API th Edition Ballot Item 6.5 Work Item 41 Flow Induced Vibration Guidance

Size: px
Start display at page:

Download "API th Edition Ballot Item 6.5 Work Item 41 Flow Induced Vibration Guidance"

Transcription

1 Background Work Item 41: API 51 7 th Edition Ballot Item 6.5 Work Item 41 Flow Induced Vibration Guidance # Source Section Comment Proposed Change Volunteer 41 5/14/14 to M. Porter I would like to propose to add "Flow Induced Vibration (FIV)" in the next API51 edition. In my opinion the new edition will include the basic phenomena of FIV for both of beam and shell mode vibrations of the pipe. EI guideline will be referred for the beam mode vibration and Chiyoda paper will be referred for the shell mode vibration. Recently I have a closed relation with Rob Swindell, key member of EI guideline, and he agreed with me to support to prepare the draft of this new part on FIV. Hisao Izuchi; Tom Bevilacqua; Georges Melhem; Eli Vatland Johansen and Jim Cowling to review Supporting presentation from API 51 Fall 015 meeting is given following the proposed changes.

2 Proposed Modifications to API 51 6 th Edition (New non-mandatory Annex F): Annex F (Informative) Flow Induced Vibration Pressure-relieving systems are usually sized at relatively high velocities and turbulence energies become enlarged after the tees, reducers, bends, valves, etc. due to vortex formations with pressure fluctuations. The pressure fluctuations become larger as the fluid velocities become higher and their frequency spectrum have broadband characteristic with peak at lower frequency region. Piping vibration may occur at relatively low frequencies due to these pressure fluctuations caused by turbulence relating to insufficient stiffness of the piping system and consequently this may have resulted in fatigue failure of the piping system. This phenomenon is called flow induced vibration. In particular the turbulence energy becomes extremely enlarged especially just after the expansion at laterals or reducers (enlargements) [56]. Common examples of the mitigation options to prevent piping fatigue failure due to flow induced vibration include but not limited to the following [56], [X1], [X] : a) Reducing the velocity by enlarging the pipe diameter. b) Adding piping supports and/or increasing wall thickness. References [56] Energy Institute, Guidelines for the avoidance of vibration induced fatigue in process pipework, Second Edition, 008, ISBN [X1] M. Nishiguchi, H. Izuchi, I. Hayashi & G. Minorikawa, Flow induced vibration of piping downstream of tee connection, Proceedings 10th International Conference on Flow-Induced Vibration, July, 01 [X] M. Nishiguchi, H. Izuchi, I. Hayashi & G. Minorikawa, Investigation of characteristic of flow induced vibration caused by turbulence relating to acoustically induced vibration, Proceedings ASME 014 Pressure Vessels & Piping Conference, July 014

3 Task Force on API51 API Fall Meeting 015 Flow Induced Vibration (FIV) Caused by Turbulence Hisao Izuchi Chiyoda Corporation Chiyoda Corporation 015, All Rights Reserved. Contents 1. Phenomena of FIV. Evaluation Method on FIV 3.Proposed Draft for API51 1

4 Increase of FIV Failure Possibility Increase of plant capacity Flow rates of pressure reliving system tend to increase Pipe diameters tend to increase Economic design of piping system Velocities of flare piping tend to increase Wall thicknesses of flare piping tend to decrease Exciting Force Increases + Piping Stiffness Decreases Relatively AIV (Acoustically Induced Vibration) FIV (Flow Induced Vibration caused by Turbulence) Instruction of FIV should be added into API51 Failure Caused by FIV High Velocity = High Turbulence = Large Exciting Force & Low Stiffness of Piping Sever Piping Vibration (Beam Mode) Fatigue Failure Piping failure example caused by FIV (presented by E. Zamejc, API Spring Meeting, 006) 3

5 Mechanism of FIV Norton and Karczub* explain as follows: (1) An intense non-propagating pressure field is generated in the immediate vicinity of the disturbances such as those produced by valves, bends, junctions, and other pipe fittings. () This fluctuating pressure field decays exponentially with distance from the disturbance, falling off to an essentially constant asymptotic state within a distance about ten diameters. This locally generated non-propagating pressure fluctuation could be source of the FIV. * M. P. Norton and D. G. D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, nd Edition, Cambridge, Pressure Fluctuation after 90deg Miter Bend p 10-1 M=0. X M=0.40 M=0.50 Large pressure fluctuation at low frequency region Undisturbed fully developed turbulent flow in a straight pipe at M= Undistributed fully-developed turbulent flow p p U 0 a i /U 0 X x / d q 0 q 0 a i 1 U f 0 x : axis of pipe downstream of bend d : internal diameter of pipe f : density of fluid in pipe U 0 : center-line velocity at X=5.8 p : wall pressure fluctuation a i : internal pipe radius : radian frequency M : Mach Number M. K. Bull and M. P. Norton, On the Hydrodynamic and Acoustic Wall Pressure Fluctuations in Turbulent Pipe Flow due to 90deg Miter Bend, J. Sound and Vibration, pp , Vol76-4,

6 Pressure Fluctuation after 90deg Miter Bend Pressure fluctuation increases due to the effect of miter bend. Max. non-dimensional PSD of pressure fluctuation p becomes order of 10-1 This PSD fo fluctuating pressure field rapidly decays with distance at 10 diameter. Max. non-dimensional pressure fluctuation p becomes order of 10-3 at X = This decreased fluctuating pressure field (Max p of 10-3 ) is still higher than that of undisturbed fully developed turbulent flow in a straight pipe (Max p of 10-5 ). Pressure fluctuations just after the disturbances such as valve, tee, miter bend etc. become the source of FIV (Broadband and random excitation with relatively low frequency) 6 Pressure Fluctuation after Expander, Miter Bend, etc. 90 deg. Miter bend and 1: expander would be sources FIV. (90 deg.) Also Combining tee with small branch area ratio to main line could be source of FIV similar to 1: expander. J. A. Mann, D. Eilers and A. C. Fagerlund, Predicting pipe internal sound field and pipe wall vibration using statistical energy approaches for AIV, Inter-Noise 01 7

7 Pressure Fluctuation at Combining Tee Results of CFD Analysis with HPC (High Performance Computer) Pressure Distribution at Centre Cross Section Periodic separation vortex structure moves from junction edge to bottom of the pipe and dissipates at downstream. 8 Pressure Fluctuation at Combining Tee Results of CFD Analysis with HPC (High Performance Computer) Pressure Distribution at Wall Wall Pressure [Pa] * Gray color shows Iso-surface of low pressure The separation vortex structure causes large pressure fluctuation at the pipe wall around the impingement point. 9

8 Pressure Fluctuation at Combining Tee Results of CFD Analysis with HPC (High Performance Computer) 1D Downstream D Downstream D Impingement Point 1D Downstream D Downstream 10 Screening Method in EI Guidelines Guidelines for the Avoidance of Vibration Induced Fatigue Failure in Process Pipework published by Energy Institute, 008 (EI Guidelines) offer a screening method of FIV failure risk for beam mode pipe vibration, however this method is only for screening purpose and not suitable for detailed design. In EI Guidelines, the following screening method (outline) is introduced: (1) Calculate LOF (Likelihood of Failure) V LOF FVF FV Fv: FIV Factor (Function of Piping Flexibility, D and D/t) FVF: Fluid Viscosity Factor for Gas There are four classes for piping flexibility, Stiff (14-16Hz), Medium Stiff (7Hz), Medium (4Hz) and Flexible (1Hz). Frequency in the parenthesis is typical fundamental natural frequency. LOF LOF 0.5 () Main line shall be redesigned. Small core connection should be assessed. 11

9 Chiyoda FIV Study Chiyoda executed experimental study of FIV just after a combined tee. Backgrounds of study are (1) Large amount of flow in flare piping system () Economic piping design = Relatively thinner pipe wall thickness Increase of FIV risk Generally flare piping system is stiff for beam mode vibration corresponding to adequate pipe support span and large diameter. However, the shell mode vibration of the pipe would increase corresponding to relatively larger D/t similar to AIV. 1 Chiyoda FIV Study / Field Measurement Power Spectral Density of Circumferential Stress Piping Stress Strain 計測結果 66Hz (3rd mode) Frequency [Hz] (a) Power Spectral Density of Piping Stress (corresponding to circumferential strain) Circumferential Stress (c) Time History of Piping Strain Axial Stress Time Time[sec] 9' 0 11' 8' 1' 7' 13' 6' 5' 4' 14' 15' 16' 3' 17' ' 18' (b) Distribution of Vibration Displacement (3rd Shell Mode at 66Hz) Vibration stress of shell mode is higher than that of beam mode. H. Izuchi, Piping Integrity Design for Flare System on Acoustically Induced Vibration and Flow Induced Vibration, 0th World Petroleum Congress,

10 Chiyoda FIV Study / Experiment Facility 15 to 30 bara 45 and 90 deg. TP: Pressure Sensor TPA: Pressure Fluctuation Sensor M. Nishiguchi, H. Izuchi and G. Minorikawa, Investigation of Characteristic of Flow Induced Vibration Caused by Turbulence Relating to Acoustically Induced Vibration, ASME PVP Chiyoda FIV Study / Vibration Index From the fundamental random vibration characteristic the following vibration index can be introduced to express the magnitude of the vibration severity. F : Force m : Mass of Pipe f n : Fundamental Natural Frequency of Pipe g : Density of Fluid A 1 : Branch Flow Area v : Fluid Velocity at Branch p : Pressure Discontinuity at Branch (=0 at Subsonic Flow) r p : Density of Pipe D : Main Pipe Diameter : Wall thickness of Main Pipe t n 15

11 Chiyoda FIV Study / Experiment Results (90deg Tee) ] Proposed vibration index is quite effective to express the magnitude of vibration stress for wide range of piping specifications (branch area ratio and wall thickness) and process condition including choking condition at branch pipe. 16 Chiyoda FIV Study / Experiment Results (45/90deg Tee) Proposed vibration index is useful for both of 45 and 90 degree tees. ] The Vibration stress of the 90 degrees tee is approximately 1.3 times the vibration stress of the 45 degrees tee.. 17

12 Investigation Summary Failure risk of flare piping system due to FIV tends to increase corresponding to the increase of relieving flow rate. FIV occurs at just after the disturbances (valve, tee, miter bend etc.) which generate turbulence with broadband and random excitation characteristics with relatively low frequency. Both beam and shell mode vibrations could occur relating to lower stiffness of the piping system. Beam mode vibration would occur in case of insufficient support of the piping system. A screening method to evaluate FIV risk is described in EI Guidelines, however this method is still conservative for gas service after modification taking the dynamic viscosity effect into account. Vibration index introduced by Chiyoda is useful to evaluate the magnitude of vibration stress for shell mode vibration caused by FIV. 18 Draft for API 51 New Edition / Policy Design method would be difficult to be defined in API 51 though there are several publications on FIV. Caution of FIV should be described in API 51 because there would be piping failure risk caused by FIV. The proposed policy for API 51 description is to explain the following items: (1) Mechanics and characteristics of FIV () Key design points for FIV with referred publications. 19

13 Draft for API 51 New Edition (1/) 5.5.X Flow Induced Vibration Pressure-relieving systems are usually sized at relatively high velocities and turbulence energies become enlarged after the tees, reducers, bends, valves, etc. due to vortex formations with pressure fluctuations. The pressure fluctuations become larger as the fluid velocities become higher and their frequency spectrum have broadband characteristic with peak at lower frequency region. Piping vibration of beam mode may occur at relatively low frequency due to these pressure fluctuation caused by turbulence relating to insufficient stiffness of the piping system and consequently this may have resulted in fatigue failure of the piping system. This phenomenon is called flow induced vibration [56]. In particular the turbulence energy becomes extremely enlarged especially for the tail pipe ends just before the expansions at laterals or reducers (enlargements). In this case circumferential vibration in the pipe wall can occur with relatively low frequency in addition to the beam mode vibration relating to insufficient stiffness of the piping system for circumferential direction similar to high-frequency vibration caused by the noise source (see 5.5.1) [X1], [X].. 0 Draft for API 51 New Edition (/) Common examples of the mitigation options to prevent piping fatigue failure due to flow induced vibration include but are not limited to the following [56], [X1], [X]. a) Reducing the velocity by enlarging the pipe diameter b) Adding piping supports to mitigate the piping vibration of beam mode. c) Increasing wall thickness to mitigate the circumferential vibration in the pipe wall References [56] Energy Institute, Guidelines for the avoidance of vibration induced fatigue in process pipework, Second Edition, 008, ISBN [X1] M. Nishiguchi, H. Izuchi, I. Hayashi & G. Minorikawa, Flow induced vibration of piping downstream of tee connection, Proceedings 10th International Conference on Flow-Induced Vibration, July, 01 [X] M. Nishiguchi, H. Izuchi, I. Hayashi & G. Minorikawa, Investigation of characteristic of flow induced vibration caused by turbulence relating to acoustically induced vibration, Proceedings ASME 014 Pressure Vessels & Piping Conference, July 014 1

14 Future Technical Development for AIV and FIV AIV and FIV are quite similar vibration phenomena caused by random pressure fluctuation in the pipe. The difference of AIV and FIV are the excitation sources. The sources of AIV and FIV are shock wave generated by restriction device and turbulence generated by disturbance such as tee, expander, respectively. The region of FIV is limited at the vicinity of the generating point. On the other hand the region of AIV is quite wide area at the downstream of the restriction devices. This difference in the region is introduced from the dissipation characteristics of AIV and FIV. Most of failure locations due to AIV is just downstream of combining tee as shown in Carucci and Mueller paper. FIV risk becomes also high at this combined tee downstream as shown in the next slide. This means the comprehensive evaluation method is desired to be developed taking both effects of AIV and FIV into accounts. This activity will be done in the AIV JIP organized by Energy Institute. C-M Data Review with FIV Evaluation FIV Vibration Index (Vn) Failure No Failure FIV Vibration Index (Vn) Failure No Failure Pipe Diameter (m) , , ,000 Flow Rate (kg/h) As shown above, FIV indexes for failure case are apparently higher than those of no failure case. This suggests that the role of FIV effect could not be ignored in AIV evaluation. 3

15 Thank you Chiyoda Corporation 015, All Rights Reserved. 4

Fatigue Life Estimation of Piping System for Evaluation of Acoustically Induced Vibration (AIV)

Fatigue Life Estimation of Piping System for Evaluation of Acoustically Induced Vibration (AIV) Fatigue Life Estimation of Piping System for Evaluation of Acoustically Induced Vibration (AIV) Hisao IZUCHI 1 ; Masato NISHIGUCHI ; Gary Y. H. LEE 3 1, Chiyoda Corporation, Japan 3 Shell Global Solutions,

More information

Mitigations to Flow Induced Vibration (FIV) in Control Valve Piping System using Visco-Elastic Dampers & Neoprene Pads

Mitigations to Flow Induced Vibration (FIV) in Control Valve Piping System using Visco-Elastic Dampers & Neoprene Pads IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 07 January 2017 ISSN (online): 2349-784X Mitigations to Flow Induced Vibration (FIV) in Control Valve Piping System using

More information

Identification and Prediction of Piping System Noise

Identification and Prediction of Piping System Noise Minneapolis, Minnesota NOISE-CON 2005 2005 October 17-19 Identification and Prediction of Piping System Noise Allen Fagerlund Denis G. Karczub Tucker Martin Fred W. Catron SVT-Engineering Consultants Fisher

More information

Centrifugal Compressor Root Cause Analysis. (Pulsation and Vibration Issues)

Centrifugal Compressor Root Cause Analysis. (Pulsation and Vibration Issues) Centrifugal Compressor Root Cause Analysis and Case Study (Pulsation and Vibration Issues) Gufran Noor, P.Eng., General Manager, Field Services and Bill Eckert, P.Eng., Ph.D., Principal Engineer AGENDA

More information

Smallbore. Definition of a Cutoff Natural Frequency for. Jim McGhee, Xodus Group

Smallbore. Definition of a Cutoff Natural Frequency for. Jim McGhee, Xodus Group Definition of a Cutoff Natural Frequency for Smallbore Pipework Connections Jim McGhee, Xodus Group A primary cause of vibration induced fatigue failures of smallbore connections in process piping systems

More information

FIV INFLUENCE BEND RADIUS ON MULTIPHASE FLOW INDUCED FORCES ON A BEND STRUCTURE

FIV INFLUENCE BEND RADIUS ON MULTIPHASE FLOW INDUCED FORCES ON A BEND STRUCTURE Proceedings of the 9th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, Flow-Induced Vibration & Noise July 8-11, 2018, Toronto, Ontario, Canada FIV2018-91 INFLUENCE BEND

More information

THERMOWELL VIBRATION INVESTIGATION AND ANALYSIS

THERMOWELL VIBRATION INVESTIGATION AND ANALYSIS THERMOWELL VIBRATION INVESTIGATION AND ANALYSIS Michael A. Porter Dynamic Analysis 815 Stratford Road Lawrence, Kansas 66049 785-843-3558 mike@dynamicanalysis.com www.dynamicanalysis.com Dennis H. Martens

More information

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants , June 30 - July 2, 2010, London, U.K. Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants R. Mahmoodi, M. Shahriari, R. Zarghami, Abstract In nuclear power plants, loss

More information

Experimental Study and Analysis of Flow Induced Vibration in a pipeline

Experimental Study and Analysis of Flow Induced Vibration in a pipeline Experimental Study and Analysis of Flow Induced Vibration in a pipeline R.Veerapandi a G. Karthikeyan b Dr. G. R.Jinu c R. Kannaiah d a Final Year M.E(CAD),Regional Centre of Anna University,Tirunelveli-629004

More information

Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System

Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System

More information

OMAE FLUID-STRUCTURE INTERACTION MODELING OF SUBSEA JUMPER PIPE

OMAE FLUID-STRUCTURE INTERACTION MODELING OF SUBSEA JUMPER PIPE Proceedings of the ASME 2014 33 rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014 June 8-13, 2014, San Francisco, CA USA OMAE2014-24070 FLUID-STRUCTURE INTERACTION MODELING

More information

ISO INTERNATIONAL STANDARD. Acoustics Acoustic insulation for pipes, valves and flanges

ISO INTERNATIONAL STANDARD. Acoustics Acoustic insulation for pipes, valves and flanges INTERNATIONAL STANDARD ISO 15665 First edition 2003-08-15 Acoustics Acoustic insulation for pipes, valves and flanges Acoustique Isolation acoustique des tuyaux, clapets et brides Reference number ISO

More information

Jumper Analysis with Interacting Internal Two-phase Flow

Jumper Analysis with Interacting Internal Two-phase Flow Jumper Analysis with Interacting Internal Two-phase Flow Leonardo Chica University of Houston College of Technology Mechanical Engineering Technology March 20, 2012 Overview Problem Definition Jumper Purpose

More information

TRI-AXIAL SHAKE TABLE TEST ON THE THINNED WALL PIPING MODEL AND DAMAGE DETECTION BEFORE FAILURE

TRI-AXIAL SHAKE TABLE TEST ON THE THINNED WALL PIPING MODEL AND DAMAGE DETECTION BEFORE FAILURE Proceedings of the ASME 21 Pressure Vessels & Piping Division / K-PVP Conference PVP21 July 18-22, 21, Bellevue, Washington, USA PVP21-25839 TRI-AXIAL SHAKE TABLE TEST ON THE THINNED WALL PIPING MODEL

More information

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (1)

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (1) Research Paper: Thombare et al., 2012: Pp. 10-14 FLOW INDUCED VIBRATION ANALYSIS OF TEMA J-TYPE U-TUBE SHELL AND TUBE HEAT EXCHANGER Thombare, T.R., Kapatkar, V.N*., Utge, C.G., Raut A.M and H.M. Durgawale

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 18437-1 First edition 2012-08-15 Mechanical vibration and shock Characterization of the dynamic mechanical properties of visco-elastic materials Part 1: Principles and guidelines

More information

4. Objectives of Research work

4. Objectives of Research work 4. Objectives of Research work 4.1 Objectives of Study: The design of bellows is challenging looking to varieties of applications and evaluation of stresses is further difficult to approximate due to its

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.0 VIBRATIONS OF FLAT

More information

Multi-source Aeroacoustic Noise Prediction Method

Multi-source Aeroacoustic Noise Prediction Method Multi-source Aeroacoustic Noise Prediction Method Jonathan SCOTT CFD Engineer 03/12/2013 1 Introduction Trend to reduce engine displacement while increasing break power by turbo charging engines Traditionally

More information

Fundamentals of noise and Vibration analysis for engineers

Fundamentals of noise and Vibration analysis for engineers Fundamentals of noise and Vibration analysis for engineers M.P.NORTON Department of Mechanical Engineering, University of Western Australia CAMBRIDGE UNIVERSITY PRESS Preface xii Acknowledgements xv Introductory

More information

Flow-Induced Vibration Modeling

Flow-Induced Vibration Modeling Flow-Induced Vibration Modeling Bin Zhu, Hector H. Mireles, and Aqib Qureshi Baker Hughes Abstract: The current work pertains to a re-closeable annular flow valve oil completion tool (X- AFV) with high

More information

Review on Vortex-Induced Vibration for Wave Propagation Class

Review on Vortex-Induced Vibration for Wave Propagation Class Review on Vortex-Induced Vibration for Wave Propagation Class By Zhibiao Rao What s Vortex-Induced Vibration? In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting

More information

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load A. Ravi Kiran, M. K. Agrawal, G. R. Reddy, R. K. Singh, K. K. Vaze, A. K. Ghosh and H. S. Kushwaha Reactor Safety Division, Bhabha

More information

MOOC QP Set 2 Principles of Vibration Control

MOOC QP Set 2 Principles of Vibration Control Section I Section II Section III MOOC QP Set 2 Principles of Vibration Control (TOTAL = 100 marks) : 20 questions x 1 mark/question = 20 marks : 20 questions x 2 marks/question = 40 marks : 8 questions

More information

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS Advanced Materials Development and Performance (AMDP2011) International Journal of Modern Physics: Conference Series Vol. 6 (2012) 343-348 World Scientific Publishing Company DOI: 10.1142/S2010194512003418

More information

EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision B

EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision B EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision B By Tom Irvine February 20, 2001 Email: tomirvine@aol.com Introduction A particular engineering design problem is to determine the equivalent static

More information

Acoustic Resonance in Main Steam Line Side Branches

Acoustic Resonance in Main Steam Line Side Branches Acoustic Resonance in Main Steam Line Side Branches Nuclear Science and Technology Symposium (NST2016) Helsinki, Finland November 2-3, 2016 Jens Conzen, Fauske & Associates, LLC (FAI) 16W070 83 rd Street

More information

Sizing Thermowell according to ASME PTC 19.3

Sizing Thermowell according to ASME PTC 19.3 Products Solutions Services Sizing Thermowell according to ASME PTC 19.3 AIS 2015 17th September Endress+Hauser Pessano c. Bornago Slide 1 SUMMARY Why is stress thermowell calculation necessary? Loading

More information

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE Proceedings of FEDSM2007: 5 th Joint ASME/JSME Fluids Engineering Conference July 30-August 2, 2007, San Diego, CA, USA FEDSM2007-37563 COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

An Overview of Impellers, Velocity Profile and Reactor Design

An Overview of Impellers, Velocity Profile and Reactor Design An Overview of s, Velocity Profile and Reactor Design Praveen Patel 1, Pranay Vaidya 1, Gurmeet Singh 2 1 Indian Institute of Technology Bombay, India 1 Indian Oil Corporation Limited, R&D Centre Faridabad

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-11011 SUBSEA JUMPERS VIBRATION ASSESSMENT Dhyan Deka

More information

J. C. Wachel Manager of Engineering Engineering Dynamics Incorporated

J. C. Wachel Manager of Engineering Engineering Dynamics Incorporated PIPING VIBRATION AND STRESS by J. C. Wachel Manager of Engineering Engineering Dynamics Incorporated San ~ntonio, Texas J. C. Wachel holds an MSME degree from the University of Texas. He has been with

More information

F=KX. How CAESAR II formulates the global stiffness matrix

F=KX. How CAESAR II formulates the global stiffness matrix F=KX How CAESAR II formulates the global stiffness matrix Agenda Math basics Comparing matrix math to CAESAR II Single pipe element Single bend A two pipe system A pipe-bend-pipe system A tee Other considerations

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research  e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:349-9745, Date: 8-30 April, 016 Numerical Analysis of Fluid Flow Induced Vibration of Pipes A Review Amol E

More information

Thermoacoustic Instabilities Research

Thermoacoustic Instabilities Research Chapter 3 Thermoacoustic Instabilities Research In this chapter, relevant literature survey of thermoacoustic instabilities research is included. An introduction to the phenomena of thermoacoustic instability

More information

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls Fluid Structure Interaction V 85 Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls K. Fujita Osaka City University,

More information

International Journal of Advanced Engineering and Management Research Vol. 2 Issue 3, 2017

International Journal of Advanced Engineering and Management Research Vol. 2 Issue 3, 2017 International Journal of Advanced Engineering and Management Research Vol. 2 Issue 3, 2017 www.ijaemr.com ISSN: 2456-3676 ANALYSIS OF AERODYNAMIC NOISE OF ELBOW PIPE AT WELL SITE Yang Lei,Wang Shengjun,

More information

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Carl Howard School of Mechanical Engineering, University of Adelaide, South Australia, Australia ABSTRACT A transmission

More information

Measurement of fluid flow in closed conduits

Measurement of fluid flow in closed conduits BRITISH STANDARD BS 1042-2.2: 1983 ISO 7145:1982 Measurement of fluid flow in closed conduits Part 2: Velocity area methods Section 2.2 Method of measurement of velocity at one point of a conduit of circular

More information

Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver

Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver arcus Timgren 1 1 DYNAmore Nordic AB, Linköping, Sweden 1 Introduction Flow-induced vibrations, (FIV), is a terminology that

More information

Aeroacoustic simulation of automotive ventilation outlets

Aeroacoustic simulation of automotive ventilation outlets Aeroacoustic simulation of automotive ventilation outlets J.-L. Adam a, D. Ricot a, F. Dubief a and C. Guy b a Renault SAS, 1 avenue du golf, 78288 Guyancourt, France b Ligeron, Les Algorithmes Bâtiment

More information

Fluid Structure Interaction Analysis of Two-Phase Flow in an M-shaped Jumper. Star Global Conference University of Houston

Fluid Structure Interaction Analysis of Two-Phase Flow in an M-shaped Jumper. Star Global Conference University of Houston Fluid Structure Interaction Analysis of Two-Phase Flow in an M-shaped Jumper Star Global Conference 2012 University of Houston College of Technology Mechanical Engineering Technology Leonardo Chica January

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate On the aeroacoustic tonal noise generation mechanism of a sharp-edged plate Danielle J. Moreau, Laura A. Brooks and Con J. Doolan School of Mechanical Engineering, The University of Adelaide, South Australia,

More information

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university cissyvp@gmail.com Jancy Rose K Scientist/Engineer,VSSC, Thiruvananthapuram, India R Neetha

More information

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 83-90 Research India Publications http://www.ripublication.com/aasa.htm Studies on the Transition of the Flow

More information

Simplified Method for Mechanical Analysis of Safety Class 1 Piping

Simplified Method for Mechanical Analysis of Safety Class 1 Piping Simplified Method for Mechanical Analysis of Safety Class 1 Piping ZHANG Zheng-ming *, WANG Min-zhi, HE Shu-yan Division of Reactor Structure & Mechanics, Institute of Nuclear Energy Technology, Tsinghua

More information

Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach

Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach Research Article Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach Advances in Mechanical Engineering 2016, Vol.

More information

Aerodynamic Noise Simulation Technology for Developing Low Noise Products

Aerodynamic Noise Simulation Technology for Developing Low Noise Products Aerodynamic Noise Simulation Technology for Developing Noise Products KANEKO, Kimihisa MATSUMOTO, Satoshi YAMAMOTO, Tsutomu ABSTRACT The size reduction trend of electric power equipment causes increased

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

OMAE MODELLING RISERS WITH PARTIAL STRAKE COVERAGE

OMAE MODELLING RISERS WITH PARTIAL STRAKE COVERAGE Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June July 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49817 MODELLING RISERS WITH PARTIAL

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

DYNAMIC STRESS MEASUREMENT OF CENTRIFUGAL COMPRESSOR IMPELLER AND STUDY FOR STRENGTH CRITERIA BASED ON CORRELATION BY UNSTEADY CFD

DYNAMIC STRESS MEASUREMENT OF CENTRIFUGAL COMPRESSOR IMPELLER AND STUDY FOR STRENGTH CRITERIA BASED ON CORRELATION BY UNSTEADY CFD DYNAMIC STRESS MEASUREMENT OF CENTRIFUGAL COMPRESSOR IMPELLER AND STUDY FOR STRENGTH CRITERIA BASED ON CORRELATION BY UNSTEADY CFD by Atsushi Higashio Senior Engineer Hiroyuki Yamashita Research Engineer

More information

Acoustic Impact of Fire Suppression Nozzles

Acoustic Impact of Fire Suppression Nozzles Acoustic Impact of Fire Suppression Nozzles Sudarshan Koushik, Duane McCormick, Changmin Cao, May Corn United Technologies Research Center, E. Hartford, Connecticut, U.S.A. Abstract The acoustic impact

More information

Note to reviewers: See next page for basis for the change shown on this page. L-3160 TANGENTIAL CONTACT BETWEEN FLANGES OUTSIDE THE BOLT CIRCLE

Note to reviewers: See next page for basis for the change shown on this page. L-3160 TANGENTIAL CONTACT BETWEEN FLANGES OUTSIDE THE BOLT CIRCLE ASME BPVC.III.A-2017 ð17þ L-3160 TANGENTIAL CONTACT BETWEEN FLANGES OUTSIDE THE BOLT CIRCLE The design procedure is based on the assumption that the flanges are in tangential contact at their outside diameter

More information

BUTT SPLICE HINGING. KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated

BUTT SPLICE HINGING. KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated BUTT SPLICE HINGING BY KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated Introduction Splicing is a process used to join the tail of an expiring roll to the start

More information

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Proceedings of Acoustics 2013 Victor Harbor Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Carl Howard School of Mechanical Engineering, University of Adelaide, South Australia,

More information

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow AA210A Fundamentals of Compressible Flow Chapter 13 - Unsteady Waves in Compressible Flow The Shock Tube - Wave Diagram 13.1 Equations for irrotational, homentropic, unsteady flow ρ t + x k ρ U i t (

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

Vibration based Fatigue Damage Assessment of Cantilever Beams

Vibration based Fatigue Damage Assessment of Cantilever Beams 5 th National Conference on Machines and Mechanisms NaCoMM-8 Vibration based Fatigue Damage Assessment of Cantilever Beams N. Harish Chandra, A.S. Sekhar Abstract This paper explores to relate total fatigue

More information

W-8 Inlet In-duct Array Evaluation

W-8 Inlet In-duct Array Evaluation https://ntrs.nasa.gov/search.jsp?r=2184548 218-9-16T15:19:18+:Z National Aeronautics and Space Administration W-8 Inlet In-duct Array Evaluation Rick Bozak NASA Glenn Research Center Acoustics Technical

More information

INTERNATIONAL OIML D 25 DOCUMENT. Vortex meters used in measuring systems for fluids ORGANISATION INTERNATIONALE INTERNATIONAL ORGANIZATION

INTERNATIONAL OIML D 25 DOCUMENT. Vortex meters used in measuring systems for fluids ORGANISATION INTERNATIONALE INTERNATIONAL ORGANIZATION INTERNATIONAL OIML D 25 DOCUMENT Edition 1996 (E) Vortex meters used in measuring systems for fluids Compteurs à vortex utilisés dans les ensembles de mesurage de fluides OIML D 25 Edition 1996 (E) ORGANISATION

More information

Guidelines for the Installation of SYGEF Pipes, Fittings and Valves

Guidelines for the Installation of SYGEF Pipes, Fittings and Valves Guidelines for the Installation of SYGEF Pipes, Fittings and Valves Calculation of Length Changes Length changes which occur in SYGEF can be calculated in the usual manner, taking into consideration the

More information

NORTH SEA FLOW MEASUREMENT WORKSHOP 2004 In. St Andrews, Scotland

NORTH SEA FLOW MEASUREMENT WORKSHOP 2004 In. St Andrews, Scotland NORTH SEA FLOW MEASUREMENT WORKSHOP 2004 In St Andrews, Scotland From the 26 th to 28 th October, 2004 Tests of the V-Cone Flow Meter at Southwest Research Institute and Utah State University in Accordance

More information

Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler

Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler Hyuk-Min Kwon 1 ; Chi-Hoon Cho 2 ; Heui-Won Kim 3 1,2,3 Advanced Technology Institute, Hyundai Heavy Industries, Co.,

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

CWR track vibration characteristics varying with the change of supporting condition

CWR track vibration characteristics varying with the change of supporting condition Computers in Railways XIII 745 CWR track vibration characteristics varying with the change of supporting condition L. Li & Y. Luo Railway and Urban Mass Transit Research Institute, Tongji University, China

More information

VIBRATION ANALYSIS OF AN AUTOMOTIVE SILENCER

VIBRATION ANALYSIS OF AN AUTOMOTIVE SILENCER VIBRATION ANALYSIS OF AN AUTOMOTIVE SILENCER K. R. Gadre PG Student, Department Mechanical Engg., Sinhgad College of Engineering, Pune T. A. Jadhav Associate Professor, Department Mechanical Engg, Sinhgad

More information

1917. Numerical simulation and experimental research of flow-induced noise for centrifugal pumps

1917. Numerical simulation and experimental research of flow-induced noise for centrifugal pumps 1917. Numerical simulation and experimental research of flow-induced noise for centrifugal pumps Xiao-ping Rui 1, Yang Zhao 2 1 College of Resources and Environment, University of Chinese Academy of Sciences,

More information

The sound power output of a monopole source in a cylindrical pipe containing area discontinuities

The sound power output of a monopole source in a cylindrical pipe containing area discontinuities The sound power output of a monopole source in a cylindrical pipe containing area discontinuities Wenbo Duan, Ray Kirby To cite this version: Wenbo Duan, Ray Kirby. The sound power output of a monopole

More information

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Hongjian Wu, Herwig Peters, Roger Kinns and Nicole Kessissoglou School of Mechanical and Manufacturing, University

More information

SOUND TRANSMISSION THROUGH CYLINDRICAL SHELL STRUCTURES EXCITED BY BOUNDARY LAYER PRESSURE FLUCTUATIONS

SOUND TRANSMISSION THROUGH CYLINDRICAL SHELL STRUCTURES EXCITED BY BOUNDARY LAYER PRESSURE FLUCTUATIONS SOUND TRANSMISSION THROUGH CYLINDRICAL SHELL STRUCTURES EXCITED BY BOUNDARY LAYER PRESSURE FLUCTUATIONS Yvette Y. Tang 1 National Research Council MS 463, NASA Langley Research Center, Hampton, VA 23681

More information

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows: External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s

More information

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle Journal of Flow Control, Measurement & Visualization, 24, 2, 54-64 Published Online October 24 in SciRes. http://www.scirp.org/journal/jfcmv http://dx.doi.org/.4236/jfcmv.24.247 Comparison between Numerical

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS

EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

An Overview of Computational Method for Fluid-Structure Interaction

An Overview of Computational Method for Fluid-Structure Interaction FSI-9-2 2.3I IE ctivities on Fluid Structure Interaction for Nuclear Power Plant n Overview of Computational Method for Fluid-Structure Interaction J.-H. Jeong Pusan National University M. Kim and P. Hughes

More information

2004 ASME Rayleigh Lecture

2004 ASME Rayleigh Lecture 24 ASME Rayleigh Lecture Fluid-Structure Interaction and Acoustics Hafiz M. Atassi University of Notre Dame Rarely does one find a mass of analysis without illustrations from experience. Rayleigh Analysis

More information

Development and Applicability Evaluation of Frequency Response Function of Structures to Fluctuations of Thermal Stratification

Development and Applicability Evaluation of Frequency Response Function of Structures to Fluctuations of Thermal Stratification E-Journal of Advanced Maintenance Vol.7- (05) -7 Japan Society of Maintenology Development and Applicability Evaluation of Frequency Response Function of Structures to Fluctuations of Thermal Stratification

More information

Flow-Induced Vibration of Pipeline on Elastic Support

Flow-Induced Vibration of Pipeline on Elastic Support Available online at www.sciencedirect.com Procedia Engineering () 986 99 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Flow-Induced Vibration of Pipeline on Elastic

More information

The diagram below. to the by the. outlet into. calculation. Since TRANSMISSION VIA STRUCTURE. Vibration Via Supports Duct Breakout

The diagram below. to the by the. outlet into. calculation. Since TRANSMISSION VIA STRUCTURE. Vibration Via Supports Duct Breakout NOISE CONTROL IN VENTILATING SYSTEMS INTRODUCTION The diagram below shows the various noise sources and transmission paths of plant rooms and ventilation systems. For the ventilation system this can be

More information

93. Study on the vibration characteristics of structural of hydrocyclone based on fluid structure interaction

93. Study on the vibration characteristics of structural of hydrocyclone based on fluid structure interaction 93. Study on the vibration characteristics of structural of hydrocyclone based on fluid structure interaction Sen Li 1, Chunhong Dong 2, Zunce Wang 3, Yan Xu 4, Yuejuan Yan 5, Daoli Zhai 6 College of Mechanical

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.0 ACOUSTIC ENVIRONMENT

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

Application of Grid Convergence Index Estimation for Uncertainty Quantification in V&V of Multidimensional Thermal-Hydraulic Simulation

Application of Grid Convergence Index Estimation for Uncertainty Quantification in V&V of Multidimensional Thermal-Hydraulic Simulation The ASME Verification and Validation Symposium (V&V05) May 3-5, Las Vegas, Nevada, USA Application of Grid Convergence Index Estimation for Uncertainty Quantification in V&V of Multidimensional Thermal-Hydraulic

More information

Numerical Studies of Supersonic Jet Impingement on a Flat Plate

Numerical Studies of Supersonic Jet Impingement on a Flat Plate Numerical Studies of Supersonic Jet Impingement on a Flat Plate Overset Grid Symposium Dayton, OH Michael R. Brown Principal Engineer, Kratos/Digital Fusion Solutions Inc., Huntsville, AL. October 18,

More information

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON CHOKING PHENOMENA OF AXISYMMETRIC CONVERGENT NOZZLE FLOW

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON CHOKING PHENOMENA OF AXISYMMETRIC CONVERGENT NOZZLE FLOW 8 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON CHOKING PHENOMENA OF AXISYMMETRIC CONVERGENT NOZZLE FLOW Ryuta ISOZUMI*, Kazunori KUBO*, Daisuke

More information

EXPERIMENTAL INVESTIGATION OF STATIC INTERNAL PERFORMANCE FOR AN AXISYMMETRIC VECTORING EXHAUST NOZZLE

EXPERIMENTAL INVESTIGATION OF STATIC INTERNAL PERFORMANCE FOR AN AXISYMMETRIC VECTORING EXHAUST NOZZLE ICAS 2000 CONGRESS EXPERIMENTAL INVESTIGATION OF STATIC INTERNAL PERFORMANCE FOR AN AXISYMMETRIC VECTORING EXHAUST NOZZLE Jin Jie, Zhao Jingyun, Zhang Mingheng, Lai Chuanxin Chinese Gas Turbine Establishment

More information

Simulation of Flow Induced Noise in Exhaust Silencers

Simulation of Flow Induced Noise in Exhaust Silencers Simulation of Flow Induced Noise in Exhaust Silencers Barbara NEUHIERL 1 ; 1 Exa GmbH, Germany ABSTRACT This paper deals with the simulation of flow generated noise in exhaust systems. Exhaust noise typically

More information

MECHANICAL VIBRATIONS OF CANDU FEEDER PIPES

MECHANICAL VIBRATIONS OF CANDU FEEDER PIPES Transactions, SMiRT-22 San Francisco, California, USA - August 8-23, 23 MECHANICAL VIBRATIS OF CANDU FEEDER PIPES Usama Abdelsalam, Dk Vijay 2, Hesham Mohammed 3, Rick Pavlov 4, Dan Neill 5 Tech. Expert,

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

EFFECT OF WALL JET ON OSCILLATION MODE OF IMPINGING JET

EFFECT OF WALL JET ON OSCILLATION MODE OF IMPINGING JET EFFECT OF WALL JET ON OSCILLATION MODE OF IMPINGING JET Y. Sakakibara 1, M. Endo 2, and J. Iwamoto 3 ABSTRACT When an axisymmetric underexpanded jet impinges on a flat plate perpendicularly, the feedback

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook Reference Manual 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com Reference Manual 405 and 1595 405 Compact Orifice Series and 1595 Conditioning

More information

2 Experimental arrangement The test is carried out in the wind tunnel of TJ-3 atmospheric boundary layer in the State Key Laboratory of Disaster Reduc

2 Experimental arrangement The test is carried out in the wind tunnel of TJ-3 atmospheric boundary layer in the State Key Laboratory of Disaster Reduc Extreme value distribution of surface aerodynamic pressure of hyperbolic cooling tower X. P. Liu, L. Zhao, Y. J. Ge State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University,

More information

1. Introduction. 1.1 Overview of Study:

1. Introduction. 1.1 Overview of Study: 1. Introduction 1.1 Overview of Study: Hot and cold fluid passing through long pipes causes thermal expansion and contraction in the piping system. The fluid passing through pipes also creates fluctuations

More information

ADDENDUM. Revise the ISO title on the Cover to read:

ADDENDUM. Revise the ISO title on the Cover to read: Date of Issue: October 2015 Affected Publication: ANSI/API Technical Report 5C3/ISO 10400:2007, Technical Report on Equations and Calculations or Casing, Tubing, and Line Pipe Used as Casing or Tubing;

More information

Penn State Center for Acoustics and Vibration (CAV)

Penn State Center for Acoustics and Vibration (CAV) Penn State Center for Acoustics and Vibration () Structural Vibration and Acoustics Group Presented as part of the 2013 Spring workshop Stephen Hambric, Group Leader Marty Trethewey Stephen Conlon Andrew

More information

Rock Scour: Past, Present and Future. George W. Annandale, D.Ing, P.E. Engineering and Hydrosystems Inc. Denver, Colorado

Rock Scour: Past, Present and Future. George W. Annandale, D.Ing, P.E. Engineering and Hydrosystems Inc. Denver, Colorado Rock Scour: Past, Present and Future George W. Annandale, D.Ing, P.E. Engineering and Hydrosystems Inc. Denver, Colorado Outline Rock Scour Process Jet Hydraulics Scour Resistance of Rock Methods of Analysis

More information