great Thinker & Problem Solver Frederick Winslow Taylor Engineer Father of Scientific Management Great Thinker & Problem Solver

30 QUESTIONS

MnDOT Research Update BCOA Performance and UBOL Design

MnDOT Research Update BCOA Performance and UBOL Design MnDOT Research Update BCOA Performance and UBOL Design Tom Burnham, P.E. Senior Road Research Engineer CPAM Annual Concrete Paving Workshop, Brainerd, MN Outline BCOA (Whitetopping) Study Objectives Field

More information

CHAPTER 10 RELIABILITY

CHAPTER 10 RELIABILITY CHAPTER 10 RELIABILITY Failure rates Reliability Constant failure rate and exponential distribution System Reliability Components in series Components in parallel Combination system 1 Failure Rate Curve

More information

Reliability of Technical Systems

Reliability of Technical Systems Main Topics 1. Introduction, Key Terms, Framing the Problem 2. Reliability Parameters: Failure Rate, Failure Probability, etc. 3. Some Important Reliability Distributions 4. Component Reliability 5. Software

More information

Practical Applications of Reliability Theory

Practical Applications of Reliability Theory Practical Applications of Reliability Theory George Dodson Spallation Neutron Source Managed by UT-Battelle Topics Reliability Terms and Definitions Reliability Modeling as a tool for evaluating system

More information

DETERMINE JOINTED PLAIN CONCRETE PAVEMENT (JPCP) SLAB REPLACEMENT TREATMENT USING SENSING TECHNOLOGY

DETERMINE JOINTED PLAIN CONCRETE PAVEMENT (JPCP) SLAB REPLACEMENT TREATMENT USING SENSING TECHNOLOGY DETERMINE JOINTED PLAIN CONCRETE PAVEMENT (JPCP) SLAB REPLACEMENT TREATMENT USING SENSING TECHNOLOGY Presented by Yi-Ching Wu Georgia Institute of Technology Pavement Evaluation 2014 September 15-18, 2014

More information

Retrofit Dowel Bars In Jointed Concrete Pavement - Long Term Performance and Best Practices

Retrofit Dowel Bars In Jointed Concrete Pavement - Long Term Performance and Best Practices Retrofit Dowel Bars In Jointed Concrete Pavement - Long Term Performance and Best Practices Tom Burnham, P.E. Bernard Izevbekhai, P.E. Office of Materials and Road Research Minnesota Department of Transportation

More information

ME PDG Rigid Pavement Design Reliability Update. Further Calibration of the Distress Prediction Models & Reliability Effects

ME PDG Rigid Pavement Design Reliability Update. Further Calibration of the Distress Prediction Models & Reliability Effects ME PDG Rigid Pavement Design Reliability Update Further Calibration of the Distress Prediction Models & Reliability Effects NCHRP 1-40B 1 & 1-40D 1 Team Applied Research Associates Michael Darter Jagannath

More information

IoT Network Quality/Reliability

IoT Network Quality/Reliability IoT Network Quality/Reliability IEEE PHM June 19, 2017 Byung K. Yi, Dr. of Sci. Executive V.P. & CTO, InterDigital Communications, Inc Louis Kerofsky, PhD. Director of Partner Development InterDigital

More information

Fundamentals of Reliability Engineering and Applications

Fundamentals of Reliability Engineering and Applications Fundamentals of Reliability Engineering and Applications E. A. Elsayed elsayed@rci.rutgers.edu Rutgers University Quality Control & Reliability Engineering (QCRE) IIE February 21, 2012 1 Outline Part 1.

More information

DRAFT. Evaluation of Joint Sealant Materials, US-36, Doniphan County, Kansas. Report No. FHWA-KS-08-2

DRAFT. Evaluation of Joint Sealant Materials, US-36, Doniphan County, Kansas. Report No. FHWA-KS-08-2 Report No. FHWA-KS-08-2 final REPORT Evaluation of Joint Sealant Materials, US-36, Doniphan County, Kansas Rodney A. Montney, P.E. Robert F. Heinen John Wojakowski, P.E. Kansas Department of Transportation

More information

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES 27 CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES 3.1 INTRODUCTION The express purpose of this research is to assimilate reliability and its associated probabilistic variables into the Unit

More information

Mark B. Snyder, Ph.D., P.E., Engineering Consultant Bridgeville, Pennsylvania

Mark B. Snyder, Ph.D., P.E., Engineering Consultant Bridgeville, Pennsylvania Mark B. Snyder, Ph.D., P.E., Engineering Consultant Bridgeville, Pennsylvania Prepared for presentation at the 2008 Minnesota Concrete Conference Continuing Education and Conference Center, St. Paul, MN

More information

Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions

Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions Chong Ma Department of Statistics University of South Carolina chongm@email.sc.edu February 15, 2017 Chong Ma (Statistics, USC)

More information

Introduction to Reliability Theory (part 2)

Introduction to Reliability Theory (part 2) Introduction to Reliability Theory (part 2) Frank Coolen UTOPIAE Training School II, Durham University 3 July 2018 (UTOPIAE) Introduction to Reliability Theory 1 / 21 Outline Statistical issues Software

More information

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation H. Zhang, E. Cutright & T. Giras Center of Rail Safety-Critical Excellence, University of Virginia,

More information

Coefficient of Thermal Expansion of Concrete Pavements

Coefficient of Thermal Expansion of Concrete Pavements Coefficient of Thermal Expansion of Concrete Pavements Erwin Kohler Ramon Alvarado David Jones University of California Pavement Research Center TRB Annual Meeting, Washington D.C. January 24 th, 2007

More information

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes.

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Unit 2: Models, Censoring, and Likelihood for Failure-Time Data Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Ramón

More information

10 Introduction to Reliability

10 Introduction to Reliability 0 Introduction to Reliability 10 Introduction to Reliability The following notes are based on Volume 6: How to Analyze Reliability Data, by Wayne Nelson (1993), ASQC Press. When considering the reliability

More information

Reliability and Availability Simulation. Krige Visser, Professor, University of Pretoria, South Africa

Reliability and Availability Simulation. Krige Visser, Professor, University of Pretoria, South Africa Reliability and Availability Simulation Krige Visser, Professor, University of Pretoria, South Africa Content BACKGROUND DEFINITIONS SINGLE COMPONENTS MULTI-COMPONENT SYSTEMS AVAILABILITY SIMULATION CONCLUSION

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

Evaluation of NDDOT Fixed Automated Spray Technology (FAST) Systems November 24, 2009

Evaluation of NDDOT Fixed Automated Spray Technology (FAST) Systems November 24, 2009 Evaluation of NDDOT Fixed Automated Spray Technology (FAST) Systems November 4, 009 Shawn Birst, PE Program Director, ATAC Associate Research Fellow Upper Great Plains Transportation Institute North Dakota

More information

Fleet Maintenance Simulation With Insufficient Data

Fleet Maintenance Simulation With Insufficient Data Fleet Maintenance Simulation With Insufficient Data Zissimos P. Mourelatos Mechanical Engineering Department Oakland University mourelat@oakland.edu Ground Robotics Reliability Center (GRRC) Seminar 17

More information

Non-observable failure progression

Non-observable failure progression Non-observable failure progression 1 Age based maintenance policies We consider a situation where we are not able to observe failure progression, or where it is impractical to observe failure progression:

More information

Concrete Pavement Repair Best Practices

Concrete Pavement Repair Best Practices Concrete Pavement Repair Best Practices Michael I. Darter, PE, PhD Applied Research Associates, Inc. Study Conducted for Missouri Department of Transportation 19 September 2017 Objectives Conduct a National

More information

Comparative Distributions of Hazard Modeling Analysis

Comparative Distributions of Hazard Modeling Analysis Comparative s of Hazard Modeling Analysis Rana Abdul Wajid Professor and Director Center for Statistics Lahore School of Economics Lahore E-mail: drrana@lse.edu.pk M. Shuaib Khan Department of Statistics

More information

Puerto Rico Transportation Asset Management Plan

Puerto Rico Transportation Asset Management Plan Puerto Rico Transportation Asset Management Plan PR-TAMP April 12, 2018 April 12, 2018 The Project Team Gordon Proctor Shobna Varma Jose Carro, P.E. Zaida Rico, P.E., Ph.D. gordon@proctorassociates.com

More information

Dependable Systems. ! Dependability Attributes. Dr. Peter Tröger. Sources:

Dependable Systems. ! Dependability Attributes. Dr. Peter Tröger. Sources: Dependable Systems! Dependability Attributes Dr. Peter Tröger! Sources:! J.C. Laprie. Dependability: Basic Concepts and Terminology Eusgeld, Irene et al.: Dependability Metrics. 4909. Springer Publishing,

More information

Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions

Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions C. Xing, R. Caspeele, L. Taerwe Ghent University, Department

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Fault Tolerant Computing ECE 655 Part 1 Introduction C. M. Krishna Fall 2006 ECE655/Krishna Part.1.1 Prerequisites Basic courses in

More information

Concept of Reliability

Concept of Reliability Concept of Reliability Prepared By Dr. M. S. Memon Department of Industrial Engineering and Management Mehran University of Engineering and Technology Jamshoro, Sindh, Pakistan RELIABILITY Reliability

More information

Failure rate in the continuous sense. Figure. Exponential failure density functions [f(t)] 1

Failure rate in the continuous sense. Figure. Exponential failure density functions [f(t)] 1 Failure rate (Updated and Adapted from Notes by Dr. A.K. Nema) Part 1: Failure rate is the frequency with which an engineered system or component fails, expressed for example in failures per hour. It is

More information

Pavements. CP2 Center CA PP Conference

Pavements. CP2 Center CA PP Conference Treatment t Selection for Flexible Pavements By R. Gary Hicks CP2 Center CA PP Conference April 9, 2008 Outline of Presentation What is Treatment Selection? Why use Treatment Selection? Example of the

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engineering Risk Benefit Analysis 1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD.721 RPRA 3. Probability Distributions in RPRA George E. Apostolakis Massachusetts Institute of Technology

More information

Risk and Safety in Civil, Surveying and Environmental Engineering

Risk and Safety in Civil, Surveying and Environmental Engineering Risk and Safety in Civil, Surveying and Environmental Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Contents of Today's Lecture Introduction to structural systems reliability General

More information

57:022 Principles of Design II Midterm Exam #2 Solutions

57:022 Principles of Design II Midterm Exam #2 Solutions 57:022 Principles of Design II Midterm Exam #2 Solutions Part: I II III IV V Total Possible Pts: 20 15 12 16 12 75 PART ONE Indicate "+" if True and "O" if False: _+_a. If a component's lifetime has exponential

More information

Probability Plots. Summary. Sample StatFolio: probplots.sgp

Probability Plots. Summary. Sample StatFolio: probplots.sgp STATGRAPHICS Rev. 9/6/3 Probability Plots Summary... Data Input... 2 Analysis Summary... 2 Analysis Options... 3 Uniform Plot... 3 Normal Plot... 4 Lognormal Plot... 4 Weibull Plot... Extreme Value Plot...

More information

Guide for Mechanistic-Empirical Design

Guide for Mechanistic-Empirical Design Copy No. Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATED PAVEMENT STRUCTURES FINAL DOCUMENT APPENDIX BB: DESIGN RELIABILITY NCHRP Prepared for National Cooperative Highway Research Program

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel.

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel. Chapter 6 1. a. Section 6.1. b. Section 6.3, see also Section 6.2. c. Predictions based on most published sources of reliability data tend to underestimate the reliability that is achievable, given that

More information

LTPP Automated Faulting Measurement

LTPP Automated Faulting Measurement LTPP Automated Faulting Measurement MAHESH AGURLA mahesh.agurla.ctr@dot.gov SEAN LIN sean.lin.ctr@dot.gov Presentation Overview Introduction Research objectives Profile data processing Analysis & comparison

More information

Value of Information Analysis with Structural Reliability Methods

Value of Information Analysis with Structural Reliability Methods Accepted for publication in Structural Safety, special issue in the honor of Prof. Wilson Tang August 2013 Value of Information Analysis with Structural Reliability Methods Daniel Straub Engineering Risk

More information

Load-strength Dynamic Interaction Principle and Failure Rate Model

Load-strength Dynamic Interaction Principle and Failure Rate Model International Journal of Performability Engineering Vol. 6, No. 3, May 21, pp. 25-214. RAMS Consultants Printed in India Load-strength Dynamic Interaction Principle and Failure Rate Model LIYANG XIE and

More information

INTRODUCTION TO PAVEMENT STRUCTURES

INTRODUCTION TO PAVEMENT STRUCTURES INTRODUCTION TO PAVEMENT STRUCTURES A pavement is a structure composed of structural elements, whose function is to protect the natural subgrade and to carry the traffic safety and economically. As a wheel

More information

The Role of Subbase Support in Concrete Pavement Sustainability

The Role of Subbase Support in Concrete Pavement Sustainability The Role of Subbase Support in Concrete Pavement Sustainability TxDOT Project 6037 - Alternatives to Asphalt Concrete Pavement Subbases for Concrete Pavement Youn su Jung Dan Zollinger Andrew Wimsatt Wednesday,

More information

5.1 Transition Probability Matrices

5.1 Transition Probability Matrices Chapter 4: Vibration Covariate PHM Application 87 5.1 Transition Probability Matrices The optimal policy is very sensitive to the choice of covariate bands and it is thus very important to choose these

More information

Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples

Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples 90 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 1, MARCH 2003 Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples N. Balakrishnan, N. Kannan, C. T.

More information

Lecture 3. Conditional distributions with applications

Lecture 3. Conditional distributions with applications Lecture 3. Conditional distributions with applications Jesper Rydén Department of Mathematics, Uppsala University jesper.ryden@math.uu.se Statistical Risk Analysis Spring 2014 Example: Wave parameters

More information

Signal Handling & Processing

Signal Handling & Processing Signal Handling & Processing The output signal of the primary transducer may be too small to drive indicating, recording or control elements directly. Or it may be in a form which is not convenient for

More information

A Driving Simulation Based Study on the Effects of. Road Marking Luminance Contrast on Driving Safety. Yong Cao, Jyh-Hone Wang

A Driving Simulation Based Study on the Effects of. Road Marking Luminance Contrast on Driving Safety. Yong Cao, Jyh-Hone Wang A Driving Simulation Based Study on the Effects of Road Marking Luminance Contrast on Driving Safety Yong Cao, Jyh-Hone Wang Department of Industrial and Manufacturing Engineering University of Rhode Island,

More information

LTPP Automated Faulting Method (AFM)

LTPP Automated Faulting Method (AFM) LTPP Automated Faulting Method (AFM) 25 th Annual Road Profile Users Group Meeting Tuesday, September 17 th, 2013 San Antonio, Texas Mahesh Agurla, MSCE & Sean Lin, PhD. Engineering & Software Consultants,

More information

arxiv: v1 [cs.pf] 27 Mar 2015

arxiv: v1 [cs.pf] 27 Mar 2015 Are Markov Models Effective for Storage Reliability Modelling? arxiv:1503.07931v1 [cs.pf] 27 Mar 2015 Abstract Prasenjit Karmakar Indian Institute of Science Bangalore Continuous Time Markov Chains (CTMC)

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Abstract Repairable system reliability: recent developments in CBM optimization A.K.S. Jardine, D. Banjevic, N. Montgomery, A. Pak Department of Mechanical and Industrial Engineering, University of Toronto,

More information

LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE

LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE Task 4 Report Calibration Bruce Tanquist, Assistant Pavement Design Engineer Minnesota Department of Transportation May 23, 2008 Introduction

More information

Key Words: Lifetime Data Analysis (LDA), Probability Density Function (PDF), Goodness of fit methods, Chi-square method.

Key Words: Lifetime Data Analysis (LDA), Probability Density Function (PDF), Goodness of fit methods, Chi-square method. Reliability prediction based on lifetime data analysis methodology: The pump case study Abstract: The business case aims to demonstrate the lifetime data analysis methodology application from the historical

More information

AASHTO Rigid Pavement Design

AASHTO Rigid Pavement Design AASHTO Rigid Pavement Design Dr. Antonis Michael Frederick University Notes Courtesy of Dr. Christos Drakos University of Florida 1. Introduction Empirical design based on the AASHO road test: Over 200

More information

Semiconductor Reliability

Semiconductor Reliability Semiconductor Reliability. Semiconductor Device Failure Region Below figure shows the time-dependent change in the semiconductor device failure rate. Discussions on failure rate change in time often classify

More information

Truncated Life Test Sampling Plan Under Odd-Weibull Distribution

Truncated Life Test Sampling Plan Under Odd-Weibull Distribution International Journal of Mathematics Trends and Technology ( IJMTT ) Volume 9 Number 2 - July Truncated Life Test Sampling Plan Under Odd-Weibull Distribution G.Laxshmimageshpraba 1, Dr.S.Muthulakshmi

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

These notes will supplement the textbook not replace what is there. defined for α >0

These notes will supplement the textbook not replace what is there. defined for α >0 Gamma Distribution These notes will supplement the textbook not replace what is there. Gamma Function ( ) = x 0 e dx 1 x defined for >0 Properties of the Gamma Function 1. For any >1 () = ( 1)( 1) Proof

More information

Aviation Infrastructure Economics

Aviation Infrastructure Economics Aviation Short Course Aviation Infrastructure Economics October 14-15, 15, 2004 The Aerospace Center Building 901 D St. SW, Suite 850 Washington, DC 20024 Lecture BWI/Andrews Conference Rooms Instructor:

More information

Maintenance free operating period an alternative measure to MTBF and failure rate for specifying reliability?

Maintenance free operating period an alternative measure to MTBF and failure rate for specifying reliability? Reliability Engineering and System Safety 64 (1999) 127 131 Technical note Maintenance free operating period an alternative measure to MTBF and failure rate for specifying reliability? U. Dinesh Kumar

More information

Importance of the Running-In Phase on the Life of Repairable Systems

Importance of the Running-In Phase on the Life of Repairable Systems Engineering, 214, 6, 78-83 Published Online February 214 (http://www.scirp.org/journal/eng) http://dx.doi.org/1.4236/eng.214.6211 Importance of the Running-In Phase on the Life of Repairable Systems Salima

More information

Structural Design of Pavements

Structural Design of Pavements CAIRO UNIVERSITY FACULTY OF ENGINEERING PUBLIC WORKS DEPARTMENT 4 th Year Civil Engineering Highway Engineering Course 2008-2009 Structural Design of Pavements Lecturer Dr. Eng. Omar Osman Asst. Professor

More information

EE 445 / 850: Final Examination

EE 445 / 850: Final Examination EE 445 / 850: Final Examination Date and Time: 3 Dec 0, PM Room: HLTH B6 Exam Duration: 3 hours One formula sheet permitted. - Covers chapters - 5 problems each carrying 0 marks - Must show all calculations

More information

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 15 System Reliability Concepts and Methods William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Chapter 2. 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is

Chapter 2. 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is Chapter 2 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is 0:3 0:0001 0:01 0:005 0:001 0:002 0:0002 0:04 ˆ 0:00009 P(A 1 F) ˆ 0:0001 0:3 ˆ 0:133: 0:00009 Similarly

More information

COST-EFFECTIVENESS AND PERFORMANCE

COST-EFFECTIVENESS AND PERFORMANCE CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. 09-045 UILU-ENG-2009-2016 ISSN: 0197-9191 COST-EFFECTIVENESS AND PERFORMANCE OF OVERLAY SYSTEMS IN ILLINOIS VOLUME 2: GUIDELINES

More information

Reliability analysis of power systems EI2452. Lifetime analysis 7 May 2015

Reliability analysis of power systems EI2452. Lifetime analysis 7 May 2015 Reliability analysis of power systems EI2452 Lifetime analysis 7 May 2015 Agenda Summary of content: Introduction nonreparable/reparable General information about statistical surveys Lifetime data Nonparametric

More information

risk assessment of systems

risk assessment of systems 12735: Urban Systems Modeling Lec. 05 risk assessment of instructor: Matteo Pozzi C 1 C 1 C 2 C 1 C 2 C 3 C 2 C 3 C 3 1 outline definition of system; classification and representation; two state ; cut

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

Slides 8: Statistical Models in Simulation

Slides 8: Statistical Models in Simulation Slides 8: Statistical Models in Simulation Purpose and Overview The world the model-builder sees is probabilistic rather than deterministic: Some statistical model might well describe the variations. An

More information

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations Chapter 5 Statistical Models in Simulations 5.1 Contents Basic Probability Theory Concepts Discrete Distributions Continuous Distributions Poisson Process Empirical Distributions Useful Statistical Models

More information

STATE OF CALIFORNIA DEPARTMENT of TRANSPORTATION

STATE OF CALIFORNIA DEPARTMENT of TRANSPORTATION STATE OF CALIFORNIA DEPARTMENT of TRANSPORTATION DIVISION OF ENGINEERING SERVICES MATERIALS ENGINEERING AND TESTING SERVICES OFFICE OF RIGID PAVEMENT AND STRUCTURAL CONCRETE 59 Folsom Boulevard Sacramento,

More information

1. Reliability and survival - basic concepts

1. Reliability and survival - basic concepts . Reliability and survival - basic concepts. Books Wolstenholme, L.C. "Reliability modelling. A statistical approach." Chapman & Hall, 999. Ebeling, C. "An introduction to reliability & maintainability

More information

Life cycle cost analysis of ageing structural components based on non destructive condition assessment

Life cycle cost analysis of ageing structural components based on non destructive condition assessment Life cycle cost analysis of ageing structural components based on non destructive condition assessment Denys Breysse, Sidi Mohammed Elachachi, Emma Sheils, Franck Schoefs, Alan O connor To cite this version:

More information

Fault Tolerate Linear Algebra: Survive Fail-Stop Failures without Checkpointing

Fault Tolerate Linear Algebra: Survive Fail-Stop Failures without Checkpointing 20 Years of Innovative Computing Knoxville, Tennessee March 26 th, 200 Fault Tolerate Linear Algebra: Survive Fail-Stop Failures without Checkpointing Zizhong (Jeffrey) Chen zchen@mines.edu Colorado School

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

ECONOMIC AND FINANCIAL ANALYSIS

ECONOMIC AND FINANCIAL ANALYSIS Additional Financing of Road Rehabilitation Project (RRP KIR 44281-014) ECONOMIC AND FINANCIAL ANALYSIS 1. Base and project scenarios. Without urgent rehabilitation works, it is expected that sections

More information

Temperature and Humidity Acceleration Factors on MLV Lifetime

Temperature and Humidity Acceleration Factors on MLV Lifetime Temperature and Humidity Acceleration Factors on MLV Lifetime With and Without DC Bias Greg Caswell Introduction This white paper assesses the temperature and humidity acceleration factors both with and

More information

Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution

Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution CMST 21(4) 221-227 (2015) DOI:10.12921/cmst.2015.21.04.006 Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution B. Sadeghpour Gildeh, M. Taghizadeh Ashkavaey Department

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. Copyright 2017 IEEE. Reprinted, with permission, from Sharon L. Honecker and Umur Yenal, Quantifying the Effect of a Potential Corrective Action on Product Life, 2017 Reliability and Maintainability Symposium,

More information

Cyber Physical Power Systems Power in Communications

Cyber Physical Power Systems Power in Communications 1 Cyber Physical Power Systems Power in Communications Information and Communications Tech. Power Supply 2 ICT systems represent a noticeable (about 5 % of total t demand d in U.S.) fast increasing load.

More information

Stochastic Renewal Processes in Structural Reliability Analysis:

Stochastic Renewal Processes in Structural Reliability Analysis: Stochastic Renewal Processes in Structural Reliability Analysis: An Overview of Models and Applications Professor and Industrial Research Chair Department of Civil and Environmental Engineering University

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics 1. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

The random counting variable. Barbara Russo

The random counting variable. Barbara Russo The random counting variable Barbara Russo Counting Random Variable } Until now we have seen the point process through two sets of random variables } T i } X i } We introduce a new random variable the

More information

Continuous case Discrete case General case. Hazard functions. Patrick Breheny. August 27. Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21

Continuous case Discrete case General case. Hazard functions. Patrick Breheny. August 27. Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21 Hazard functions Patrick Breheny August 27 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21 Introduction Continuous case Let T be a nonnegative random variable representing the time to an event

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

Condition Based Maintenance Optimization Considering Improving Prediction Accuracy

Condition Based Maintenance Optimization Considering Improving Prediction Accuracy Condition Based Maintenance Optimization Considering Improving Prediction Accuracy Zhigang Tian a,, Bairong Wu a,b, Mingyuan Chen b a Concordia Institute for Information Systems Engineering, Concordia

More information

Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data

Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data Feng-feng Li,2, Gang Xie,2, Yong Sun,2, Lin Ma,2 CRC for Infrastructure and

More information

Numerical Methods Lecture 7 - Statistics, Probability and Reliability

Numerical Methods Lecture 7 - Statistics, Probability and Reliability Topics Numerical Methods Lecture 7 - Statistics, Probability and Reliability A summary of statistical analysis A summary of probability methods A summary of reliability analysis concepts Statistical Analysis

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 3: Fault-Tolerance and Modelling Contents Reliability: Basic Mathematical Model Example Failure Rate Functions Probabilistic Structural-Based Modeling: Part 1 Maintenance

More information

PBEE Design Methods KHALID M. MOSALAM, PROFESSOR & SELIM GÜNAY, POST-DOC UNIVERSITY OF CALIFORNIA, BERKELEY

PBEE Design Methods KHALID M. MOSALAM, PROFESSOR & SELIM GÜNAY, POST-DOC UNIVERSITY OF CALIFORNIA, BERKELEY PBEE Design Methods KHALID M. MOSALAM, PROFESSOR & SELIM GÜNAY, POST-DOC UNIVERSITY OF CALIFORNIA, BERKELEY Outline 1.Introduction 2. 3.Non optimization-based methods 2 Introduction Courtesy of Prof. S.

More information

Hybrid Censoring; An Introduction 2

Hybrid Censoring; An Introduction 2 Hybrid Censoring; An Introduction 2 Debasis Kundu Department of Mathematics & Statistics Indian Institute of Technology Kanpur 23-rd November, 2010 2 This is a joint work with N. Balakrishnan Debasis Kundu

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

ECONOMIC AND FINANCIAL ANALYSIS

ECONOMIC AND FINANCIAL ANALYSIS Road Rehabilitation Project (RRP KIR 44281) ECONOMIC AND FINANCIAL ANALYSIS 1. Base and project alternatives. The base case against which changes in road provider and road user costs are compared for the

More information

National Defense Industrial Association Test and Evaluation Conference March 2, 2010

National Defense Industrial Association Test and Evaluation Conference March 2, 2010 Using Cost and Schedule Estimates Guided by Design of Experiments Process to Plan Schedule- Optimal or Cost-Optimal Test Designs for Integrated Development Testing and Operational Testing National Defense

More information