Outline. Sound Waves. A. The Nature of Waves. 1. Types of Waves. 1. Types of Waves. 2. Structure of a wave. 3. Seismography.

Size: px
Start display at page:

Download "Outline. Sound Waves. A. The Nature of Waves. 1. Types of Waves. 1. Types of Waves. 2. Structure of a wave. 3. Seismography."

Transcription

1 The Science of Sound Lecture Sound Waves Updated 008 Jan 1 Dr. Bill Pezzaglia Physics SCU Outline A. Nature of Waves 1. Types of Waves. Structure of Waves 3. Seismography B. Wavespeed 1. Measurement of speed of sound. Theoretical Calculation of Wavespeed 3. Doppler Effect C. Reflection 1. Total Reflection. Partial Reflection 3. Reflectivity and Impedance D. Refraction 1. Fermat s problem: the path of least time. Snell s Law for angle of refraction 3. Sound bent by change in temperature of air E. Diffraction 1. Interference of Sound. Huygen s Principle of wave propagation 3. Diffraction through a slit (e.g. sound through a doorway) F. References A. The Nature of Waves 1. Types of Waves. Structure of a wave 3. Seismography 3 1. Types of Waves (a) Longitudinal ( p waves) travel through gas, liquid and solids. Particle motion in direction of wave (b) Transverse ( s waves) travel only in solids. Particle motion perpendicular to direction of wave. 4 (c) Ocean Waves Ocean Waves are Cycloid Waves. Particles travel in circles. 5 (d) Surface Waves Rayleigh Waves ( R wave) are similar, but exist in solids (more damaging in earthquakes than p or s waves) 6 Similar type (gravity) waves in the atmosphere, seen from above (starting at a volcano) Love Waves ( Q wave) are sideways surface vibrations, and are the most destructive in earthquakes 1

2 (e) Light Waves Light is a wave of electric and magnetic phenomena that can travel through empty space (no medium!) 7 (f) Gravity Waves? Not discovered yet, but we are looking for them. They would distort space as they travel by! 8 (g) LIGO Laser Interferometer Gravitational-Wave Observatory is looking for them! 9. The Structure of a Wave a) Structure i. Nodes: no displacement 10 ii. Antinode: maximum displacement b) Measurement of Wave i. Wavelength (measured in meters) ii. Amplitude (loudness) is the maximum wave displacement 11 c. Sound is displacement of pressure 1 (i) Rarefaction: the trough of the wave where pressure(density) is low (ii) Compression: the peak of the wave where pressure(density) is high

3 d) Frequency Frequency f : oscillations per second (Hertz) Wavespeed c : is frequency x wavelength c = fλ 13 3a Seismographs AD: Chinese (Zhang Heng) have primitive device 1880 John Milne invents modern seismograph (shear waves) 3b Two Basic Wave Types (Andrija Mohorovičić 1909) 15 3c Liquid Core 16 (pressure waves) Richard Dixon Oldham (July 31, 1858 July 15, 1936) was a British geologist who, in 1906, argued that the Earth must have a molten interior as S waves were not able to travel through liquids nor through the Earth's interior. S Shadow Zone (shear waves) S waves can only travel in solids! P can travel in solid, liquid and gas! 3d Speed of Waves 17 3e. Velocities of P and S waves in different layers of the Earth 18 Beno Gutenberg 1914 (worked with Richter) determines travel times for waves. Measures Temp and pressure inside of earth Measures size of core from P Wave Shadow Zone. P wave velocities: in granite: 6 km/sec in basalt: 7 km/sec in peridotite: 8 km/sec 3

4 3f Reflection & Refraction 19 Seismic waves are reflected or bent at the boundaries of different layers inside the earth 3g. Solid Inner Core (1936) The pressure at the center of the Earth is 3.6 million atmospheres Solid inner core discovered 1936 by Inge Lehmann from reflection/refraction of waves (for a time called the Lehmann discontinuity). Size not determined until 1960s from shockwaves from underground nuclear tests (echoes bouncing off inner core). 0 B. Wavespeed 1 1a. Leonardo da Vinci 1. Measurement of Speed of Sound Speed of sound is finite. Theory Calculation of speed 3. Doppler Effect A bell far away, will be heard to resonate in response to a bell ringing, after a delay in time Did he measure the speed of sound? (some references say yes) AD 1b Speed of sound depends upon medium! 3 1c William Derham ( ) 4 (1640) classic experiment on the sound radiation by a ticking watch in a partially evacuated glass vessel provided evidence that air is necessary, either for the production or transmission of sound. First to accurately measure speed of sound. (341 meters/second) Newton used his value in the Principia (1686), although it was 16% higher than the value Newton theoretically calculated. Robert Boyle ( AD) 4

5 1d Speed of Sound in Water (186) 5. Theory of Speed of Sound 6 Ion Lake Geneva, Switzerland, Jean- Daniel Colladen, a physicist, and Charles-Francois Sturm, a mathematician, measured speed to be 5x faster than in air. In their experiment, the underwater bell was struck simultaneously with ignition of gunpowder on the first boat. The sound of the bell and flash from the gunpowder were observed 10 miles away on the second boat. The time between the gunpowder flash and the sound reaching the second boat was used to calculate the speed of sound in water. Speed did NOT depend upon frequency! (a) Speed of sound depends upon the properties of the medium through which it travels: B coefficient of stiffness (springiness) measured in Pascals (the unit of pressure, Newton/meter ) ρ density (kilograms per cubic meter) c speed in meters/second c = B ρ b. Speed of Sound in Gas, Liquid and Solid 7 Note generally speed in solid > speed in liquid > speed in gas Item B (Pa) ρ (kg/m 3 ) V (m/s) Air Water Ice c. Speed in Gas Speed of sound depends upon T Temperature (Kelvin), faster when hot m molecular mass (kg/mole) Heavier gas slower (CO) Lighter gas faster (Helium) γ Fudge Factor (7/5) c = γ RT m 8 Iron R gas constant Joules/ K Mole 3. Doppler Effect 184 Christian Doppler shows detected frequency f d depends upon: f f s frequency of source d fs 1 v relative speed between detector and source c velocity of sound in medium So if moving 10% speed of sound towards you, the frequency will be increased 10% 9 v = + c C. Reflection 1. Total Reflection. Partial Reflection Acoustic Impedance 5

6 1. Total Reflection 31. Partial Reflection 3 Wave hitting a perfect mirror will be reflected Reflected wave is inverted. Wave passing from one medium to another will be partially reflected. Some of the wave is transmitted through 3. Specific Acoustic Impedance Z1 Z The amount of reflected energy: R = Z1 + Z Z is the specific acoustic impedance (resistance to vibration) Z = ρ B = ρ c So 99.95% of sound is reflected between air/water (hence you can t hear fish talking from above water) 33 D. Refraction 1. Fermat s Principle of Least Time. Snell s Law (161) 34 Item B (Pa) ρ (kg/m 3 ) Z (rayls) 3. Sound bent by Temperature Air Water glass Fermat s Principle 35. Snell s Law (161) 36 Lifeguard Dilemma: What is the fastest path to drowning man? Note you can run twice as fast as you can swim. Run straight to river, then swim Run further to shore adjacent swimmer then swim Optimal path obeys Snell s Law The path light (sound) takes is the one of minimum time Lifeguard Tower 1 1 sinθ1 = sinθ v v 1 Path of sound is bent toward normal when enters media with lower wavespeed (i.e. lower density) 6

7 3. Bending by Temperature 37 E. Diffraction 38 a) Velocity of sound increases with temperature: v b) Warm air over cool lake will bend sound down c) Cool air over hot road will bend sound up T 1. Huygen s Principle. Interference 3. Young slit diffraction 1. Huygen s Principle (1678) 39. Interference Two waves added together can cancel each other out if out of phase with each other. 40 Combined Wave Wave 1 Wave Coherent waves (in phase) add together to make bigger wave Waves 180 out of phase will cancel each other! 3. Diffraction Patterns Two wave sources close together (such as two speakers) will create diffraction patterns. At certain angles the waves cancel! 41 F. References Wave Animations: Huygen s Animation: Hugens & Diffraction More animations Water Waves 4 7

8 Demos Boyle: sound in vacuum Bottle (speed of sound) Temperature (use hairdryer) Molecular mass (canned air) Doppler Demo Rope high and low mass (reflection) Diffraction transparencies Diffraction (two speakers, need sound source) Perhaps use identical tuning forks? Si l t? 43 8

Outline. Oscillations & Waves. 1. Equilibrium. A. Harmonic Oscillators. b. Unstable Equilibrium. 1. Equilibrium. 2. Periodic Motion. 3.

Outline. Oscillations & Waves. 1. Equilibrium. A. Harmonic Oscillators. b. Unstable Equilibrium. 1. Equilibrium. 2. Periodic Motion. 3. CSUEB Physics CSUEB Physics 1200 Oscillations & Waves Outline A. Harmonic Oscillators 2 B. Waves Updated 2012 August2 C. Wave Phenomena Dr. Bill Pezzaglia A. Harmonic Oscillators 3 1. Equilibrium 4 1.

More information

Outline. Mechanical Waves. A. Wave Phenomena. 1. Types of Waves. 1. Types (modes) of Waves. 2. Structure of a wave. 3. Wavespeed.

Outline. Mechanical Waves. A. Wave Phenomena. 1. Types of Waves. 1. Types (modes) of Waves. 2. Structure of a wave. 3. Wavespeed. (Acoustics) 1 Outline Topic 0 Mechanical Waves A. Wave Phenomena B. Energy in Waves Updated 01April4 C. Wave Propagation Dr. Bill Pezzaglia Physics CSUEB A. Wave Phenomena 1. Types (modes) of Waves. Structure

More information

The Earth. Part II: Solar System. The Earth. 1a. Interior. A. Interior of Earth. A. The Interior. B. The Surface. C. Atmosphere

The Earth. Part II: Solar System. The Earth. 1a. Interior. A. Interior of Earth. A. The Interior. B. The Surface. C. Atmosphere Part II: Solar System The Earth The Earth A. The Interior B. The Surface C. Atmosphere 2 Updated: July 14, 2007 A. Interior of Earth 1. Differentiated Structure 2. Seismography 3. Composition of layers

More information

What does the speed of a wave depend on?

What does the speed of a wave depend on? Today s experiment Goal answer the question What does the speed of a wave depend on? Materials: Wave on a String PHeT Simulation (link in schedule) and Wave Machine Write a CER in pairs. Think about the

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Physics 1 Course Code: 2003380 SEMESTER 2 QUARTER 3 UNIT 7 TOPIC of STUDY: Thermal Energy STANDARDS: 8:Matter, 10: Energy, 12: Motion KEY LEARNING: ~Mathematically relate heat, phase change, energy,

More information

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class: Homework Book Wave Properties Huijia Physics Homework Book 1 Semester 2 Name: Homeroom: Physics Class: Week 1 Reflection, Refraction, wave equations 1. If the wavelength of an incident wave is 1.5cm and

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f f 1/T Formulas T 1/ f Fs kx Ts 2 m k Tp 2 l g v f What do the following all have in common? Swing, pendulum, vibrating string They all exhibit forms of periodic motion. Periodic Motion: When a vibration

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Name: Section: Forms of Energy Practice Test

Name: Section: Forms of Energy Practice Test Name: Section: Forms of Energy Practice Test Directions: For each of the questions or incomplete statements below, choose the best of the answer choices given and write your answer on the line. 1. What

More information

Baccalieu Collegiate. Physics Course Outline

Baccalieu Collegiate. Physics Course Outline Baccalieu Collegiate Physics 2204 Course Outline Course Content: Unit 1: Kinematics Motion is a common theme in our everyday lives: birds fly, babies crawl, and we, ourselves, seem to be in a constant

More information

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics Physics GRAVITATION 1. Pascal is a unit of a) pressure b) force c) linear momentum d) energy 2. The buoyant force on a body acts in a a) vertically downward direction b) vertically upward direction c)

More information

Unit 4 Parent Guide: Waves. What is a wave?

Unit 4 Parent Guide: Waves. What is a wave? Unit 4 Parent Guide: Waves What is a wave? A wave is a disturbance or vibration that carries energy from one location to another. Some waves require a medium to transmit the energy whereas others can travel

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Chapter 20: Mechanical Waves

Chapter 20: Mechanical Waves Chapter 20: Mechanical Waves Section 20.1: Observations: Pulses and Wave Motion Oscillation Plus Propagation Oscillation (or vibration): Periodic motion (back-and-forth, upand-down) The motion repeats

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Energy - the ability to do work or cause change. 1 point

Energy - the ability to do work or cause change. 1 point Energy and Waves Energy - the ability to do work or cause change Work - the transfer of energy Work = Force X Distance Power - the rate at which work is done Power = Work Time Kinetic Energy - the energy

More information

Physics 11 Exam 3 Spring 2016

Physics 11 Exam 3 Spring 2016 Physics 11 Exam 3 Spring 2016 Name: Circle the BEST Answer 1 Electromagnetic waves consist of A) compressions and rarefactions of electromagnetic pulses. B) oscillating electric and magnetic fields. C)

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

Chapter 6. Wave Motion. Longitudinal and Transverse Waves

Chapter 6. Wave Motion. Longitudinal and Transverse Waves Chapter 6 Waves We know that when matter is disturbed, energy emanates from the disturbance. This propagation of energy from the disturbance is know as a wave. We call this transfer of energy wave motion.

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

Chapter 7 Plate Tectonics

Chapter 7 Plate Tectonics Chapter 7 Plate Tectonics Earthquakes Earthquake = vibration of the Earth produced by the rapid release of energy. Seismic Waves Focus = the place within the Earth where the rock breaks, producing an earthquake.

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

battery bond capacitance

battery bond capacitance abrupt battery absolute temperature beats [heard when when two notes are slightly off pitch] absorption biochemical acceleration boil accelerator bond accuracy boundary acoustic wave brain algebraically

More information

VELOCITY OF SOUND. Apparatus Required: 1. Resonance tube apparatus

VELOCITY OF SOUND. Apparatus Required: 1. Resonance tube apparatus VELOCITY OF SOUND Aim : To determine the velocity of sound in air, with the help of a resonance column and find the velocity of sound in air at 0 C, as well. Apparatus Required: 1. Resonance tube apparatus

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Transmission, Reflections, Eigenfrequencies, Eigenmodes Tranversal and Bending waves D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Outline Introduction Types of waves Eigenfrequencies & Eigenmodes

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

Multi-station Seismograph Network

Multi-station Seismograph Network Multi-station Seismograph Network Background page to accompany the animations on the website: IRIS Animations Introduction One seismic station can give information about how far away the earthquake occurred,

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys 114 20 multiple choice problems (15 points each 300 total) 75% will be from Chapters 10-16 25% from Chapters 1-9 Students

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

Top 40 Missed Regents Physics Questions Review

Top 40 Missed Regents Physics Questions Review Top 40 Missed Regents Physics Questions - 2015 Review 1. Earth s mass is approximately 81 times the mass of the Moon. If Earth exerts a gravitational force of magnitude F on the Moon, the magnitude of

More information

Electromagnetic Waves A.K.A. Light

Electromagnetic Waves A.K.A. Light Electromagnetic Waves A.K.A. Light When Thomas Edison worked late into the night on the electric light, he had to do it by gas lamp or candle. I'm sure it made the work seem that much more urgent. George

More information

Earthquakes. Earthquakes and Earth s Interior Earth Science, 13e Chapter 8. Elastic rebound. Earthquakes. Earthquakes 11/19/2014.

Earthquakes. Earthquakes and Earth s Interior Earth Science, 13e Chapter 8. Elastic rebound. Earthquakes. Earthquakes 11/19/2014. and Earth s Interior Earth Science, 13e Chapter 8 Stanley C. Hatfield Southwestern Illinois College General features Vibration of Earth produced by the rapid release of energy Associated with movements

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

AP Waves/Optics ~ Learning Guide

AP Waves/Optics ~ Learning Guide AP Waves/Optics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The guide is marked based on effort, completeness, thoughtfulness, and neatness (not accuracy). Do your

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

Lecture 28 March

Lecture 28 March Lecture 28 March 30. 2016. Standing waves Musical instruments, guitars, pianos, organs Doppler Effect Resonance 3/30/2016 Physics 214 Spring 2016 1 Waves on a string If we shake the end of a rope we can

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

Wave Motion and Sound

Wave Motion and Sound Wave Motion and Sound 1. A back and forth motion that repeats itself is a a. Spring b. Vibration c. Wave d. Pulse 2. The number of vibrations that occur in 1 second is called a. A Period b. Frequency c.

More information

Chapter 16 Traveling Waves

Chapter 16 Traveling Waves Chapter 16 Traveling Waves GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms as it is used in physics,

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

SN Kansagra School. Structure of the Earth s Interior. After having learnt this chapter, you should be able to

SN Kansagra School. Structure of the Earth s Interior. After having learnt this chapter, you should be able to SN Kansagra School Structure of the Earth s Interior After having learnt this chapter, you should be able to Describe the processes that took place in the primitive earth Explain how these processes caused

More information

the ability to do work or cause change (work is force exerted on an object causing it to move a distance)

the ability to do work or cause change (work is force exerted on an object causing it to move a distance) Vocabulary Terms - Energy energy the ability to do work or cause change (work is force exerted on an object causing it to move a distance) heat Heat is a form of energy that flows between two substances

More information

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position. Chap 11. Vibration and Waves Sec. 11.1 - Simple Harmonic Motion The impressed force on an object is proportional to its displacement from it equilibrium position. F x This restoring force opposes the change

More information

The Nature of Light and Matter 1 Light

The Nature of Light and Matter 1 Light The Nature of Light and Matter 1 Light ASTR 103 4/06/2016 1 Basic properties: The Nature of Light Light travels in a straight line. Most surfaces reflect light. Amount of reflection depends on the medium.

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax. Optics Definitions Reflection is the bouncing of light off an object Laws of Reflection of Light: 1. The incident ray, the normal at the point of incidence and the reflected ray all lie in the same plane.

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

SOUND. Representative Sample Physics: Sound. 1. Periodic Motion of Particles PLANCESS CONCEPTS

SOUND. Representative Sample Physics: Sound. 1. Periodic Motion of Particles PLANCESS CONCEPTS Representative Sample Physics: Sound SOUND 1. Periodic Motion of Particles Before we move on to study the nature and transmission of sound, we need to understand the different types of vibratory or oscillatory

More information

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA. Wave propagation FABIO ROMANELLI

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA. Wave propagation FABIO ROMANELLI Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA Wave propagation FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it http://moodle2.units.it/course/view.php?id=887

More information

Fineman CP Physics Final Study Guide

Fineman CP Physics Final Study Guide All Science Tests are on Wednesday, June 17 th. Students who take more than one Science class will take their second science final on Thursday, June 18 from 8:00-10:00 AM in the Library. The CP Physics

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Lecture 23 Sound Beats Sound Solids and Fluids

Lecture 23 Sound Beats Sound Solids and Fluids Lecture 23 Sound Beats Sound Solids and Fluids To round out our discussion of interference and waves, we should talk about beats. When you combine two waves (sound is a good example), if the frequencies

More information

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period.

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period. Equilibrium Position Disturbance Period (T in sec) # sec T = # cycles Frequency (f in Hz) f = # cycles # sec Amplitude (A in cm, m or degrees [θ]) Other Harmonic Motion Basics Basic Definitions Pendulums

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

3. The dog ran 10m to the east, then 5m to the south,and another 10m to the west. What is the total distance?

3. The dog ran 10m to the east, then 5m to the south,and another 10m to the west. What is the total distance? October 28, 2014 Refer to Module 1: Activity 1: Where is it? October 29, 2014 1. It refers to the length of the entire path that the object travelled. A. Displacement B. Velocity C. Speed D. Distance 2.

More information

DEFINITIONS. Linear Motion. Conservation of Momentum. Vectors and Scalars. Circular Motion. Newton s Laws of Motion

DEFINITIONS. Linear Motion. Conservation of Momentum. Vectors and Scalars. Circular Motion. Newton s Laws of Motion DEFINITIONS Linear Motion Mass: The mass of a body is the amount of matter in it. Displacement: The displacement of a body from a point is its distance from a point in a given direction. Velocity: The

More information

Physics 20 Work Plan

Physics 20 Work Plan Units/Topics Time Frame Major Learning Outcomes Unit Major Resource(s) Assessment methods Unit 2 Wave Motion A. Properties of waves 1. Wave terminology 2. Universal wave equation 3. Principle of Superposition

More information

Let s Review What is Sound?

Let s Review What is Sound? Mathematics of Sound Objectives: Understand the concept of sound quality and what it represents. Describe the conditions which produce standing waves in a stretched string. Be able to describe the formation

More information

This Week. Waves transfer of energy and information. sound (needs an elastic medium)

This Week. Waves transfer of energy and information. sound (needs an elastic medium) This Week Waves transfer of energy and information sound (needs an elastic medium) Standing waves Musical instruments, guitars, pianos, organs Interference of two waves tuning a piano, color of oil films

More information

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES Name Period CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT WAVES FOLDABLE (blue, green & yellow completely filled in.) /30 /30 2. WS READING GUIDE FOR

More information

Physical Waves. A photograph, frozen in time, but showing all places, of a travelling water wave. Travelling Standing

Physical Waves. A photograph, frozen in time, but showing all places, of a travelling water wave. Travelling Standing 11/7/2014 Physical Waves Need a medium (material) to transmit energy through. Light waves are an exception. They use the space-time fabric itself! NOT position vs. time graphs! Y vs. X (Real Shape frozen

More information

Curriculum Map-- Kings School District Honors Physics

Curriculum Map-- Kings School District Honors Physics Curriculum Map-- Kings School District Honors Physics Big ideas Essential Questions Content Skills/Standards Assessment + Criteria Activities/Resources Motion of an object can be described by its position,

More information

MANITOBA CALL FOR PHYSICS Grade 11 CURRICULUM CORRELATION FORM. Resource ID #(s) Title: Series Title (if applicable):

MANITOBA CALL FOR PHYSICS Grade 11 CURRICULUM CORRELATION FORM. Resource ID #(s) Title: Series Title (if applicable): MANITOBA CALL FOR PHYSICS Grade 11 CURRICULUM CORRELATION FORM Resource ID #(s) Title: Series Title (if applicable): Student Resource Teacher Resource Indicate in the boxes ( ) below the Topic(s) to which

More information

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag?

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag? PHYSICS 20N UNIT 4 REVIEW NAME: Be sure to show explicit formulas and substitutions for all calculational questions, where appropriate. Round final answers correctly; give correct units. Be sure to show

More information

Physics 202 Homework 7

Physics 202 Homework 7 Physics 202 Homework 7 May 15, 2013 1. On a cello, the string with the largest linear density (0.0156 kg/m) is the C 171 newtons string. This string produces a fundamental frequency of 65.4 Hz and has

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction.

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction. MR. HOLL S PHYSICS FACTS MECHANICS 1) Velocity is a vector quantity that has both magnitude and direction. 2) Speed is a scalar quantity that has ONLY magnitude. 3) Distance is a scalar and represents

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves Waves If we wish to talk about electromagnetism or light we must first understand wave motion. If you drop a rock into the water small ripples are seen on the surface of

More information

Student Review Physics Semester B

Student Review Physics Semester B Test Description Length: 2 hours Items: 50 SR (85%), 2 BCRs (15%) Student Review Unit Approximate Number of Selected Response Items Skills and Processes 8 Thermal Energy 3 Electrostatics 6 Circuits 8 Magnetism

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Student Review Sheet. Physics Semester B Examination

Student Review Sheet. Physics Semester B Examination Test Description Length: 2 hours Items: 50 SR (~85%), 2 BCRs (~15%) Physics Semester B Examination Unit Approximate Number of Selected Response Items Skills and Processes 8 Thermal Energy 3 Electrostatics

More information

Physics Mechanics. Lecture 34 Waves and sound II

Physics Mechanics. Lecture 34 Waves and sound II 1 Physics 170 - Mechanics Lecture 34 Waves and sound II 2 Sound Waves Sound waves are pressure waves in solids, liquids, and gases. They are longitudinal in liquids and gases, and may have transverse components

More information

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia.

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. An earthquake is a movement of Earth s lithosphere that occurs when rocks in the lithosphere

More information

Periodic Functions and Waves

Periodic Functions and Waves Ron Ferril SBCC Physics 101 Chapter 06 20167ul06A Page 1 of 14 Chapter 06 Waves Periodic Functions and Waves Consider a function f of one variable x. That is, we consider a rule by which a number f(x)

More information

Study Guide: Semester Two ( )

Study Guide: Semester Two ( ) Name Hour Study Guide: Semester Two (2017-2018) Unit 5 Chapter 9 Momentum and its Conservation Chapter 10 Energy, Work and Simple Machines Chapter 11 Energy and its Conservation Vocabulary (define the

More information

glass Calculate the magnitude of the Young modulus for glass. State your answer to (a) in terms of SI fundamental units.

glass Calculate the magnitude of the Young modulus for glass. State your answer to (a) in terms of SI fundamental units. Q1.The term ultrasound refers to vibrations in a material that occur at frequencies too high to be detected by a human ear. When ultrasound waves move through a solid, both longitudinal and transverse

More information

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth)

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth) Final Exam All Finals week in the testing center. 50 multiple choice questions. Equations on the back of the test. Calculators are allowed on the test. There is a practice test in the packet. Exam 1 Review

More information

Prentice Hall: Conceptual Physics 2002 Correlated to: Tennessee Science Curriculum Standards: Physics (Grades 9-12)

Prentice Hall: Conceptual Physics 2002 Correlated to: Tennessee Science Curriculum Standards: Physics (Grades 9-12) Tennessee Science Curriculum Standards: Physics (Grades 9-12) 1.0 Mechanics Standard: The student will investigate the laws and properties of mechanics. The student will: 1.1 investigate fundamental physical

More information

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND.

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND. SOUND WAVES Objectives: 1. WHAT IS SOUND? 2. HOW DO SOUND WAVES TRAVEL? 3. HOW DO PHYSICAL PROPERTIES OF A MEDIUM AFFECT THE SPEED OF SOUND WAVES? 4. WHAT PROPERTIES OF WAVES AFFECT WHAT WE HEAR? 5. WHAT

More information

University Physics Volume I Unit 2: Waves and Acoustics Chapter 16: Waves Conceptual Questions

University Physics Volume I Unit 2: Waves and Acoustics Chapter 16: Waves Conceptual Questions Unit : Waves and Acoustics University Physics Volume I Unit : Waves and Acoustics Conceptual Questions. Give one example of a transverse wave and one example of a longitudinal wave, being careful to note

More information

Global Seismology Chapter 4

Global Seismology Chapter 4 Global Seismology Chapter 4 Earthquake: an event of ground shaking usually caused by the rupturing of a fault within the Earth. Who studies Earthquakes? Seismologists waves Geophysicists Mechanics Geodesy

More information

Seismic Waves. 1. Seismic Deformation

Seismic Waves. 1. Seismic Deformation Types of Waves 1. Seismic Deformation Seismic Waves When an earthquake fault ruptures, it causes two types of deformation: static; and dynamic. Static deformation is the permanent displacement of the ground

More information