a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N

Size: px
Start display at page:

Download "a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N"

Transcription

1 Conceptual ewton s Law Applcaton Test Revew 1. What s the decton o centpetal acceleaton? see unom ccula moton notes 2. What aects the magntude o a ctonal oce? see cton notes 3. What s the deence between netc and statc cton? see cton notes 4. When s a ctonal oce the geatest when someone st stats pushng on an object, just beoe t moves, o ate t moves? see cton notes 5. What s the decton o the netc cton oce? see cton notes 6. What s the decton o the statc cton oce? see cton notes 7. What s the decton o the nomal oce? see cton notes 8. Is the cente o mass always located at the cente o an object? Why o why not? see cente o mass eadng questons 9. Gve an example o a cente o mass that s not even located wthn the actual object. see cente o mass eadng questons 10. What s specal about the moton o the cente o mass? see cente o mass eadng questons 11. Gve thee examples o thngs that can supply centpetal oce. see unom ccula moton notes 12. Why s t moe dcult to stop you ca when you baes loc? see unom ccula moton notes 13. What s momentum? see momentum notes 14. What s the deence n an elastc and nelastc collson? see momentum notes 15. What s mpulse? see momentum notes 16. How ae mpulse and change n momentum elated? see momentum notes 17. What equaton do consevaton o momentum poblems stat wth? see momentum notes Poblems 18. Tammy s unnng aound a ccula tac at a constant speed. I she nceases he speed by a acto o ou, by what acto wll he centpetal acceleaton ncease? (16) a v2 a' (4v) 2 16 v2 19. Magaet holds a 2.40 g bloc o wood aganst a vetcal suace by pessng aganst t pependculaly, s = 0.32, what s the oce she exets to eep t thee? (73.5 ) y 0 s P s 0 s (2.4g)(9.8m / s 2 ) s s x 73.5 P 0 P 73.5

2 20. A hocey puc movng wth an ntal speed o 6.00 m/s sldes acoss a concete loo and comes to est ate gong 9.00 m. Detemne the coecent o netc cton. (0.204) v 2 v 2 2ax a v 2 2x 0 y (6m / s)2 2(9m) x ma ma 2.0m / s 2 a 2m / s2 g 9.8m / s A man exets a constant hozontal oce o 30.0 to gve a 5.00 g bloc an acceleaton o 5.00 m/s 2 along a hozontal suace. What s the cton oce? (5.00 ) ma x P ma P P ma 30 5g(5m / s 2 ) A 36.0 g cate sldes down a amp nclned at angle o 25º wth a constant speed o m/s. Detemne the coecent o netc cton. (0.466) 0 y cos cos x 0 sn cos 0 sn cos tan tan 25º 0.466

3 23. A 25.0 g pacage sldes down a 2.40 m long amp that s nclned at an angle o 28º. I the ntal speed down the amp was 1.40 m/s and = 0.160, what s the speed o the pacage at the bottom o the amp? (4.17 m/s) 0 y cos cos x ma sn cos ma a g(sn cos) (9.8m / s 2 )(sn28º 0.16cos 28º) 3.21m / s 2 v 2 v 2 2ax v (1.4m / s) 2 2(3.21m / s 2 )(2.4m) 4.17m / s 24. A 24.3 g mass and a 45.8 g mass ae placed so that the centes o mass ae sepaated by 4.60 m. How a s the cente o mass o the two objects om the cente o the 24.3 g mass? (3.00m) 24.3g(0) 45.8g(4.6m) m 45.8 g x cm 3.00m g 24.3g 45.8g x=0 x=4.6m 25. ou masses ae placed at vaous postons n the xy plane. Detemne the coodnates o the cente o mass a 1.00 g mass s placed at (8.0,0)m, a 1.50 g mass s placed at (0,-5.0)m, a 2.00 g mass s placed at (-2.0, 3.0)m and a 2.50 g mass s placed at (-8.0, 8)m. (-2.3, 2.6) m. x cm 1g(8m) 1.5g(0m) 2g(2m) 2.5g(8m) 1g 1.5g 2g 2.5g 2.3m 1g(0m) 1.5g(5m) 2g(3m) 2.5g(8m) y cm 2.6m 1g 1.5g 2g 2.5g 26. A boy whls a stone aound n a ccula hozontal path by applyng a oce o I the speed o the stone s nceased by a acto o 1.40, what wll the necessay oce be? (78.4 ) mv2 ' m1.4v mv2 ' 1.96(40 ) A 40.0 g gl s sttng on the outsde edge o a mey-go-ound that has a damete o 2.60 m. I she s movng wth a speed o 2.10 m/s, what s the oce necessay to hold on? (136 ) mv2 (40g) 2.1m / s 2 1.3m 136

4 28. What s the maxmum speed a 2500 g ca can go aound a level ccula tac o adus 20.0 m wthout slppng s=0.500? (9.9 m/s) 0 y s s ma x s mv2 v s g 0.5(9.8m / s 2 )(20m) 9.9m / s 29. A 200 g cannon at est contans a 10 g cannon ball. When ed, the cannon ball leaves the cannon wth a speed o 105 m/s. What s the ecol speed o the cannon? (v=5.25 m/s) p p 0 (10 g)(105 m / s) (200 g) v v 5.25 m / s 30. A 5.00 gam bullet tavelng hozontally at 850 m/s stes a statonay taget and stops ate penetatng 24.5 cm nto the taget. What s the aveage oce o the taget on the bullet? (=7372 ) v v 2ax 2 0 (850 m / s) 2 a(.245 m) a 1.47x10 m / s ma (0.005 g)(1.47x10 m / s ) A g lump o clay movng hozontally at 15.0 m/s stes and stcs to a statonay 0.25 g cat that can move on a ctonless tac. Detemne the speed o the cat and clay ate the collson. (v=5.625 m/s) p p (0.15 g)(15 m / s) (0.4 g) v v m / s 32. A mothe s holdng he 5.5 g baby n he ams whle dng n a ca movng at 32.0 m/s. The ca s nvolved n a head-on collson and stops wthn 0.5 seconds. What s the magntude o the oce exeted by the baby on hs mothe s ams? (=-352 ) J t mv mv (5.5 g)(0 32 m / s) 352 t 0.5s

5 Use ths dagam o the emanng questons: The box has a mass o 2.00 g. A 15 m 8 m 3.5m D E 45º B 15 m C 63º 33. The box s ntally statonay. I the nclne s ctonless, calculate the speed o the box at the bottom o the hll,.e., pont B. (v=14.4 m/s) ma sn ma a g sn (9.8 m / s ) sn m / s v v 2ax v m s m 2 2(6.93 / )(15 ) 14.4 m/ s 34. Consde the staght away poton o the dagam om ponts B-C. I the coecent o cton on the staght away s 0.18, what s the speed o the box ate t moved 15.0 m? (v=12.4 m/s) y x 0 a g.18(9.8 m / s ) 1.76 m / s v v 2ax ma ma v m s m s m (14.4 / ) 2( 1.76 / )(15 ) 12.4 m/ s

6 35. I the box then sldes up the next hll whee the coecent o cton on the hll s 0.04, what s the speed o the box at the top o the second hll? (v=9.75 m/s) 0 y cos cos x sn cos ma a g(sn cos ) (9.8 m / s )(sn 63º 0.04 cos 63º ) 8.9 m / s v v 2ax ma v (12.4 m / s) 2( 8.9 m / s )(3.5 m) 9.62 m / s 36. I ths box sldes along the second staght-away o a dstance o 8 m, what s the speed o the box ate ths dstance? ote, the suace om pont D to pont E s ctonless. (9.62 m/s) Speed doesn t change on hozontal ctonless nclne. 37. The box stes a wall and stops. What s the oce o the wall on the box the box stops n 1.20 seconds? (=-16.3 ) J t mv mv (2 g)( m / s) 16.0 t 1.2s 38. What s the oce o the box on the wall? (=16.0 ) ewton s 3 d law 39. What change n momentum does the box expeence? (Δp=-19.2s) p mv (2 g)( m / s) 19.2 s 40. What mpulse does the box expeence because o the oce? (J=-19.2s) Impulse = change n momentum

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r LINEAR MOMENTUM Imagne beng on a skateboad, at est that can move wthout cton on a smooth suace You catch a heavy, slow-movng ball that has been thown to you you begn to move Altenatvely you catch a lght,

More information

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position Chapte 5 Ccula Moton The language used to descbe otatonal moton s ey smla to the language used to descbe lnea moton. The symbols ae deent. Descpton Lnea Angula poston dsplacement ate o change o poston

More information

Physics 111 Lecture 11

Physics 111 Lecture 11 Physcs 111 ectue 11 Angula Momentum SJ 8th Ed.: Chap 11.1 11.4 Recap and Ovevew Coss Poduct Revsted Toque Revsted Angula Momentum Angula Fom o Newton s Second aw Angula Momentum o a System o Patcles Angula

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Chapter 5 Circular Motion

Chapter 5 Circular Motion Chapte 5 Ccula Moton In a gd body, the dstances between the pats o the body eman constant. We begn nestgatng the otaton o a gd body. We conclude ou nestgaton n Chapte 8. The language used to descbe otatonal

More information

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017 COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1 016/017 PROGRAMME SUBJECT CODE : Foundaton n Engneeng : PHYF115 SUBJECT : Phscs 1 DATE : Septembe 016 DURATION :

More information

One-dimensional kinematics

One-dimensional kinematics Phscs 45 Fomula Sheet Eam 3 One-dmensonal knematcs Vectos dsplacement: Δ total dstance taveled aveage speed total tme Δ aveage veloct: vav t t Δ nstantaneous veloct: v lm Δ t v aveage acceleaton: aav t

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

Review. Physics 231 fall 2007

Review. Physics 231 fall 2007 Reew Physcs 3 all 7 Man ssues Knematcs - moton wth constant acceleaton D moton, D pojectle moton, otatonal moton Dynamcs (oces) Enegy (knetc and potental) (tanslatonal o otatonal moton when detals ae not

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

Physics 1: Mechanics

Physics 1: Mechanics Physcs : Mechancs Đào Ngọc Hạnh Tâm Offce: A.503, Emal: dnhtam@hcmu.edu.vn HCMIU, Vetnam Natonal Unvesty Acknowledgment: Sldes ae suppoted by Pof. Phan Bao Ngoc Contents of Physcs Pat A: Dynamcs of Mass

More information

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c)

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c) ed. Lab., Mon. Tues. ed. Lab. Mon. Tues. 6.1-.4 (.1) Intoducng Enegy & ok Quz 5 L5: Buoyancy, Ccles & Pendulums 6.5-.7 (.) Rest Mass,ok by Changng oces tudy Day tudy Day 6.8-.9(.18,.19) Intoducng Potental

More information

PHY121 Formula Sheet

PHY121 Formula Sheet HY Foula Sheet One Denson t t Equatons o oton l Δ t Δ d d d d a d + at t + at a + t + ½at² + a( - ) ojectle oton y cos θ sn θ gt ( cos θ) t y ( sn θ) t ½ gt y a a sn θ g sn θ g otatonal a a a + a t Ccula

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy Lesson 8: Wok, negy, Powe (Sectons 6.-6.8) Chapte 6 Conseaton o negy Today we begn wth a ey useul concept negy. We wll encounte many amla tems that now hae ey specc dentons n physcs. Conseaton o enegy

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Physics 201 Lecture 4

Physics 201 Lecture 4 Phscs 1 Lectue 4 ltoda: hapte 3 Lectue 4 v Intoduce scalas and vectos v Peom basc vecto aleba (addton and subtacton) v Inteconvet between atesan & Pola coodnates Stat n nteestn 1D moton poblem: ace 9.8

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies Chapte 10 and elements of 11, 1 Rotaton of Rgd Bodes What s a Rgd Body? Rotatonal Knematcs Angula Velocty ω and Acceleaton α Rotaton wth Constant Acceleaton Angula vs. Lnea Knematcs Enegy n Rotatonal Moton:

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 10/15/01 PHY 11 C Geneal Physcs I 11 AM-1:15 PM MWF Oln 101 Plan fo Lectue 14: Chapte 1 Statc equlbu 1. Balancng foces and toques; stablty. Cente of gavty. Wll dscuss elastcty n Lectue 15 (Chapte 15) 10/14/01

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution oden Appled Scence The Fomn Theoy and the NC achnn fo The Rotay us wth the Spectal Ede Dstbuton Huan Lu Depatment of echancal Enneen, Zhejan Unvesty of Scence and Technoloy Hanzhou, c.y. chan, 310023,

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is Chapte 8 Homewok Solutions Easy P8. Assume the velocity of the blood is constant ove the 0.60 s. Then the patient s body and pallet will have a constant velocity of 6 0 5 m 3.75 0 4 m/ s 0.60 s in the

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

gravity r2,1 r2 r1 by m 2,1

gravity r2,1 r2 r1 by m 2,1 Gavtaton Many of the foundatons of classcal echancs wee fst dscoveed when phlosophes (ealy scentsts and atheatcans) ted to explan the oton of planets and stas. Newton s ost faous fo unfyng the oton of

More information

Chapter 12 Equilibrium and Elasticity

Chapter 12 Equilibrium and Elasticity Chapte 12 Equlbum and Elastcty In ths chapte we wll defne equlbum and fnd the condtons needed so that an object s at equlbum. We wll then apply these condtons to a vaety of pactcal engneeng poblems of

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

Physics 2A Chapter 9 HW Solutions

Physics 2A Chapter 9 HW Solutions Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

Physics 207 Lecture 13. Lecture 13

Physics 207 Lecture 13. Lecture 13 Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Objectives. Chapter 6. Learning Outcome. Newton's Laws in Action. Reflection: Reflection: 6.2 Gravitational Field

Objectives. Chapter 6. Learning Outcome. Newton's Laws in Action. Reflection: Reflection: 6.2 Gravitational Field Chapte 6 Gataton Objectes 6. Newton's Law o nesal Gataton 6. Gatatonal Feld 6. Gatatonal Potental 6. Satellte oton n Ccula Obts 6.5 scape Velocty Leanng Outcoe (a and use the oula / (b explan the eanng

More information

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3. 3 Eath s Rotaton 3.1 Rotatng Famewok Othe eadng: Valls 2.1, 2.2; Mashall and Plumb Ch. 6; Holton Ch. 2; Schubet Ch. 3 Consde the poston vecto (the same as C n the fgue above) otatng at angula velocty.

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Physics 207: Lecture 27. Announcements

Physics 207: Lecture 27. Announcements Physcs 07: ecture 7 Announcements ake-up labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 PHY 3 C General Physcs I AM-:5 PM MF Oln 0 Plan or Lecture 8: Chapter 8 -- Conservaton o energy. Potental and knetc energy or conservatve orces. Energy and non-conservatve orces 3. Power PHY 3 C Fall 03--

More information

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10. Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

Physic 231 Lecture 14

Physic 231 Lecture 14 Physc 3 Lecture 4 Man ponts o last lecture: Ipulses: orces that last only a short te Moentu p Ipulse-Moentu theore F t p ( ) Ipulse-Moentu theore ptot, p, p, p, p, ptot, Moentu and external orces F p ext

More information

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians:

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians: HW 7 Help 30. ORGANIZE AND PLAN We ae given the angula velocity and the time, and we ae asked to ind the distance that is coveed. We can ist solve o the angula displacement using Equation 8.3: t. The distance

More information

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Physics 207 Lecture 6

Physics 207 Lecture 6 Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and non-contact) Frcton (a external force that opposes moton) Free

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Non-constant forces Imulse-momentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8) Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Evaluation of Various Types of Wall Boundary Conditions for the Boltzmann Equation

Evaluation of Various Types of Wall Boundary Conditions for the Boltzmann Equation Ealuaton o Vaous Types o Wall Bounday Condtons o the Boltzmann Equaton Chstophe D. Wlson a, Ramesh K. Agawal a, and Felx G. Tcheemssne b a Depatment o Mechancal Engneeng and Mateals Scence Washngton Unesty

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

More information

Ground Rules. PC1221 Fundamentals of Physics I. Linear Momentum, cont. Linear Momentum. Lectures 17 and 18. Linear Momentum and Collisions

Ground Rules. PC1221 Fundamentals of Physics I. Linear Momentum, cont. Linear Momentum. Lectures 17 and 18. Linear Momentum and Collisions PC Fundamentals of Physcs I Lectures 7 and 8 Lnear omentum and Collsons Dr Tay Seng Chuan Ground Rules Swtch off your handphone and pager Swtch off your laptop computer and keep t No talkng whle lecture

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

Old Dominion University Physics 420 Spring 2010

Old Dominion University Physics 420 Spring 2010 Projects Structure o Project Reports: 1 Introducton. Brely summarze the nature o the physcal system. Theory. Descrbe equatons selected or the project. Dscuss relevance and lmtatons o the equatons. 3 Method.

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy Chapter 8 Moentu Ipulse and Collsons Analyss o oton: key deas Newton s laws o oton Conseraton o Energy Newton s Laws st Law: An object at rest or traelng n unor oton wll rean at rest or traelng n unor

More information

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite PHYS 015 -- Week 5 Readng Jounals today fom tables WebAssgn due Wed nte Fo exclusve use n PHYS 015. Not fo e-dstbuton. Some mateals Copyght Unvesty of Coloado, Cengage,, Peason J. Maps. Fundamental Tools

More information