( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2

Size: px
Start display at page:

Download "( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2"

Transcription

1 Homewo (Patal Solton) Posted on Mach, 999 MEAM 5 Deental Eqaton Methods n Mechancs. Sole the ollowng mat eqaton A b by () Steepest Descent Method and/o Pecondtoned SD Method Snce the coecent mat A s symmetc, solng the system o lnea eqaton s eqalent to the mnmzaton poblem: mn (), () A b Sppose that S s a poste dente mat. hen the steepest descent method s based on the teaton scheme: ( A b) ( ) ( ) ( ) ( ) α S whee ( ) α s detemned to be a solton o the one-dmensonal mnmzaton poblem: mn ( α ) ( ) ( ). Notng that ( ) ( ) ( ) ( ) ( ) α S ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ α S ] A[ α S ] [ α S ] b

2 whee the esdal ( ) ( ) A b s dened, we hae the necessay condton o the one-dmensonal mnmzaton poblem: α α ( ) ( ) ( ) S ( ) ( ) ( ) ( ) [ S ] α S ( ) ( ) ( ) [ S ] ( ) ( ) [ S ] A[ S ] ( ) ( ) ( ) ( ) [ ] A[ α S ] [ S ] ( ) [ ] A[ S ] b Sppose that A s not symmetc. hat s, we cannot se the nctonal we hae dened n aboe. We mst se the least sqae type nctonal: ( ) ( ) ( ) ( ) ( ) α S ( ) ( ) ( ) ( ) ( ) ( ) { A[ α S ] b} { A[ α S ] b} and then α α ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } { α } ( ) { } ( ) ( ) ( ) { } { } () Conjgate Gadent Method and/o Pe-condtoned CG Method

3 Conjgate gadent method s based on the teaton scheme ( ) ( ) ( ) ( ) α ( ) ( ) β S ( A b) whee the paametes ( ) ( ) α, β ae the soltons o the two-dmensonal mnmzaton poblem mn ( ), ( α β ) ( ) ( ) Notng that ( ) ( ) ( ) A ( ) ( b) ( A b) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( A( α d β S ) b) A α d β S ( b) whee ( ) ( ) ( ) ( ) A b and d s the esdal, we hae

4 β α β α β α β β α α () Gass Elmnaton Method sch as LU decomposton o sng MALAB Whee......, b A Snce the aboe poblem possesses a symmetc coecent mat, we shall consde a nsymmetc mat:

5 ......, b A Usng the ollowng MALAB pogam Homewo #()_99W MEAM 5 Wnte 999 set p the coecent mat A and the ght hand sde b Azeos(); bzeos(,); o : A(,); >, A(-,)-;, end <, A(,)-;, end end A(7,7);A(7,8)-;A(8,7)-;A(8,8);A(8,9)-;A(9,8)-;A(9,9);A(9,)-;A(,9)- ;A(,); A b[,,,,-.,-.,-.,-.,-.,-.]' set p a pecondtoned mat S

6 o : S(,)A(,); end S(A'A)/; Snn(S); steepest descent method omega; zeos(,); eo; teaton; toleance^-5; mate; eoh[]; ala[]; whle eo>toleance A*-b; A*Sn*; ala('*)/('*); -omega*ala*sn*; teatonteaton eosqt((-)'*(-))/sqt('*) eoh(teaton)eo; ala(teaton)ala; ; teaton>mate, bea, end end plot(eoh) label('teaton') ylabel('elate eo') ttle('conegence o Steepest Descent Method')

7 pase Conjgate Gadent Method omega; zeos(,); m; eo; teaton; toleance^-5; mate; eoh[]; ala[]; beta[]; whle eo>toleance A*-b; d-m; m; A*Sn*; A*d; CM['*,'*;'*,'*]; alabeta-pn(cm)*['*;'*]; alaalabeta(); betaalabeta();; ala*dbeta*sn*; teatonteaton eosqt((-)'*(-))/sqt('*) eoh(teaton)eo; ala(teaton)ala; beta(teaton)beta; ; teaton>mate, bea, end end

8 plot(eoh) label('teaton') ylabel('elate eo') ttle('conegence o Conjgate Gadent Method') Dect Method n(a)*b we shall sole the poblem as ollows: Conegence o Steepest Descent Method Conegence o Conjgate Gadent Method elate eo.6.5. elate eo teaton teaton At 5 th teaton, the steepest descent method podes the solton

9 At the 6 th teaton, the conjgate gadent method podes a solton whle the dect Gassan elmnaton schemes the solton

10 hs, yo shold wo ot o the case o symmetc coecents by denng the nctonal () A b.. Sole the ollowng nonlnea deental eqaton d d ( d d) d d sn ( π) n (,) wth the bonday condton () (), by sng the Newton method o moded Newton method, ate t wold be appomated by FDM, FEM, o weghted esdal methods. We shall dee the Newton scheme o the aboe nonlnea deental eqaton by gong bac to the pncple. o ths end, we shall appomate the appomaton o the solton: ( ) ( ) Sbstttng ths nto the nonlnea deental eqaton d d ( ) ( ) ( d d d d) d d ( ) ( ) d d ( ) ( ) ( ) sn( π) Neglectng the hghe ode tems than the lnea n ( ), we hae

11 d d d d sn ( π) ( ) d d ( ) ( d d) ( ) d d ( ) ( d d) ( ) ( ) ( ) ( d d) d d ( ) ( ) ( ) ( ) that s, the ncement ( ) o the appomaton s a solton o the deental eqaton d d d d ( ) ( ) ( d d) ( ) d d d d ( ) ( d d) ( ) ( d d) ( ) ( ) sn( π) d d ( ) ( ) ( ) ( ) Applyng the nte deence appomaton, we hae

12 π sn Reaangng ths om, we hae the nte deence eqaton o the ncement :

13 a a a a a a π sn whee Usng the MALAB pogam Homewo # : Poblem / hwp MEAM 5 Wnte 999 Newton's Method o a Nonlnea Deental Eqaton n; d/(n-); :d:;

14 zeos(n,); eo; eoh[]; toleance^-5; teaton; mate; KMzeos(n); bzeos(n,); KM(,); KM(n,n); whle eo>toleance o :n- dp(()-())/d; dm(()-(-))/d; ap-dp/(sqt(dp^))^/sqt(dp^); am-dm/(sqt(dm^))^/sqt(dm^); *()^; b()(dp/sqt(dp^))/d-(dm/sqt(dm^))/d-()^sn(p*()); KM(-,)-am/d^; KM(,)am/d^ap/d^; KM(,)-ap/d^; end KM(,);KM(n,n-); dkm b; d; teatonteaton; eosqt(d'*d)/('*); eoh(teaton)eo; teaton>mate, bea, end end

15 teaton eo plot(,) label('') ylabel('') ttle('solton o a Nonlnea Deental Eqaton') we hae conegence o the Newton's method: teaton 9 eo.669e-6 and the solton. Solton o a Nonlnea Deental Eqaton Fnd the best appomaton h H o a gen ncton () ( ) ep() n the Sobole

16 space { },,, L H V wth the nne podct ()() () () sn, d π whee () { },,,,,, R c c c c c c V H. Let the best appomaton H h o be epesented by { } N h 5 whle an abtay element H h be smlaly epesented by N h. hen the best appomaton solton s detemned by H h h h,, hs, we hae sn sn, sn, d d d h h N N NN K N N b K b N N N N π π π

17 hs means that the coecent can be obtaned by solng the mat eqaton K b whee K s a symmetc 55 mat, and b s a e component ecto. Usng the ollowng MAHEMAICA pogam N{,,^,^,^}; dnd[n,]; (-^)*Ep[]; dd[,]; a.5*sn[p*]; Kmable[,{,,5},{j,,5}]; bable[,{,,5}]; Do[b[[]]NIntegate[N[[]]*dN[[]]*a*d,{,-,}]; Do[Km[[,j]]NIntegate[N[[]]*N[[j]]dN[[]]*a*dN[[j]],{,-,}],{j,, 5}],{,,5}] LneaSole[Km,b]; hn. Plot[{h,},{,-,}] We hae and

18 I we consde the best appomaton by sng the L nne podct: ( ) { ()() }, d then the best appomaton becomes

19 It s clea that the L nne podct podes the appomaton wth lage appomaton eo n the semnom o the Sobole space V. Hee the semnom o the eo s dened by () d

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is Unt_III Comple Nmbes: In the sstem o eal nmbes R we can sole all qadatc eqatons o the om a b c, a, and the dscmnant b 4ac. When the dscmnant b 4ac

More information

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by IB Math Hgh Leel: Complex Nmbers Practce 0708 & SP Complex Nmbers Practce 0708 & SP. The complex nmber z s defned by π π π π z = sn sn. 6 6 Ale - Desert Academy (a) Express z n the form re, where r and

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

Review. Physics 231 fall 2007

Review. Physics 231 fall 2007 Reew Physcs 3 all 7 Man ssues Knematcs - moton wth constant acceleaton D moton, D pojectle moton, otatonal moton Dynamcs (oces) Enegy (knetc and potental) (tanslatonal o otatonal moton when detals ae not

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Comptatonal Fld Dynamcs (CFD) Comptatonal Fld Dynamcs (AE/ME 339) Implct form of dfference eqaton In the prevos explct method, the solton at tme level n,,n, depended only on the known vales of,

More information

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

Using DP for hierarchical discretization of continuous attributes. Amit Goyal (31 st March 2008)

Using DP for hierarchical discretization of continuous attributes. Amit Goyal (31 st March 2008) Usng DP fo heachcal dscetzaton of contnos attbtes Amt Goyal 31 st Mach 2008 Refeence Chng-Cheng Shen and Yen-Lang Chen. A dynamc-pogammng algothm fo heachcal dscetzaton of contnos attbtes. In Eopean Jonal

More information

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position Chapte 5 Ccula Moton The language used to descbe otatonal moton s ey smla to the language used to descbe lnea moton. The symbols ae deent. Descpton Lnea Angula poston dsplacement ate o change o poston

More information

a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N

a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N Conceptual ewton s Law Applcaton Test Revew 1. What s the decton o centpetal acceleaton? see unom ccula moton notes 2. What aects the magntude o a ctonal oce? see cton notes 3. What s the deence between

More information

Solutions to selected problems from homework 1.

Solutions to selected problems from homework 1. Jan Hagemejer 1 Soltons to selected problems from homeork 1. Qeston 1 Let be a tlty fncton hch generates demand fncton xp, ) and ndrect tlty fncton vp, ). Let F : R R be a strctly ncreasng fncton. If the

More information

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50 VEKTORANAYS Ksecka INE INTEGRA and UX INTEGRA Kaptel 4 5 Sdo 9 5 A wnd TARGET PROBEM We want to psh a mne cat along a path fom A to B. Bt the wnd s blowng. How mch enegy s needed? (.e. how mch s the wok?

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy Lesson 8: Wok, negy, Powe (Sectons 6.-6.8) Chapte 6 Conseaton o negy Today we begn wth a ey useul concept negy. We wll encounte many amla tems that now hae ey specc dentons n physcs. Conseaton o enegy

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

(8) Gain Stage and Simple Output Stage

(8) Gain Stage and Simple Output Stage EEEB23 Electoncs Analyss & Desgn (8) Gan Stage and Smple Output Stage Leanng Outcome Able to: Analyze an example of a gan stage and output stage of a multstage amplfe. efeence: Neamen, Chapte 11 8.0) ntoducton

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

Chapter 5 Circular Motion

Chapter 5 Circular Motion Chapte 5 Ccula Moton In a gd body, the dstances between the pats o the body eman constant. We begn nestgatng the otaton o a gd body. We conclude ou nestgaton n Chapte 8. The language used to descbe otatonal

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

C PLANE ELASTICITY PROBLEM FORMULATIONS

C PLANE ELASTICITY PROBLEM FORMULATIONS C M.. Tamn, CSMLab, UTM Corse Content: A ITRODUCTIO AD OVERVIEW mercal method and Compter-Aded Engneerng; Phscal problems; Mathematcal models; Fnte element method. B REVIEW OF -D FORMULATIOS Elements and

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

4. Linear systems of equations. In matrix form: Given: matrix A and vector b Solve: Ax = b. Sup = least upper bound

4. Linear systems of equations. In matrix form: Given: matrix A and vector b Solve: Ax = b. Sup = least upper bound 4. Lnea systes of eqatons a a a a 3 3 a a a a 3 3 a a a a 3 3 In at fo: a a a3 a a a a3 a a a a3 a Defnton ( vecto no): On a vecto space V, a vecto no s a fncton fo V to e set of non-negatve eal nes at

More information

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n HE EQUIVAENCE OF GRA-SCHID AND QR FACORIZAION (page 7 Ga-Schdt podes anothe way to copute a QR decoposton: n gen ectos,, K, R, Ga-Schdt detenes scalas j such that o + + + [ ] [ ] hs s a QR factozaton of

More information

2 dependence in the electrostatic force means that it is also

2 dependence in the electrostatic force means that it is also lectc Potental negy an lectc Potental A scala el, nvolvng magntues only, s oten ease to wo wth when compae to a vecto el. Fo electc els not havng to begn wth vecto ssues woul be nce. To aange ths a scala

More information

Evaluation of Various Types of Wall Boundary Conditions for the Boltzmann Equation

Evaluation of Various Types of Wall Boundary Conditions for the Boltzmann Equation Ealuaton o Vaous Types o Wall Bounday Condtons o the Boltzmann Equaton Chstophe D. Wlson a, Ramesh K. Agawal a, and Felx G. Tcheemssne b a Depatment o Mechancal Engneeng and Mateals Scence Washngton Unesty

More information

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r LINEAR MOMENTUM Imagne beng on a skateboad, at est that can move wthout cton on a smooth suace You catch a heavy, slow-movng ball that has been thown to you you begn to move Altenatvely you catch a lght,

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

ISSN: [Ramalakshmi* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Ramalakshmi* et al., 6(1): January, 2017] Impact Factor: 4.116 IJESRT ITERATIOAL JOURAL OF EGIEERIG SCIECES & RESEARCH TECHOLOGY AALYSE THE OPTIMAL ERROR AD SMOOTHESS VALUE OF CHEBYSHEV WAVELET V.Raalaksh, B.Raesh Kua, T.Balasubaanan (Depatent o Matheatcs, atonal

More information

4 SingularValue Decomposition (SVD)

4 SingularValue Decomposition (SVD) /6/00 Z:\ jeh\self\boo Kannan\Jan-5-00\4 SVD 4 SngulaValue Decomposton (SVD) Chapte 4 Pat SVD he sngula value decomposton of a matx s the factozaton of nto the poduct of thee matces = UDV whee the columns

More information

Derivation of the Differential Forms of the Conservation Laws Momentum

Derivation of the Differential Forms of the Conservation Laws Momentum Deatn f the Dffeental Fms f the Cnseatn Las Mmentm Aach t Deng the Dffeental Fms f the Cnseatn Las. Wte t the la f a sstem f atcles DNss D ηd Dt Dt. Rete the la n tems f a cntl lme sng the R.T.T. and Lebn

More information

Bruce A. Draper & J. Ross Beveridge, January 25, Geometric Image Manipulation. Lecture #1 January 25, 2013

Bruce A. Draper & J. Ross Beveridge, January 25, Geometric Image Manipulation. Lecture #1 January 25, 2013 Brce A. Draper & J. Ross Beerdge, Janar 5, Geometrc Image Manplaton Lectre # Janar 5, Brce A. Draper & J. Ross Beerdge, Janar 5, Image Manplaton: Contet To start wth the obos, an mage s a D arra of pels

More information

Infinite horizon MPC applied to batch processes. Part I

Infinite horizon MPC applied to batch processes. Part I Innte hozon MC appled to batch pocesses at I Aleo H González Edado J Adam Dac Odloa Jacnto L Machett Insttte o echnologcal Development o the Chemcal Indsty (INEC) CONICE - Unvesdad Naconal del Ltoal Santa

More information

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor Mcoelectoncs Ccut Analyss and Desgn Donald A. Neamen Chapte 5 The pola Juncton Tanssto In ths chapte, we wll: Dscuss the physcal stuctue and opeaton of the bpola juncton tanssto. Undestand the dc analyss

More information

Machine Learning 4771

Machine Learning 4771 Machne Leanng 4771 Instucto: Tony Jebaa Topc 6 Revew: Suppot Vecto Machnes Pmal & Dual Soluton Non-sepaable SVMs Kenels SVM Demo Revew: SVM Suppot vecto machnes ae (n the smplest case) lnea classfes that

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

Different General Algorithms for Solving Poisson Equation

Different General Algorithms for Solving Poisson Equation Dffeent Geneal Algotms fo Solvng Posson Equaton Me Yn SUMMARY Te objectve of ts tess s to dscuss te applcaton of dffeent geneal algotms to te soluton of Posson Equaton subject to Dclet bounday condton

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c)

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c) ed. Lab., Mon. Tues. ed. Lab. Mon. Tues. 6.1-.4 (.1) Intoducng Enegy & ok Quz 5 L5: Buoyancy, Ccles & Pendulums 6.5-.7 (.) Rest Mass,ok by Changng oces tudy Day tudy Day 6.8-.9(.18,.19) Intoducng Potental

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model 6. ntoucton to anssto mples: oncepts an Small-Sgnal Moel Lectue notes: Sec. 5 Sea & Smth 6 th E: Sec. 5.4, 5.6 & 6.3-6.4 Sea & Smth 5 th E: Sec. 4.4, 4.6 & 5.3-5.4 EE 65, Wnte203, F. Najmaba Founaton o

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Infinite Horizon MPC applied to batch processes. Part II

Infinite Horizon MPC applied to batch processes. Part II Innte Hozon MPC appled to batch pocesses Pat II Aleando H González Edado J Adam Dac Odloa 2 and Jacnto L Machett Insttte o echnologcal Development o the Chemcal Indsty (INEC) CONICE - Unvesdad Naconal

More information

Physics 201 Lecture 4

Physics 201 Lecture 4 Phscs 1 Lectue 4 ltoda: hapte 3 Lectue 4 v Intoduce scalas and vectos v Peom basc vecto aleba (addton and subtacton) v Inteconvet between atesan & Pola coodnates Stat n nteestn 1D moton poblem: ace 9.8

More information

Instantaneous velocity field of a round jet

Instantaneous velocity field of a round jet Fee shea flows Instantaneos velocty feld of a ond et 3 Aveage velocty feld of a ond et 4 Vtal ogn nozzle coe Developng egon elf smla egon 5 elf smlaty caled vaables: ~ Q ξ ( ξ, ) y δ ( ) Q Q (, y) ( )

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linea Algeba Math Open Book Eam Open Notes Sept Calculatos Pemitted Sho all ok (ecept #). ( pts) Gien the sstem of equations a) ( pts) Epess this sstem as an augmented mati. b) ( pts) Bing this mati to

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

4.4 Continuum Thermomechanics

4.4 Continuum Thermomechanics 4.4 Contnuum Themomechancs The classcal themodynamcs s now extended to the themomechancs of a contnuum. The state aables ae allowed to ay thoughout a mateal and pocesses ae allowed to be eesble and moe

More information

An Analytical Approach to Turbulent Flow Through Smooth Pipes

An Analytical Approach to Turbulent Flow Through Smooth Pipes An Analytcal Appoach to Tblent Flow Thogh Smooth Ppes AMIN MOOSAIE and GHOLAMALI ATEFI Depatment of Mechancal Engneeng Ian nesty of Scence and Technology P.O. Box 6844, Namak, Tehan IAN amnmoosae@mal.st.ac.

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

IV. Performance Optimization

IV. Performance Optimization IV. Performance Optmzaton A. Steepest descent algorthm defnton how to set up bounds on learnng rate mnmzaton n a lne (varyng learnng rate) momentum learnng examples B. Newton s method defnton Gauss-Newton

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Computational Vision. Camera Calibration

Computational Vision. Camera Calibration Comutatonal Vson Camea Calbaton uo hate 6 Camea Calbaton Poblem: Estmate amea s etns & ntns aametes MthdU Method: Use mage(s) () o knon sene ools: Geomet amea models SVD and onstaned least-squaes Lne etaton

More information

Delhi School of Economics Course 001: Microeconomic Theory Solutions to Problem Set 2.

Delhi School of Economics Course 001: Microeconomic Theory Solutions to Problem Set 2. Delh School of Economcs Corse 00: Mcroeconomc Theor Soltons to Problem Set.. Propertes of % extend to and. (a) Assme x x x. Ths mples: x % x % x ) x % x. Now sppose x % x. Combned wth x % x and transtvt

More information

Khintchine-Type Inequalities and Their Applications in Optimization

Khintchine-Type Inequalities and Their Applications in Optimization Khntchne-Type Inequaltes and The Applcatons n Optmzaton Anthony Man-Cho So Depatment of Systems Engneeng & Engneeng Management The Chnese Unvesty of Hong Kong ISDS-Kolloquum Unvestaet Wen 29 June 2009

More information

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3. 3 Eath s Rotaton 3.1 Rotatng Famewok Othe eadng: Valls 2.1, 2.2; Mashall and Plumb Ch. 6; Holton Ch. 2; Schubet Ch. 3 Consde the poston vecto (the same as C n the fgue above) otatng at angula velocty.

More information

COSC 6374 Parallel Computation

COSC 6374 Parallel Computation COSC 67 Parallel Comptaton Partal Derental Eqatons Edgar Gabrel Fall 0 Nmercal derentaton orward derence ormla From te denton o dervatves one can derve an appromaton or te st dervatve Te same ormla can

More information

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions A Bef Gude to Recognzng and Copng Wth Falues of the Classcal Regesson Assumptons Model: Y 1 k X 1 X fxed n epeated samples IID 0, I. Specfcaton Poblems A. Unnecessay explanatoy vaables 1. OLS s no longe

More information

III. Electromechanical Energy Conversion

III. Electromechanical Energy Conversion . Electoancal Enegy Coneson Schematc epesentaton o an toancal enegy coneson ece coppe losses coe losses (el losses) ancal losses Deental enegy nput om tcal souce: W V t Rt e t t W net ancal enegy output

More information

ON A PROBLEM OF SPATIAL ARRANGEMENT OF SERVICE STATIONS. Alexander Andronov, Andrey Kashurin

ON A PROBLEM OF SPATIAL ARRANGEMENT OF SERVICE STATIONS. Alexander Andronov, Andrey Kashurin Pat I Pobobabystc Modes Comute Moden and New Technooes 007 Vo No 3-37 Tansot and Teecommuncaton Insttute Lomonosova Ra LV-09 Latva ON A PROBLEM OF SPATIAL ARRANGEMENT OF SERVICE STATIONS Aeande Andonov

More information

Journal of Naval Science and Engineering 2015, Vol.11, No.1, pp FINITE DIFFERENCE MODEL OF A CIRCULAR FIN WITH RECTANGULAR PROFILE.

Journal of Naval Science and Engineering 2015, Vol.11, No.1, pp FINITE DIFFERENCE MODEL OF A CIRCULAR FIN WITH RECTANGULAR PROFILE. Jounal o Naval Scence and Engneeng 05 Vol. No. pp.53-67 FINIE DIFFERENCE MODEL OF A CIRCULAR FIN WIH RECANGULAR PROFILE İbahm GİRGİN Cüneyt EZGİ uksh Naval Academy uzla Istanbul ukye ggn@dho.edu.t cezg@dho.edu.t

More information

Electron density: Properties of electron density (non-negative): => exchange-correlation functionals should respect these conditions.

Electron density: Properties of electron density (non-negative): => exchange-correlation functionals should respect these conditions. lecton densty: ρ ( =... Ψ(,,..., ds d... d Pobablty of fndng one electon of abtay spn wthn a volume element d (othe electons may be anywhee. s Popetes of electon densty (non-negatve:.. 3. ρ ( d = ρ( =

More information

CIRCUITS 1 DEVELOP TOOLS FOR THE ANALYSIS AND DESIGN OF BASIC LINEAR ELECTRIC CIRCUITS

CIRCUITS 1 DEVELOP TOOLS FOR THE ANALYSIS AND DESIGN OF BASIC LINEAR ELECTRIC CIRCUITS CCUTS DEELOP TOOLS FO THE ANALYSS AND DESGN OF BASC LNEA ELECTC CCUTS ESSTE CCUTS Here we introduce the basic concepts and laws that are fundamental to circuit analysis LEANNG GOALS OHM S LAW - DEFNES

More information

(A1) and bˆ represents the expected price conditional on b. being one of the winning bids. Rewrite expression (A1) as follows:.

(A1) and bˆ represents the expected price conditional on b. being one of the winning bids. Rewrite expression (A1) as follows:. Aendx: Proo o Prooston : Bdder s (lnear) exected utlty rom dng s: S Q U (A) where Q reresents the roalty that she wns the aucton wth and reresents the exected rce condtonal on eng one o the wnnng ds Rewrte

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

An Approach to Inverse Fuzzy Arithmetic

An Approach to Inverse Fuzzy Arithmetic An Appoach to Invese Fuzzy Athmetc Mchael Hanss Insttute A of Mechancs, Unvesty of Stuttgat Stuttgat, Gemany mhanss@mechaun-stuttgatde Abstact A novel appoach of nvese fuzzy athmetc s ntoduced to successfully

More information

C PLANE ELASTICITY PROBLEM FORMULATIONS

C PLANE ELASTICITY PROBLEM FORMULATIONS C M.. Tamn, CSMLab, UTM Corse Content: A ITRODUCTIO AD OVERVIEW mercal method and Compter-Aded Engneerng; Phscal problems; Mathematcal models; Fnte element method. B REVIEW OF -D FORMULATIOS Elements and

More information

ON THE MICHAELIS-MENTEN ENZYME MECHANISM

ON THE MICHAELIS-MENTEN ENZYME MECHANISM Romanan Reports n Physcs Vol. 57 No. 3 P. 296-35 25 ON THE MICHAELIS-MENTEN ENZME MECHANISM C. TIMOFTE epartment o Mathematcs Faclty o Physcs Unersty o Bcharest P.O. Box MG- Bcharest Magrele Romana E-mal:

More information

Non-Linear Dynamics Homework Solutions Week 2

Non-Linear Dynamics Homework Solutions Week 2 Non-Linea Dynamics Homewok Solutions Week Chis Small Mach, 7 Please email me at smach9@evegeen.edu with any questions o concens eguading these solutions. Fo the ececises fom section., we sketch all qualitatively

More information

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS Dola Bagaoo 0 COORDINTE SYSTEMS COORDINTE TRNSFORMS ND PPLICTIONS I. INTRODUCTION Smmet coce of coodnate sstem. In solvng Pscs poblems one cooses a coodnate sstem tat fts te poblem at and.e. a coodnate

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

Multiple Experts with Binary Features

Multiple Experts with Binary Features Multiple Expets with Binay Featues Ye Jin & Lingen Zhang Decembe 9, 2010 1 Intoduction Ou intuition fo the poect comes fom the pape Supevised Leaning fom Multiple Expets: Whom to tust when eveyone lies

More information