TUTORIAL 6: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

Size: px
Start display at page:

Download "TUTORIAL 6: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION"

Transcription

1 Hands-On Tutorial Workshop, July 29 th 2014 TUTORIAL 6: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION Christian Carbogno & Manuel Schöttler Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin Work Group on Statistical Physics, Institut für Physik, Universität Rostock

2 I. THE HARMONIC CRYSTAL

3 THE HARMONIC APPROXIMATION The total energy E is a 3N-dimensional surface: Total Energy E R i 0 Atomic Coordinate R i E = V (R 1, R 2,, R N ) Approximate by Taylor Expansion around the Static Equilibrium Ri 0 E ({R 0 + R}) E ({R 0 })+ Static Equilibrium Energy

4 THE HARMONIC APPROXIMATION The total energy E is a 3N-dimensional surface: Total Energy E R i 0 Atomic Coordinate R i E = V (R 1, R 2,, R N ) Approximate by Taylor Expansion around the Static Equilibrium Ri 0 E ({R 0 + R}) E ({R 0 })+ i R 0 R i + Forces vanish at R0

5 THE HARMONIC APPROXIMATION Total Energy E 0 R i Harmonic Potential Atomic Coordinate R i The total energy E is a 3N-dimensional surface: E = V (R 1, R 2,, R N ) Approximate by Taylor Expansion around the Static Equilibrium Ri 0 E ({R 0 + R}) E ({R 0 })+ i R 0 R i X 2 j R0 R i R j Hessian Φij

6 THE HARMONIC APPROXIMATION Total Energy E 0 R i Harmonic Potential Atomic Coordinate R i The total energy E is a 3N-dimensional surface: E = V (R 1, R 2,, R N ) WARNING: Harmonic Approximate Approximation by Taylor is only Expansion valid for around small the displacements Static Equilibrium from RRi 0! 0 E ({R 0 + R}) E ({R 0 })+ i R 0 R i X 2 j R0 R i R j

7 THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ i R 0 R i X 2 j R0 R i R j Static Equilibrium Energy from DFT Hessian Φij Determine Hessian aka the Harmonic Force Constants Φij: from Density-Functional Perturbation Theory S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) & S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001). from Finite Differences K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) & K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

8 THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ i R 0 R i X 2 j R0 R i R j Static Equilibrium Energy from DFT Hessian Φij Determine Hessian aka the Harmonic Force Constants Φij: from Density-Functional Perturbation Theory phonopy-fhi-aims S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) & A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, (2008). S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001). from Finite Differences K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) & K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

9 THE FINITE DIFFERENCE APPROACH K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, (2008). Finite differences using normalized displacements d: ij j R 0 F j F j(r 0 i + " d i R 0 " Example: Diamond Si (2 atoms in the basis): 0 xx yx zx xx 21 yx 21 zx 21 xy yy zy xy 21 yy 21 zy 21 xz yz zz xz 21 yz 21 zz 21 xx yx zx xx 22 yx 22 zx 22 xy yy zy xy 22 yy 22 zy 22 xz yz zz xz 22 yz 22 zz 22 1 C A Hessian has 36 entries: 6 displacements d required

10 THE FINITE DIFFERENCE APPROACH K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, (2008). Finite differences using normalized displacements d: ij j R 0 F j F j(r 0 i + " d i R 0 " 0 xx yx zx xx 21 yx 21 zx 21 xy yy zy xy 21 yy 21 zy 21 xz yz zz xz 21 yz 21 zz 21 Example: Diamond Si (2 atoms in the basis): xx yx zx xx 22 yx 22 zx 22 xy yy zy xy 22 yy 22 zy 22 Space Group Analysis xz yz zz xz 22 yz 22 zz 22 1 C A 0 xx xy xx 0 xy 0 xx xy xx 0 xy 0 xz yz xx xz yz xx xx yz xz xx yz xz xy 0 xx 0 xy xx xy 0 xx 0 xy xx 1 C A Hessian has 5 unique, non-zero entries: Only 1 displacement d required

11 (a) Edit your file control.in so that it contains the following lines phonon displacement 0.01 (b) Run phonopy-fhi-aims by typing phonopy-fhi-aims (c) Change into the directory phonopy-fhi-aims-displacement-01 and run FHI-aims: cd phonopy-fhi-aims-displacement-01 mpirun -np 4 aims.x > phonopy-fhi-aims-displacement-01.out (d) Change into parent directory and run phonopy-fhi-aims again cd.. phonopy-fhi-aims

12 THE HARMONIC APPROXIMATION...in Molecules:...in Crystalline Solids: N... Number of atoms Degrees of Freedom: 3N Dimension of Hessian: 9N 2 N... Number of atoms Degrees of Freedom: 3N Dimension of Hessian: 9N 2 Tuesday July 22: Björn Lange, Nuts and Bolts of DFT II O. Hofmann & L. Nemec, Tutorial 1 BUT: N

13 PERIODIC BOUNDARY CONDITIONS cf. Christian Ratsch, Electronic Structure Theory for Periodic Systems: The Concepts, Tuesday July 22 Periodic Images Unit Cell with Np atoms Periodic Images Lattice vector: E 0 Real Space: Hessian Φij with i,j Fourier Transform D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j Reciprocal Space: Dynamical Matrix Di j (q) with i,j Np

14 VIBRATIONS IN A CRYSTAL 101 K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). Real Space: Hessian Φij with i,j Fourier Transform D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j Reciprocal Space: Dynamical Matrix Di j (q) with i,j Np Fourier Transform can be truncated since Φij = 0 for large Rj 0 - Rj 0 Hessian Φij with finite number of non-zero entries Dynamical Matrix Di j (q) known for the whole reciprocal space

15 VIBRATIONS IN A CRYSTAL 101 e.g. N. W Ashcroft and N. D. Mermin, Solid State Physics (1976) also see Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22 Dynamical matrix: D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j Equation of Motion becomes an Eigenvalue Problem: D(q) [ (q)] =! 2 (q) [ (q)] Analytical Solution in Real Space: Superposition of Harmonic Oscillations R j (t) = R 0 j + Re X s A s p Mi e i (q (R 0 j R 0 j 0 )! s (q)t) [ s (q)] j 0!

16 VIBRATIONS IN A CRYSTAL 101 e.g. N. W Ashcroft and N. D. Mermin, Solid State Physics (1976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22 Dynamical matrix: D i 0 j 0 (q) = X j e i (q (R j R j 0 )) p Mi 0M j 0 i 0 j! Eigenvalue problem: X q D(q) [ (q)] =! 2 (q) [ (q)]

17 VIBRATIONS IN A CRYSTAL 101 e.g. N. W Ashcroft and N. D. Mermin, Solid State Physics (1976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22 Dynamical matrix: " D i 0 j 0 (q) = X j =1 e i (q (R j R j 0 )) p Mi 0M j 0 i 0 j! X q Eigenvalue problem: " " " " D(q) [ (q)] =! 2 (q) [ (q)]

18 VIBRATIONS IN A CRYSTAL 101 e.g. N. W Ashcroft and N. D. Mermin, Solid State Physics (1976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22 Dynamical matrix: X D i 0 j 0 (q) = X j e i (q (R j R j 0 )) p Mi 0M j 0 i 0 j! X q Eigenvalue problem: X X X X D(q) [ (q)] =! 2 (q) [ (q)]

19 VIBRATIONS IN A CRYSTAL 101 e.g. N. W Ashcroft and N. D. Mermin, Solid State Physics (1976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22 For Np atoms in the unit cell there are: 3 Acoustic modes:! - Atoms in unit cell in-phase - Acoustic modes vanish at " - Strong (typically linear) dispersion close to " X q (3Np - 3) Optical modes: - Atoms in unit cell out-of-phase - ω > 0 at "#(and everywhere else) - Weak dispersion

20 CONVERGING THE SUPERCELL Fourier Transform can be truncated since Φij = 0 D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j for large Rij 0 = Rj 0 - Rj 0 phonon displacement 0.01 phonon supercell k_grid phonon displacement 0.01 phonon supercell k_grid 2 2 2

21 CONVERGING THE SUPERCELL Fourier Transform can be truncated since Φij = 0 D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j for large Rij 0 = Rj 0 - Rj 0 phonon displacement 0.01 phonon supercell k_grid phonon displacement 0.01 phonon supercell k_grid To achieve convergence, it is essential to have a consistent description of the electronic structure for all supercell sizes: #atoms #k-points constant

22 CONVERGING THE SUPERCELL Fourier Transform can be truncated since Φij = 0 D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j for large Rij 0 = Rj 0 - Rj 0 Oblique Cell: Not all Cartesian directions are treated consistently! Cubic ( spherical ) Cell: Consistent assessment of all cartesian directions!

23 VIBRATIONAL BAND STRUCTURE # control.in : Plot vibrational band structure phonon band Gamma Delta phonon band Delta X phonon band X W phonon band W K phonon band K Gamma phonon band Gamma Lambda phonon band Lambda L ω (cm -1 ) Γ X W K Γ Λ L

24 VIBRATIONAL DENSITY OF STATES g(!) = X s Z dq (2 ) 3 (!!(q)) = X s Z!(q)=! ds (2 ) 3 1 r!(q) # control.in : Plot vibrational density of states phonon dos g(ω) (a.u.) ω (cm -1 )

25 THE HARMONIC FREE ENERGY F ha (T ) = E({R 0 }) Z Static Equilibrium Energy + + Z d d g( ) ~ 2 Zero-point vibration g( ) k B T ln 1 e ~ k B T Thermally induced vibrations

26 FREE ENERGY AND HEAT CAPACITY # control.in : Plot harmonic contribution to F(T) phonon free_energy F ha (ev) c V (k B ) C V T (K) V = 2 F (T 2 V

27 THE QUASI-HARMONIC APPROXIMATION

28 THE HARMONIC APPROXIMATION H = X i T i X i,j ij R i R =0 Lattice expansion vanishes in the harmonic approximation. THE QUASI-HARMONIC APPROACH H = X i T i X i,j ij(v ) R i R 6=0 Assess lattice expansion by explicitly accounting for the volume dependence of the Hessian.

29 THE QUASI-HARMONIC APPROACH (free) energy +Fha(0K) Lattice constant a0 can be determined from Birch-Murnaghan fit of E(a0) cf. L. Nemec & B. Bienik, Tutorial 2 Add vibrational free energy for each individual value of a0 EDFT lattice constant a0

30 THE QUASI-HARMONIC APPROACH Lattice constant a0 can be (free) energy a0(t) +Fha(T2) +Fha(T1) +Fha(0K) determined from Birch-Murnaghan fit of E(a0) cf. L. Nemec & B. Bienik, Tutorial 2 Add vibrational free energy for each individual value of a0 EDFT Repeat for each temperature lattice constant a0 0K < T1 < T2 Birch-Murnaghan fits for each individual temperature allow to determine temperature dependence of lattice constant a0(t).

31 ELECTRON-PHONON COUPLING

32 BAND GAP RENORMALIZATION Electronic band gaps often exhibit a distinct temperature dependence Linear Extrapolation Linear extrapolation yields the bare gap at 0K, i.e., the gap for immobile nuclei (classical limit) Actual band gap at 0K differs from the bare gap: Band gap renormalization M. Cardona, Solid State Comm. 133, 3 (2005).

33 BAND GAP TEMPERATURE DEPENDENCE What is the physical mechanism? Exercise 4: Lattice Expansion? Exercise 5: Atomic Motion? Use results from exercise 3 Molecular Dynamics

34 MOLECULAR DYNAMICS Numerical Integration of the equations of motion L. Verlet, Phys. Rev. 159, 98 (1967). M I RI (t) = r Ri E DFT cf. Mariana Rossi & Luca Ghiringhelli, Tutorial 4: Molecular Dynamics

35 HARMONIC MOLECULAR DYNAMICS M I RI (t) = r Ri E DFT M I RI (t) = X j ij R j Harmonic Approximation # Molecular Dynamics MD_MB_init MD_time_step MD_clean_rotations.false. MD_schedule MD_segment 5.0 NVT_parrinello harmonic_potential_only fc_constants.dat MD_segment 20.0 NVT_parrinello harmonic_potential_only fc_constants.dat # Equilibration # Sample phase space

36 WARNING: In the following exercises, the computational settings, in particular the reciprocal space grid (tag k_grid), the basis set, and supercells, have been chosen to allow a rapid computation of the exercises in the limited time and within the CPU resources available during the tutorial session. In a real production calculation, the reciprocal space grid, the basis set, and the supercells would all have to be converged with much more care, but the qualitative trends hold already with the present settings Happy Computing! Manuel Schöttler Uni Rostock Bryan Goldsmith UCSB Daniel Berger TU Munich Björn Lange Duke Patrick Rinke FHI

TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION 1 INVESTIGATED SYSTEM: Silicon, diamond structure Electronic and 0K properties see W. Huhn, Tutorial 2, Wednesday August 2 2 THE HARMONIC

More information

Density functional theory and beyond: Computational materials science for real materials Los Angeles, July 21 August 1, 2014

Density functional theory and beyond: Computational materials science for real materials Los Angeles, July 21 August 1, 2014 Density functional theory and beyond: Computational materials science for real materials Los Angeles, July 21 August 1, 2014 R L e y E N e x Tutorial VI: Phonons, Lattice Expansion, and Band-gap Renormalization

More information

Hands-on Workshop: First-principles simulations of molecules and materials: Berlin, July 13 - July 23, 2015

Hands-on Workshop: First-principles simulations of molecules and materials: Berlin, July 13 - July 23, 2015 Hands-on Workshop: First-principles simulations of molecules and materials: Berlin, July 13 - July 23, 2015 R L e y E N e x Tutorial IV: Phonons, Lattice Expansion, and Band-gap Renormalization Manuscript

More information

Crystal Relaxation, Elasticity, and Lattice Dynamics

Crystal Relaxation, Elasticity, and Lattice Dynamics http://exciting-code.org Crystal Relaxation, Elasticity, and Lattice Dynamics Pasquale Pavone Humboldt-Universität zu Berlin http://exciting-code.org PART I: Structure Optimization Pasquale Pavone Humboldt-Universität

More information

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 3, 29 This afternoon s plan introductory talk Phonons: harmonic vibrations for solids Phonons:

More information

Before we start: Important setup of your Computer

Before we start: Important setup of your Computer Before we start: Important setup of your Computer change directory: cd /afs/ictp/public/shared/smr2475./setup-config.sh logout login again 1 st Tutorial: The Basics of DFT Lydia Nemec and Oliver T. Hofmann

More information

THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS

THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS Hands-On Tutorial Workshop, July 19 th 2011 THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS Christian Carbogno FRITZ-HABER-INSTITUT DER MAX-PLANCK-GESELLSCHAFT, BERLIN - GERMANY Hands-On Tutorial Workshop,

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann.

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann. Supporting information The Unusual and the Expected in the Si/C Phase Diagram Guoying Gao, N. W. Ashcroft and Roald Hoffmann Table of Contents Computational Methods...S1 Hypothetical Structures for Si

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Programming Project 2: Harmonic Vibrational Frequencies

Programming Project 2: Harmonic Vibrational Frequencies Programming Project 2: Harmonic Vibrational Frequencies Center for Computational Chemistry University of Georgia Athens, Georgia 30602 Summer 2012 1 Introduction This is the second programming project

More information

Structural Calculations phase stability, surfaces, interfaces etc

Structural Calculations phase stability, surfaces, interfaces etc Structural Calculations phase stability, surfaces, interfaces etc Keith Refson STFC Rutherford Appleton Laboratory September 19, 2007 Phase Equilibrium 2 Energy-Volume curves..................................................................

More information

Phonon calculations with SCAN

Phonon calculations with SCAN Workshop on the SCAN density functional: Fundamentals, practices, and extensions Temple university, Philadelphia May 18th, 2017 Hands-on tutorial 3 Phonon calculations with SCAN Yubo Zhang and Jianwei

More information

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory DFT and beyond: Hands-on Tutorial Workshop 2011 Tutorial 1: Basics of Electronic Structure Theory V. Atalla, O. T. Hofmann, S. V. Levchenko Theory Department, Fritz-Haber-Institut der MPG Berlin July 13,

More information

Lattice dynamics. Javier Junquera. Philippe Ghosez. Andrei Postnikov

Lattice dynamics. Javier Junquera. Philippe Ghosez. Andrei Postnikov Lattice dynamics Javier Junquera Philippe Ghosez Andrei Postnikov Warm up: a little bit of notation Greek characters ( ) refer to atoms within the unit cell Latin characters ( ) refer to the different

More information

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics and nuclear quantum effects Ab initio molecular dynamics and nuclear quantum effects Luca M. Ghiringhelli Fritz Haber Institute Hands on workshop density functional theory and beyond: First principles simulations of molecules and

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

Phonon wavefunctions and electron phonon interactions in semiconductors

Phonon wavefunctions and electron phonon interactions in semiconductors Phonon wavefunctions and electron phonon interactions in semiconductors Bartomeu Monserrat bm418@cam.ac.uk University of Cambridge Quantum Monte Carlo in the Apuan Alps VII QMC in the Apuan Alps VII Bartomeu

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

DFT in practice. Sergey V. Levchenko. Fritz-Haber-Institut der MPG, Berlin, DE

DFT in practice. Sergey V. Levchenko. Fritz-Haber-Institut der MPG, Berlin, DE DFT in practice Sergey V. Levchenko Fritz-Haber-Institut der MPG, Berlin, DE Outline From fundamental theory to practical solutions General concepts: - basis sets - integrals and grids, electrostatics,

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Predicting the Structure of Solids by DFT

Predicting the Structure of Solids by DFT Questions? Hudson Hall 235 or Hudson Hall 1111 Predicting the Structure of Solids by DFT Hands-On Instructions Contents 1 Cohesive Energy for Bulk Phases of Si 11 Setting up the Structures 12 Structure-Dependent

More information

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities Umesh V. Waghmare Theoretical Sciences Unit J N C A S R Bangalore ICMR OUTLINE Vibrations and interatomic force constants (IFC) Extended

More information

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Prepared by Lydia Nemec and Volker Blum Berlin, May 2012 Some rules on expected documentation

More information

Chapter 5 Phonons II Thermal Properties

Chapter 5 Phonons II Thermal Properties Chapter 5 Phonons II Thermal Properties Phonon Heat Capacity < n k,p > is the thermal equilibrium occupancy of phonon wavevector K and polarization p, Total energy at k B T, U = Σ Σ < n k,p > ħ k, p Plank

More information

Finite-temperature equation of state. T ln 2sinh h" '-

Finite-temperature equation of state. T ln 2sinh h '- Finite-temperature equation of state * $ F(V,T) = U 0 + k B T ln 2sinh h" '- #, & )/ + % 2k B T (. 0 # Compute vibrational modes, frequencies Evaluate at a given volume V Compute F at various temperatures

More information

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site: Advanced Spectroscopy Dr. P. Hunt p.hunt@imperial.ac.uk Rm 167 (Chemistry) web-site: http://www.ch.ic.ac.uk/hunt Maths! Coordinate transformations rotations! example 18.1 p501 whole chapter on Matrices

More information

Theoretical Concepts of Spin-Orbit Splitting

Theoretical Concepts of Spin-Orbit Splitting Chapter 9 Theoretical Concepts of Spin-Orbit Splitting 9.1 Free-electron model In order to understand the basic origin of spin-orbit coupling at the surface of a crystal, it is a natural starting point

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Elasticity M.P. Vaughan Overview Overview of elasticity Classical description of elasticity Speed of sound Strain Stress Young s modulus Shear modulus Poisson ratio

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

Phonons In The Elk Code

Phonons In The Elk Code Phonons In The Elk Code Kay Dewhurst, Sangeeta Sharma, Antonio Sanna, Hardy Gross Max-Planck-Institut für Mikrostrukturphysik, Halle If you are allowed to measure only one property of a material, make

More information

arxiv: v1 [cond-mat.mtrl-sci] 1 Mar 2011

arxiv: v1 [cond-mat.mtrl-sci] 1 Mar 2011 Phonon-phonon interactions in transition metals Laurent Chaput, 1 Atsushi Togo,,3 Isao Tanaka, 3,4 and Gilles Hug 1 Institut Jean Lamour, UMR CNRS 7198, Nancy Université, Bd. des Aiguillettes, BP 3, 5456

More information

Quasi-Harmonic Theory of Thermal Expansion

Quasi-Harmonic Theory of Thermal Expansion Chapter 5 Quasi-Harmonic Theory of Thermal Expansion 5.1 Introduction The quasi-harmonic approximation is a computationally efficient method for evaluating thermal properties of materials. Planes and Manosa

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Making Electronic Structure Theory work

Making Electronic Structure Theory work Making Electronic Structure Theory work Ralf Gehrke Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin, 23 th June 2009 Hands-on Tutorial on Ab Initio Molecular Simulations: Toward a First-Principles

More information

Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra

Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra Iurii Timrov SISSA Scuola Internazionale Superiore di Studi Avanzati, Trieste Italy itimrov@sissa.it Computer modelling of materials

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

From Electrons to Materials Properties

From Electrons to Materials Properties From Electrons to Materials Properties: DFT for Engineers and Materials Scientists Funk Fachgebiet Werkstoffe des Bauwesens und Bauchemie Mar-17, 2016 From Electrons to Materials Properties Density Functional

More information

Wave and Elasticity Equations

Wave and Elasticity Equations 1 Wave and lasticity quations Now let us consider the vibrating string problem which is modeled by the one-dimensional wave equation. Suppose that a taut string is suspended by its extremes at the points

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

7 Lattice Vibrations. 7.1 Introduction

7 Lattice Vibrations. 7.1 Introduction 7 Lattice Vibrations 7.1 Introduction Up to this point in the lecture, the crystal lattice (lattice vectors & position of basis atoms) was always assumed to be immobile, i.e., atomic displacements away

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body dynamics Rigid body simulation Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body simulation Unconstrained system no contact Constrained

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

Rotations and vibrations of polyatomic molecules

Rotations and vibrations of polyatomic molecules Rotations and vibrations of polyatomic molecules When the potential energy surface V( R 1, R 2,..., R N ) is known we can compute the energy levels of the molecule. These levels can be an effect of: Rotation

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

+ V = 0, j = 1,..., 3N (7.1) i =1, 3 m = 1, N, X mi, V X mi. i = 0 in the equilibrium. X mi X nj

+ V = 0, j = 1,..., 3N (7.1) i =1, 3 m = 1, N, X mi, V X mi. i = 0 in the equilibrium. X mi X nj 7. Lattice dynamics 7.1 Basic consideratons In this section we ll follow a number of well-known textbooks, and only try to keep the notations consistent. Suppose we have a system of N atoms, m=1,...,n,

More information

exciting in a nutshell

exciting in a nutshell http://exciting-code.org exciting in a nutshell Pasquale Pavone Humboldt-Universität zu Berlin http://exciting-code.org exciting in a (coco)nutshell Pasquale Pavone Humboldt-Universität zu Berlin Outline

More information

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between:

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between: Physics with Neutrons II, SS 2016 Lecture 1, 11.4.2016 MLZ is a cooperation between: Organization Lecture: Monday 12:00 13:30, PH227 Sebastian Mühlbauer (MLZ/FRM II) Sebastian.muehlbauer@frm2.tum.de Tel:089/289

More information

Geometry Optimisation

Geometry Optimisation Geometry Optimisation Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, UK http://www.cmt.york.ac.uk/cmd http://www.castep.org Motivation Overview of Talk Background

More information

Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation

Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation Peter Bird Dept. of Earth, Planetary, and Space Sciences

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 8: Lattice Waves in 1D Monatomic Crystals Outline Overview of Lattice Vibrations so far Models for Vibrations in Discrete 1-D Lattice Example of Nearest

More information

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch. HOMEWORK From Dieter -3, -4, 3-7 Module #3 Transformation of stresses in 3-D READING LIST DIETER: Ch., pp. 7-36 Ch. 3 in Roesler Ch. in McClintock and Argon Ch. 7 in Edelglass The Stress Tensor z z x O

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 14 May 2003

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 14 May 2003 LA-UR-3-239 arxiv:cond-mat/35331v1 [cond-mat.mtrl-sci] 14 May 23 Thermal Stabilization of the HCP Phase in Titanium Sven P. Rudin 1, M. D. Jones 2, and R. C. Albers 1 1 Los Alamos National Laboratory,

More information

ES - Solid State

ES - Solid State Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2017 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

1 Hooke s law, stiffness, and compliance

1 Hooke s law, stiffness, and compliance Non-quilibrium Continuum Physics TA session #5 TA: Yohai Bar Sinai 3.04.206 Linear elasticity I This TA session is the first of three at least, maybe more) in which we ll dive deep deep into linear elasticity

More information

Combining quasiparticle energy calculations with exact-exchange density-functional theory

Combining quasiparticle energy calculations with exact-exchange density-functional theory Combining quasiparticle energy calculations with exact-exchange density-functional theory Patrick Rinke 1, Abdallah Qteish 1,2, Jörg Neugebauer 1,3,4, Christoph Freysoldt 1 and Matthias Scheffler 1 1 Fritz-Haber-Institut

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

Properties of the stress tensor

Properties of the stress tensor Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress

More information

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity Torino, Italy, September 4-9, 2016 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it

More information

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft How exciting! 2016 Berlin, 3-6 August laura.foglia@elettra.eu 1 Current research challenges V Light Harvesting Light Emission Energy

More information

Numerical Implementation of Transformation Optics

Numerical Implementation of Transformation Optics ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #16b Numerical Implementation of Transformation Optics Lecture

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

More information

The quasi-harmonic approximation (QHA)

The quasi-harmonic approximation (QHA) The quasi-harmonic approximation (QHA) M. Palumbo 19/01/2017 Trieste, Italy Limitations of the harmonic approximation E tot(r I, u I )=E tot(r I )+ I,α E tot u u Iα + 1 2 E tot Iα 2 I,α u u Iα u Iα u Jβ

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:00-12:30 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Who am I? Assistant Professor, Institute for Theoretical and Computational Physics,

More information

Microscopic-Macroscopic connection. Silvana Botti

Microscopic-Macroscopic connection. Silvana Botti relating experiment and theory European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre for Computational

More information

Electronic Structure of Crystalline Solids

Electronic Structure of Crystalline Solids Electronic Structure of Crystalline Solids Computing the electronic structure of electrons in solid materials (insulators, conductors, semiconductors, superconductors) is in general a very difficult problem

More information

Abinit electron phonon interaction calculations for geniuses

Abinit electron phonon interaction calculations for geniuses Abinit electron phonon interaction calculations for geniuses Matthieu Verstraete, Bin Xu, and Momar Diakhate Unité Nanomat, Dept of Physics, Université de Liège, Belgium 1 I. INTRODUCTION This document

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Applications of Eigenvalues & Eigenvectors

Applications of Eigenvalues & Eigenvectors Applications of Eigenvalues & Eigenvectors Louie L. Yaw Walla Walla University Engineering Department For Linear Algebra Class November 17, 214 Outline 1 The eigenvalue/eigenvector problem 2 Principal

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: After structural optimization of the CH 3 NH 3 PbI 3 unit cell, the resulting relaxed volumes for three distinct orientation of the MA molecules are shown.

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Electromagnetism II Lecture 7

Electromagnetism II Lecture 7 Electromagnetism II Lecture 7 Instructor: Andrei Sirenko sirenko@njit.edu Spring 13 Thursdays 1 pm 4 pm Spring 13, NJIT 1 Previous Lecture: Conservation Laws Previous Lecture: EM waves Normal incidence

More information

Project Report: Band Structure of GaAs using k.p-theory

Project Report: Band Structure of GaAs using k.p-theory Proect Report: Band Structure of GaAs using k.p-theory Austin Irish Mikael Thorström December 12th 2017 1 Introduction The obective of the proect was to calculate the band structure of both strained and

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice 4. Thermal properties of solids Time to study: 4 hours Objective After studying this chapter you will get acquainted with a description of oscillations of atoms learn how to express heat capacity for different

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Introduction, Basic Mechanics 2

Introduction, Basic Mechanics 2 Computational Biomechanics 18 Lecture : Introduction, Basic Mechanics Ulli Simon, Lucas Engelhardt, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents Mechanical Basics Moment

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

Algebraic Expressions

Algebraic Expressions Algebraic Expressions 1. Expressions are formed from variables and constants. 2. Terms are added to form expressions. Terms themselves are formed as product of factors. 3. Expressions that contain exactly

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information