Heat exchanger. Heat exchanger

Size: px
Start display at page:

Download "Heat exchanger. Heat exchanger"

Transcription

1 s are deves n w eat s transferred between tw fluds at dfferent teperatures wtut any xng f fluds. type. Dret eat transfer type 2. Strage type 3. Dret ntat type ttps:// Dret eat transfer type A dret transfer type f eat exanger s ne n w te ld and t fluds flw sultaneusly trug te deve and eat s transferred trug a wall separatng te fluds t flud t flud ld flud ld flud nentr tube eat exangers. (a) Parallel flw. (b) unter flw.

2 2. Strage type eat exanger A dret transfer type f eat exanger s ne n w te eat transfer fr te t flud and te ld flud ur tug a uplng edu n te fr f prus sld atrx. e t and ld fluds alternatvely trug te atrx. e t flud strng eat n t and te ld flud extratng eat fr t. 3. Dret ntat type eat exanger A dret transfer type f eat exanger s ne n w te tw fluds are nt separated. If eat s t be transferred between a gas and a flud, te gas s eter bubbled trug te lqud r te lqud s sprayed n te fr f drplets n te gas.

3 Dret type eat exanger. ubular 2. Plate 3. Extended surfae ubular eat exanger. nentr tube 2. Sell and tube nentr tube Sell and tube e eat transfer area avalable per unt vlue / 3

4 Plate eat exanger Seres f large retangular tn etal plates w are laped tgeter t fr narrw parallel-plate annel. e eat transfer area avalable per unt vlue / 3 Extended surfae eat exanger Fns attaed n te prary eat transfer surfae wt te bjet f nreasng te eat transfer area. e eat transfer area avalable per unt vlue / 3

5 lassfatn by flw arrangeent e tree bas flw arrangeents: Parallel flw unter flw rss flw Parallel flw unter flw

6 rss flw Bt fluds unxed One flud xed and te ter unxed Overall eat transfer effent (U) and fulng fatr In a eat exanger, te eat s transferred by bt nvetn and ndutn. q = UA ( a b ) a U s verall eat transfer effent 2 b

7 Plate eat exanger q nv. ) a 2 b a A q nd. ka x nv. 2 q A 2 b 2) 3) q a U A b 4) Addng abve tree equatns (, 2, 3) Fr (4) q q x q a A ka A q UA a b b Arss a plan wall q q q x q UA A ka A x U k U b k 2

8 ubular eat exanger r 2 R R a R b r a R = R nv + R nd + R nv2 R nv A R nd x ka R nv2 A Based n nner area U A A A = 2πr L (r r ) ka A l U (r r )r kr l r r โดย r l (r r ) ln(r / r ) Based n utter area (r r ) U A A ka l A U r r (r r )r kr l

9 Wen te wall tkness f te tube s sall and te teral ndutvty f te tube ateral s g, s as usually te ase, te teral resstane f te tube s neglgble. U beause A A Fulng e perfrane f eat exangers usually deterrate wt te as a result f auulatn f depsts n eat transfer surfaes, representng addtnal resstane, alled fulng.

10 (Lg) Mean eperature Dfferene t da ld dq U da Were: tal eat transfer rate n eat exanger q U da If U s assued t be a nstant q U da Defne ean teperature dfferene us: A da area q UA s s te bas perfrane equatn fr a dret transfer type eat exanger

11 Parallel Flw Assuptn. U s a nstant 2. s adequately nsulated.e. n eat lss t surrundng nsder n eleentary area da (B.dx) dq U B dx p p d d d ( ) d d dq p dq p U B dx p p

12 L 0 p p dx UB ) d ( Were:,,,, UA ln p p UA q,,,, ln UA q s s te perfrane equatn fr a parallel-flw eat exanger UA q parng wt: ln Were:

13 Fr unter flw Assuptn. U s a nstant 2. s adequately nsulated.e. n eat lss t surrundng nsder an eleentary area da (B.dx) dq U ( p p ) B d d dx d ( ) d d dq p dq p U B dx p p

14 L 0 p p dx UB ) d ( UA ln p p UA q ln,,,, Were:,,,, ln UA q,,,, UA q parng wt: ln Were:

15 Speal ase f unter flw p p en:,,,, Or,,,, Substtutng nt te expressn fr, we get an ndeternate quantty Defne en: p l p Apply L Hptal s rule l p (p ) ln p () p

16 rss flw ase : bt fluds unxed Ht flud,,, ld flud B y x, L rss flw ase 2: ne flud xed, te ter unxed Ht flud,,, ld flud B y x L, = f (x,y) = f (x)

17 rss flw ase -: Bt flud xed Ht flud,,, ld flud B y x L, = f (y) = f (x) Bt and are funtns f x and y nsderng an eleentary area da (= dx dy) dq U ( ) dx dy q 0 B 0 L U ( )dx dy parng wt q UA B L ( BL 0 0 )dx dy Mre plated tan befre but t as been dne.

18 e ntegratn f te tree ases f rss flw as been dne nuerally. e results are presented n te fr f a rretn fatr (F) F rss flw f f te tearrangeent arrengeentwas wasenunter-flw flw If te bulk ext teperatures n te t sde and ld sde are, and,, ten unter flw,,,, / ln,,,, Mean teperature dfferene n rss flw F rss flw f te arrengeent was unter flw Fr gven values f, ;, ;, ;, unter flw s te gest angst all flw arrangeents erefre: 0 F

19 q q rssflw rssflw UA UAF rssflw unter flw F s pltted as a funtn f tw paraeters, R and S R, 2,, 2, S 2,, 2, 2, Subsrpts and 2 rrespnd t te tw fluds Fr ase: (bt fluds unxed) and ase 3 (bt fluds xed) It s ateral w subsrpt rrespnds t te t sde and w t te ld sde. Fr ase: and ase 3 Subsrpts = 2 = r = 2 =

20 Hwever fr ase 2, are ust be taken t see tat te xed flud as subsrpt Wat s te paraeter R? e rat f ange f teperature f te tw fluds R 0 Wat s te paraeter S? e rat f ange n teperature f ne f te flud t te dfferene f nlet teperature f te tw fluds 0 S, 2, 2,, R, 2,, 2, Bt fluds unxed rss flw eat exanger S 2,, 2, 2,

21 , xed 2, unxed, 2, R, 2,, 2, One fluds xed and te ter unxed S 2,, 2, 2,

22

23

24

25

26

27

28 e effetveness - NU etd Generally, we enunter tw type f prbles: ype Gven: w fluds U Fnd A?,,,,,, ype 2 Gven: w fluds A eat exanger A,, Fnd, ;,?

29 ype ype 2 q UA A? q q U UA? We wll need a tral and errr appra t slve ts type f prble.e. assung, ral and errr an be avded f we adpt te alternatve etd alled te effetveness -NU Effetveness f a eat exanger = Rate f eat transfer n eat exanger Maxu pssble eat transfer rate q q ax,,,, Lengt f eat exanger,, ( ( p p p p ) ) ( s ( s, (, (,,,, ) ) ) ),,

30 Hene f p, ten p p p s,,,, Hene f p, ten p p p s,,,, Nte ) e defntn are equvalent wen p p 2) By defntn 0 Effetveness parallel flw Assue p ( p ) s,,,, p p p p q p, (, (, p p,,, ) ),,,,,,,, p p

31 Effetveness parallel flw p p,,,, UA exp p p,,,, Derved earler (slde 23) UA ln p p p p p p p UA exp Substtutng

32 If we ad assued ntally s p p ) ( p p p p p UA exp, ten We bne te tw expressns fr b p s p s p b p s p UA exp Defne tw new paraeters apaty rat () ax n b p s p r ) ( ) ( Nuber f transfer unt (NU) n s p UA r ) ( UA NU Nte: ) Bt are densnless 2) 3) NU 0 0

33 Effetveness parallel flw exp NU Effetveness unter flw exp exp NU NU Speal ases apaty rate (. p) s nfnte eter n te t sde r te ld sde 0 Fr ts slutn, we btan te relatn exp NU

34

35

36 Exaple Stuatn: Lgt lubratng l ( p =2090 J/kg-K) s led wt water n a sall eat exanger. Ol flw = 0.5 kg/s, nlet = 375 K Water flw = 0.2 kg/s, nlet = 280 K Part : If desred utlet teperature f te l s 350 K, and yu knw te estated verall eat transfer effent, U = 250 W/²-K, fr anufaturer s data fr ts type f eat exanger Fnd: Requred eat transfer area fr a parallel flw eat exanger and pare t te area needed fr a unter flw eat exanger.

37 LMD Slutn, Part : l, n 350 K p, q 4,8, J / Kg.K, l, n 375 K water, n 280 K water, ut? and,, q / 0.5 2,090 ( ) 26,25 W ,25 /(0.2 4,8) 3 K Fr parallel flw, ln / ln( 95 / 39), PF Fr unter flw, ln / ln( 64 / 70), F

38 Fr parallel flw, A PF q /(U,PF ).66 2 Fr unter flw, A F q /(U,F ).56 2 Part 2: Use -NU etd t deterne te requred NU and eat transfer area fr parallel and unter flw Slutn p, 4,8 J / Kg.K deterne te nu eat apaty rate, p W / K p 0.2 4, W / K ( p ) s

39 en q ax n (,, ) q ( ) 79,440 26,25 W, e effetveness s, W q / q ax 26,25 / 79, Wt ( ( p p ) ) s b 836.2, Parallel flw unter flw A A PF F n n NU NU F PF / U.84 / U

40

41

42

43 Oter nsderatn n desgnng eat exangers. Pressure drp n eter sdes 2. Sze restrtn 3. Stress nsderatn 4. Servng requreents 5. Materals f nstrutn 6. Syste peratn 7. st

Module 7: Solved Problems

Module 7: Solved Problems Mdule 7: Slved Prblems 1 A tn-walled nentr tube eat exanger f 019-m lengt s t be used t eat denzed water frm 40 t 60 at a flw rate f 5 kg/s te denzed water flws trug te nner tube f 30-mm dameter wle t

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-08: Principles of Heat Exchangers

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-08: Principles of Heat Exchangers Paper N. : 04 Paper tle: Unt Operatns n Fd Pressng Mdule-08: Prnples f Heat Eangers Heat eangers are deves tat faltate te eange f eat between tw fluds tat are at dfferent temperatures wtut te fluds mng

More information

The maximum heat transfer rate is for an infinite area counter flow heat exchanger.

The maximum heat transfer rate is for an infinite area counter flow heat exchanger. IAM Heat Exangers 9. Aendix Illustratin f se nets in eat exangers 9.. Heat Exanger Effetiveness is is defined as: Atual Heat ransfer ate Maxiu Pssible Heat ransfer ate q q ax e axiu eat transfer rate is

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

Analysis The characteristic length of the junction and the Biot number are

Analysis The characteristic length of the junction and the Biot number are -4 4 The temerature f a gas stream s t be measured by a thermule. The tme t taes t regster 99 erent f the ntal ΔT s t be determned. Assumtns The juntn s sheral n shae wth a dameter f D 0.00 m. The thermal

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F. Hmewrk- Capter 25 4. REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Phys 344 Ch 5 Lect 5 Feb 28 th,

Phys 344 Ch 5 Lect 5 Feb 28 th, hys 44 Ch 5 Lect 5 Feb 8 th, 009 1 Wed. /4 Fr. /6 Mn. /9 Wed. /11 Fr. / 1 5.5 Dlute lutn 5.6 Checal Equlbru Revew Exa (C 10.7 6.0, 6.1 ltzann tatstcs nus: hys. r. hess resentatns @ 4p HW17: 7,76,8 HW18:8,84,86,88,89,91

More information

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water . In a counter flow double pipe eat excanger, oil is cooled fro 85 to 55 by water entering at 5. Te ass flow rate of oil is 9,800 kg/ and specific eat f oil is 000 J/kg K. Te ass flow rate of water is

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006 Brug f Manattan unity llege urse Pysics 110 Sec 721 nstructr: Dr. Hulan E. Jack Jr. Date Deceber 19, 2006 inal Exa NSTRUTONS - D 7 prbles : D Prble 1, 2 fr Prble 2,3 and 4, 2 fr Prbles 5,6 and 7, 2 fr

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH 24 ANALOG LTRONIS TUTORIAL DR NORLAILI MOHD NOH . 0 8kΩ Gen, Y β β 00 T F 26, 00 0.7 (a)deterne the dc ltages at the 3 X ternals f the JT (,, ). 0kΩ Z (b) Deterne g,r π and r? (c) Deterne the ltage gan

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Heat Transfer and Friction Characteristics of Heat Exchanger Under Lignite Fly-Ash

Heat Transfer and Friction Characteristics of Heat Exchanger Under Lignite Fly-Ash The 20th Cnferene f Mehanial Engineering Netwrk f Thailand 18-20 Otber 2006, Nakhn Rathasima, Thailand Heat Transfer and Fritin Charateristis f Heat Exhanger Under ignite Fly-Ash Pipat Juangjandee 1*,

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

18. Heat Engine, Entropy and the second law of thermodynamics

18. Heat Engine, Entropy and the second law of thermodynamics 8. Heat Engne, Entropy and te seond law o terodynas In nature, ost o proesses are rreversble. due to te seond Law o terodynas Heat alwasys lows ro Hot to old. 8-. Heat Engne and te eond Law o erodynas

More information

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI)

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI) HCB- Editin 12.1 Slutins Chapter 12 Prbles GIVEN: Fllwing table fr water: T (C p (kpa v ( /kg Phase 60 (1.25 (2 ( 175 (4 Saturated vapr 00 00 (5 (6 100 10 (7 (8 (9 (10 0.001097 Saturated vapr 1000 10 (11

More information

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017 EXAMPLES of THEORETICAL PROBLEMS n the COURSE MMV03 HEAT TRANSFER, verson 207 a) What s eant by sotropc ateral? b) What s eant by hoogeneous ateral? 2 Defne the theral dffusvty and gve the unts for the

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Natural Circulation Systems

Natural Circulation Systems Natural Crulatn Systems Natural rulatn lays an mrtant rle n the ln term ln f reatr systems durn adent ndtns, and n the strae f sent fuels. Cnsder the fllwn smle reresentatn f a reatr lant system eratn

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

ME 412 Heat Transfer Laboratory

ME 412 Heat Transfer Laboratory ME Heat Transfer Laboratory ME Heat Transfer Laboratory andle owered Desalnator nalytcal Modelng roperty Inforaton oposed of paraffn wax wc s a petroleu product consstng anly of noral alkanes. Molecular

More information

Lecture 3 Heat Exchangers

Lecture 3 Heat Exchangers L3 Leture 3 Heat Exangers Heat Exangers. Heat Exangers Transfer eat from one fluid to anoter. Want to imise neessary ardware. Examples: boilers, ondensors, ar radiator, air-onditioning oils, uman body.

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1 Hat Exangr April 8, 007 Hat Exangr Larry artt Manial Engrg 375 Hat ranfr April 8, 007 Outl Bai ida f at xangr Ovrall at tranfr ffiint Lg-man tmpratur diffrn mtd Efftivn NU mtd ratial nidratin Hat Exangr

More information

11. Ideal Gas Mixture

11. Ideal Gas Mixture . Ideal Ga xture. Geeral oderato ad xture of Ideal Gae For a geeral xture of N opoet, ea a pure ubtae [kg ] te a for ea opoet. [kol ] te uber of ole for ea opoet. e al a ( ) [kg ] N e al uber of ole (

More information

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS CHAPTER HYDROSTATICS. INTRODUCTION Hydraulic engineers have any engineering applicatins in hich they have t cpute the frce being exerted n suberged surfaces. The hydrstatic frce n any suberged plane surface

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

THERMODYNAMICS Lecture 15: Heat exchangers

THERMODYNAMICS Lecture 15: Heat exchangers HERMODYNAMICS Leture 5: Heat exangers Pierwsza strona Introdution to Heat Exangers Wat Are Heat Exangers? Heat exangers are units designed to transfer eat from a ot flowing stream to a old flowing stream

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

PHY2053 Summer 2012 Exam 2 Solutions N F o f k HY0 Suer 0 Ea Slutns. he ree-bdy dagra r the blck s N F 7 k F g Usng Newtn s secnd law r the -cnents F a F F cs7 k 0 k F F cs7 (0 N ( Ncs7 N he wrk dne by knetc rctn k r csθ ( N(6 cs80 0 N. Mechancal energy

More information

Effects of high RH on α-pinene SOA phase partitioning

Effects of high RH on α-pinene SOA phase partitioning Effets f hgh RH n α-pnene SA phase parttnng Götebrg summer shl 26/06/2008 Nenne Prsle PhD student Chemstry, CCAR, Unv. Cpenhagen, Denmark nlp@kem.ku.dk 26/06/2008 Götebrg, Nenne Prsle 1 Mtvatn Current

More information

SOLUTION. The reactor thermal output is related to the maximum heat flux in the hot channel by. Z( z ). The position of maximum heat flux ( z max

SOLUTION. The reactor thermal output is related to the maximum heat flux in the hot channel by. Z( z ). The position of maximum heat flux ( z max Te verpwer trip set pit i PWRs is desiged t isure te iu fuel eterlie teperature reais belw a give value T, ad te iiu rati reais abve a give value MR. Fr te give ifrati give a step by step predure, iludig

More information

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve

More information

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET). Mcrelectrncs Chapter three: Feld Effect Transstr sall snal analyss Intrductn: Feld-effect transstr aplfers prde an excellent ltae an wth the added feature f hh nput pedance. They are als lw-pwercnsuptn

More information

Physics 123. Exam #1. October 11, 2006

Physics 123. Exam #1. October 11, 2006 hyscs Exa # October, 006 roble /0 roble /0 roble /0 roble 4 /0 roble 5 /0 roble 6 /0 roble 7 /0 roble 8 /0 roble 9 /0 roble 0 /0 Total /00 Free-Response robles: lease show all work n order to receve partal

More information

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii Prblem 1 STRATEGY KNOWN Resstance f a cmplete sphercal shell: R ( r r / (4 π r rk sphere Inner an uter ra r an r, SOLUTION Part 1: Resstance f a hemsphercal shell: T calculate the resstance f the hemsphere,

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

International Journal of Mathematical Archive-9(3), 2018, Available online through ISSN

International Journal of Mathematical Archive-9(3), 2018, Available online through   ISSN Internatonal Journal of Matheatcal Archve-9(3), 208, 20-24 Avalable onlne through www.ja.nfo ISSN 2229 5046 CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS T. SHEKAR GOUD, JAGAN MOHAN RAO M AND N.CH.

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101 PHY 113 C General Pyss I 11 AM 12:15 PM MWF Oln 101 Plan or Leture 23: Capter 22: Heat engnes 1. ermodynam yles; work and eat eeny 2. Carnot yle 3. Otto yle; desel yle 4. Bre omments on entropy 11/19/2013

More information

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS 6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS Elutratn s the prcess n whch fne partcles are carred ut f a fludzed bed due t the flud flw rate passng thrugh the bed. Typcally, fne partcles are elutrated

More information

Limit Cycle Bifurcations in a Class of Cubic System near a Nilpotent Center *

Limit Cycle Bifurcations in a Class of Cubic System near a Nilpotent Center * Appled Mateatcs 77-777 ttp://dxdoorg/6/a75 Publsed Onlne July (ttp://wwwscrporg/journal/a) Lt Cycle Bfurcatons n a Class of Cubc Syste near a Nlpotent Center * Jao Jang Departent of Mateatcs Sanga Marte

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001 Checal Engneerng 60/60 Polyer Scence and Engneerng Lecture 0 - Phase Equlbra and Polyer Blends February 7, 00 Therodynacs of Polyer Blends: Part Objectves! To develop the classcal Flory-Huggns theory for

More information

4. The material balances for isothermal ideal reactor models

4. The material balances for isothermal ideal reactor models Summay Geneal mateal balane f eatng system Bath eat Cntnuus-flw eats: CST (Cntnuus Sted Tank eat) P (Plug lw eat) Steady state f CST and P Desgn tasks : utlet (fnal nvesn), gven vlume f eat x vlume f eat,

More information

ENGINEERING OF NUCLEAR REACTORS. Due November 17, 2006 by 12:00 pm

ENGINEERING OF NUCLEAR REACTORS. Due November 17, 2006 by 12:00 pm .3 ENINEEIN OF NUCEA EACOS ue Noveer 7, 006 y :00 AKE HOME QUIZ (SOUION Prole (60% Hydraul Analyss o te Eereny Core Sray Syste n a BW e nuern o te relevant loatons wtn te syste s sown n Fure elow. 3 e

More information

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a FET Sall Snal Mdband Mdel Ntatn: C arables and quanttes are enerally desnated wth an uppercase subscrpt. AC arables and quanttes are enerally desnated wth a lwercase subscrpt. Phasr ntatn wll be used when

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Y.J. Cho **, Hazim Awbi** & Taghi Karimipanah* *) Fresh AB, SWEDEN **) University of Reading, UK

Y.J. Cho **, Hazim Awbi** & Taghi Karimipanah* *) Fresh AB, SWEDEN **) University of Reading, UK The Characteristics f Wall Cnfluent Jets fr Ventilated Enclsures 9 th Internatinal Cnference n Air Distributin in Rs niversity f Cibra PORTGAL Y.J. Ch **, Hazi Awbi** & Taghi Kariipanah* *) Fresh AB, SWEDEN

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

Infinite Length MMSE Decision Feedback Equalization

Infinite Length MMSE Decision Feedback Equalization Infnte Lengt SE ecson Feedbac Equalzaton FE N * * Y F Z ' Z SS ˆ Y Q N b... Infnte-Lengt ecson Feedbac Equalzer as reoval ^ Y Z Feedforward Flter Feedbac Flter - Input to Slcer - Z Y Assung prevous decsons

More information

Lecture 17. Dielectric Materials

Lecture 17. Dielectric Materials Lecture 17 Dielectric Materials 3/ 3 3 3/ 3/ 4 4 exp = = = e R R B B e B v c B g v c e k k k k E π π π Dielectric aterials play a large rle in electrnics. One exaple was te xide in te MOS structures. Als

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Topic 3 Specific Energy and Control Section

Topic 3 Specific Energy and Control Section Tpi Speifi nerg and Cntrl Setin Prepared b: Tan Lai Wai et al. laiwai@uth.edu. Learning Outes At the end f this tpi, students shuld be able t: i. Appl speifi energ nept in deterining ritial flw nditins

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555. hapter 1 c) When the average bld velcity in the capillary is reduced by a factr f 10, the delivery f the slute t the capillary is liited s that the slute cncentratin after crit 0.018 c is equal t er at

More information

Question 1. Cold air standard assumptions:

Question 1. Cold air standard assumptions: Qestn (a A 4-stke 8-yde 3. lte tb-aged spak gntn ang engne as a mpessn at 0, and s n at 6000 pm. e a dawn nt te engne bee mpessn as a tempeate 5 C, and a pesse 40 000 kpa. e tempeate te a at te end te

More information

(element) But, we do NOT know G!!! Correct, but not applicable! Free Energy Problems: o r. products. reactants. o f. reactants.

(element) But, we do NOT know G!!! Correct, but not applicable! Free Energy Problems: o r. products. reactants. o f. reactants. SANDARD fr hemcal Rxns prducts G p G reactants r But, we d NO knw G!!! rrect, but nt applcable! prducts G f G reactants f f (element) 0 f standard Gbbs free energy f frmatn Free Energy Prblems: 5. Prf.

More information

Quasi-Static transient Thermal Stresses in a Robin's thin Rectangular plate with internal moving heat source

Quasi-Static transient Thermal Stresses in a Robin's thin Rectangular plate with internal moving heat source 31-7871 Weely Scence Research Journal Orgnal Artcle Vol-1, Issue-44, May 014 Quas-Statc transent Theral Stresses n a Robn's n Rectangular late w nternal ovng heat source D. T. Solane and M.. Durge ABSTRACT

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Solution Set #3

Solution Set #3 5-55-7 Soluton Set #. Te varaton of refractve ndex wt wavelengt for a transarent substance (suc as glass) may be aroxmately reresented by te emrcal equaton due to Caucy: n [] A + were A and are emrcally

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E]

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E] WYSE Aaem Challenge 0 Setnal hss Exam SOLUTION SET. Crret answer: E Unts Trque / unts pwer: [ r ][ ] [ E] [ t] [ r ][ ][ t] [ E] [ r ][ ][ t] [ ][ ] [ r ][ t] [ ] m s m s. Crret answer: D The net external

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all.

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all. - Prfs '', '', 'b' a '' - Na: Wrsar 27 Dat: W ar tr asrs t? Bas t arrts at t a. At t btt f t a s a st f wrs. Ts wrs ar t. T wrs av b a rta (ra arss), vrta (ra w) r aa (fr rr t rr). W f a wr, raw a at r

More information

2/5/13. y H. Assume propagation in the positive z-direction: β β x

2/5/13. y H. Assume propagation in the positive z-direction: β β x /5/3 Retangular Waveguides Mawell s Equatins: = t jω assumed E = jωµ H E E = jωµ H E E = jωµ H E E = jωµ H H = jωε E H H = jωε E H H = jωε E H H = jωε E /5/3 Assume prpagatin in the psitive -diretin: e

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information