Economies of Scale: Replicating Christensen and Greene (1976) by Arianto A. Patunru Department of Economics, University of Indonesia 2004

Size: px
Start display at page:

Download "Economies of Scale: Replicating Christensen and Greene (1976) by Arianto A. Patunru Department of Economics, University of Indonesia 2004"

Transcription

1 Economes of Scale: Replcatng Chrstensen and Greene (976) b Aranto A. Patunru Department of Economcs, Unverst of Indonesa 4. Introducton Ths exercse s based on a class assgnment n Unverst of Illnos, nstructed b Prof. Carl Nelson. It s to replcate some of the results on economes of scale reported b Chrstensen and Greene (Economes of Scale n U.S. Electrc Power Generaton, Journal of Poltcal Econom, 84:4, Part, 976). Chrstensen and Green updated the data used b Nerlove (955; Returns to Scale n Electrct Suppl, reprnted n C.F. Chrst, ed., Measurement n Economcs: Studes n Honor of Yehuda Grunfeld, Stanford Unv. Press; 963:67-98) to 97. The found that b 97 the bulk of electrct generaton n the Unted States came from frms operatng ver near the bottom of ther average cost curves. The concluded that a small number of extremel large frms are not requred for effcent producton and that polces promotng competton n electrc power generaton cannot be faulted n terms of sacrfcng economes-of-scale.. Replcatng Nerlove (955) Frst, we replcate some of the prncpal returns-to-scale results reported b Nerlove (955). The equaton estmated b Nerlove s: ln(cp3) β + β ln(kwh) + β ln(p3) + β ln(p3) where ln s natural logarthm and: cp3 kwh p3 p3 relatve total costs klowatt-hours as measure of outputs labor relatve prce wth respect to fuel prce captal relatve prce wth respect to fuel prce Nerlove (963) reports parameter estmates for β, β, and β as.7(.75),.56(.98), and.3(.9), respectvel, where fgures n parentheses are standard errors; and R of.93.

2 .. Estmaton Our replcaton elds: Source SS df MS Number of obs F( 3, 4) Model Prob > F. Resdual R-squared Adj R-squared.93 Total Root MSE.3976 lncp3 Coef. Std. Err. t P> t [95% Conf. Interval] lnkwh lnp lnp _cons Therefore we cannot replcate Nerlove s results precsel. Both estmates and ther standard errors are dfferent from what Nerlove obtans. However, we obtan R that s close to Nerlove s... Returns-to-Scale From the estmaton above we obtan a 95% confdence nterval for βˆ [.686,.755] βˆ as follows: Ths mples that, at the 5% sgnfcance level, there s no constant returns-to-scale, snce βˆ les outsde the nterval. Another wa to examne constant returns-to-scale s b testng the hpothess of β aganst the alternatve, β. The test statstc for ths s Comparng ths to crtcal value of Z ±.96, α. 5 leads us to rejectng the null hpothess. Agan, α we conclude there s no constant returns-to-scale. We can also calculate ths manuall usng the formula: CI [ ˆ ˆ β ± Z ˆ ] β α σ β.5 The formula s ˆ β σ β ˆ ; n addton we could also use F-test provded b STATA (see appendx), where we get F(,4) wth Prob > F.. Takng square root of ths F-stat gves us the t-stat above.

3 Now we are nterested to know whether the returns-to-scale s actuall ncreasng or decreasng. We use a pont estmate r 3 wth relaton to β as β r. Solvng for r we have: r ˆ β. 39. B the propert of Cobb-Douglas functon, we conclude an ncreasng returns-to-scale. Lastl, we can obtan postve economes of scale: e r Factor Share The demands for each factor of producton wll be postve onl f the factor share, α s postve,,, 3. The factor shares are determned b α β β ˆ β r. Therefore we obtan α x Usng ths result we can test the hpothess that α. Ths gves a test statstc of Thus, we cannot reject the hpothess. We conclude that the factor share of captal s not sgnfcantl dfferent from zero. Ths result s strkng snce t mples that captal s not beng used as a producton factor n electrct generaton. Ths mght be the result wh Nerlove was unsatsfed..4. Resduals In the followng fgure we plot the resduals from the estmated regresson aganst the output:.89.5 Resduals lnkwh 3 r beng the sum of factors exponents n a Cobb-Douglas functon (.e. returns-to-scale parameter). 4 The formula s α, where σ α var( ˆ β ) r σ ˆ β σ α r.65 ; and p-value s

4 In the fgure we see that the resduals are postve at small levels of output, negatve at medum levels, and postve agan at larger level of outputs. Ths U-shaped pattern s close to what Nerlove found and t means that the regresson results overestmate the true costs at ver low and ver hgh levels of output, and underestmate them at ntermedate levels of output. Fnall we note that the sample correlaton between the resduals and the output s zero. Ths s because n OLS estmaton, the explanator varables (here ncludng the output) are orthogonal to the error term,.e. the are ndependent. 3. Fxng the Data Next we use UPDATE data provded b Berndt (The Practce of Econometrcs: Classc and Contemporar, Addson-Wesle Publshng, 99). The data conssts of 9 columns wth 99 observatons. The columns are OBSNO (observaton number), COST7 (total costs), WH7 (output), PL7 (labor prce), P7 (captal prce), and PF7 (fuel prce). After examnng the data we suspect that there s a decmal placng error n PL7 column. Summar statstcs shows that the mean and standard devaton of PL7 are extremel hgh compared to those of P7 and PF7: Varable Obs Mean Std. Dev. Mn Max pl pk pf To fx ths, we dvde the PL7 entres b. We then obtan the followng statstcs: Varable Obs Mean Std. Dev. Mn Max pl pk pf whch s more comparable. 4. Cobb-Douglas Cost Functon After transformng the data nto relatve prces wth respect to fuel prce we construct a Cobb-Douglas cost functon as follows: ( COST / PF) βy β L β ( WH ) ( PL / PF) ( P / PF) β or, n ther log forms: ln c β + β Y ln + β L ln pl + β ln pk 4

5 where c : COST/PF : WH pl : PL/PF pk : P/PF and ln means natural logarthm. We obtan the followng results from estmaton: Source SS df MS Number of obs F( 3, 95) Model Prob > F. Resdual R-squared Adj R-squared.9778 Total Root MSE.99 lnc Coef. Std. Err. t P> t [95% Conf. Interval] ln lnpl lnpk _cons The table shows that both ln pl and ln pk (.e. ln(pl/pf) and ln(p/pf), resp.) are not sgnfcant at the 5 percent level,.e. the t-statstcs are.33 and.68, respectvel, wth p-value of.86 and.96. We can calculate the derved value of the coeffcent for ln(pf) as follows: ln(cost) ln(pf) β + β Y ln(wh) + β L [ln(pl) ln(pf)] + β [ln(p) ln(pf)] ln(cost) β + β Y ln(wh) + β L ln(pl) + β ln(p) + ( - β L - β ) ln(pf) Thus, the coeffcent for ln(pf) s ˆ β F ˆ β ˆ β L The standard error s calculated as follows: Var ( - βˆ L - βˆ ) Var (-( βˆ + L Var ( βˆ L + βˆ ) βˆ )) Var ( βˆ L ) + Var ( βˆ ) + Cov ( βˆ L, βˆ ) *(-.7568).6363 se ( ˆ β ) F Next, followng Berndt (99) we calculate the returns-to-scale as follows: 5

6 r ln c ln ˆ β Y.63 Ths result mples an ncreasng returns-to-scale. In addton, we have a postve economes-of-scale (e r.). 5. Augmented Nerlove Model To allow the returns-to-scale to var wth the output, we add the quadratc output term nto the estmaton. That s, we estmate: ln c β + β Y ln + β ln sq + β L ln pl + β ln pk where lnsq : [ln(wh)] (ln ) The estmaton elds: Source SS df MS Number of obs F( 4, 94) Model Prob > F. Resdual R-squared Adj R-squared.996 Total Root MSE.3758 lnc Coef. Std. Err. t P> t [95% Conf. Interval] ln lnsq lnpl lnpk _cons The result shows that onl ln pk s not sgnfcant at the 5 percent level,.e. wth t-statstc.78 and p-value.435. Meanwhle, the coeffcent for the quadratc output term s sgnfcantl dfferent from zero wth t-statstc.38 and p-value.. 5 Snce WH s not dvded b PF, then the derved coeffcent for ln(pf) and ts standard devaton can be calculated wth the same formula as n Cobb-Douglas, that s, ˆ β ˆ β ˆ β.6559 wth se ( ˆ β ) F L Now the returns-to-scale s calculated as: F r ln c ln ˆ β + * ˆ β Y ln 5 Ths s the same as testng for H : β usng F-stat (see appendx) that gves F(,94) 9.4 wth Prob > F., meanng that the null hpothess s rejected. 6

7 Therefore, the returns-to-scale vares wth the output level. We can plot ths mpled returns-to-scale as a functon of output as n the followng graph: Fgure. Returns-to-Scale and Output, Augmented Nerlove Model.64.5 rtsquad output Note: rtsquad: returns-to-scale for model wth quadratc output term. The graph mples that substantal scale economes are obtaned at low levels of output. Ths s consstent wth Chrstensen and Greene s fndng. 6. Chrstensen and Greene s Model A Fnall we estmate the cost functon usng Chrstensen and Greenes Model A. The used the followng translog cost functon: where nputs 6. lnc α + αy lny + γ (lny ) + j j α ln P + γ j ln P Pj + γ Y j lny ln P γ γ, C s total cost, Y s output, and the P s are the prces of the factor 6 The relatonshps among the parameters are such that the cost functon s homogenous of degree one n prces. That s, α, γ Y, γ γ j γ j j j j 7

8 For our estmaton we adjust ths functon nto: ln c β + + β Y ln + β (ln ) + β L ln pl + β LL (ln pl) + β ln pk β (ln pk) + β (ln pl)(ln pk) + β (ln pl)(ln ) + β L We obtan the estmaton result as follows: LY Y (ln pk)(ln ) Source SS df MS Number of obs F( 9, 89) 4.36 Model Prob > F. Resdual R-squared Adj R-squared.99 Total Root MSE.336 lnc Coef. Std. Err. t P> t [95% Conf. Interval] ln lnsq lnpl lnplsq lnpk lnpksq lnplpk lnpl lnpk _cons It s shown that ln pl, (ln pl), (ln pl)(ln pk), and (ln pl)(ln ), that s, all ln pl and ts nteracton terms, are not sgnfcant at the 5 percent level. The t-statstcs for these varables are.38,.7, -.95, and.5, respectvel, wth p-values of.75,.46,.55, and.6. The translog cost functon used b Chrstensen and Greene does not constran the structure of producton to be homothetc, nor does t mpose restrctons on the elastctes-of-substtuton. However, these can be tested statstcall. That s, homothetct restrcton s such that γ and homogenet restrcton s such that γ and γ. Y Y Takng ths nto our estmaton, we can examne the homothetct n output b testng whether or not the coeffcents of (ln pl)(ln ) and (ln pk)(ln ) are both zero. Our test gves an F-stat of 5.5 wth p-value of.84. Therefore, we reject the hpothess at the 5 percent level. In other words, the cost functon appled to 97 data does not exhbt homothetct. On the other hand, the assessment of homogenet n output nvolves the testng of whether the above restrctons hold (the coeffcents βˆ LY and βˆ Y are both zero) and the coeffcent of (ln ), βˆ s also zero. The test gves an F-stat of wth p-value of 8

9 .. So, we reject the hpothess for homogenet, too. Ths s consstent wth what Chrstensen and Greene found. The fact that we reject both the hpothess of homothetct and the hpothess of homogenet mples that a model that allows non-homothetct and non-homogenet n output s requred to represent the structure of productons for U.S. frms generatng electrc power. 7 Just lke n the prevous two estmatons, we are also nterested n the returns-to-scale. Here t s calculated as follows: r ln c ln ˆ β + * ˆ β ln + ˆ β ln pl + ˆ β Y LY Y ln pk Usng ths formula and plottng the values aganst the output gves a pattern depcted n Fgure. Agan, the graph tells us that n general, the electrc utlt frms exhbt an ncreasng returns-to-scale (r s greater than one), whle the economes-of-scale 8 falls wth output level. However, ths economes-of-scale s exhausted at output levels of around 3, mllon kwh (that s, at lnkwh 9.5 on the graph). Fgure. Returns-to-Scale and Output, C-G s Model A.89.5 rtsfull output Note: rtsfull: returns-to-scale for full model,.e. Model A. 7 Clearl, the Cobb-Douglas functon n Secton s a lmtng form of ths generalzaton n whch we mplctl mpose homothetct and homogenet. 8 Here, followng Chrstensen and Greene s defned as e /r. However, we should note that * ˆ β γ 9

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees.

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees. Model and Data ECON 35* -- NOTE 3 Tests for Coeffcent Dfferences: Examples. Introducton Sample data: A random sample of 534 pad employees. Varable defntons: W hourly wage rate of employee ; lnw the natural

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

Question 1 carries a weight of 25%; question 2 carries 20%; question 3 carries 25%; and question 4 carries 30%.

Question 1 carries a weight of 25%; question 2 carries 20%; question 3 carries 25%; and question 4 carries 30%. UNIVERSITY OF EAST ANGLIA School of Economcs Man Seres PGT Examnaton 017-18 FINANCIAL ECONOMETRICS ECO-7009A Tme allowed: HOURS Answer ALL FOUR questons. Queston 1 carres a weght of 5%; queston carres

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors ECONOMICS 5* -- Introducton to Dummy Varable Regressors ECON 5* -- Introducton to NOTE Introducton to Dummy Varable Regressors. An Example of Dummy Varable Regressors A model of North Amercan car prces

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1 Lecture 9: Interactons, Quadratc terms and Splnes An Manchakul amancha@jhsph.edu 3 Aprl 7 Remnder: Nested models Parent model contans one set of varables Extended model adds one or more new varables to

More information

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Economcs Man Seres PG Examnaton 016-17 ECONOMETRIC METHODS ECO-7000A Tme allowed: hours Answer ALL FOUR Questons. Queston 1 carres a weght of 5%; Queston carres 0%;

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Chapter 15 - Multiple Regression

Chapter 15 - Multiple Regression Chapter - Multple Regresson Chapter - Multple Regresson Multple Regresson Model The equaton that descrbes how the dependent varable y s related to the ndependent varables x, x,... x p and an error term

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 1 Chapters 14, 15 & 16 Professor Ahmad, Ph.D. Department of Management Revsed August 005 Chapter 14 Formulas Smple Lnear Regresson Model: y =

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) June 7, 016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston A B C Blank Queston

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

January Examinations 2015

January Examinations 2015 24/5 Canddates Only January Examnatons 25 DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR STUDENT CANDIDATE NO.. Department Module Code Module Ttle Exam Duraton (n words)

More information

17 - LINEAR REGRESSION II

17 - LINEAR REGRESSION II Topc 7 Lnear Regresson II 7- Topc 7 - LINEAR REGRESSION II Testng and Estmaton Inferences about β Recall that we estmate Yˆ ˆ β + ˆ βx. 0 μ Y X x β0 + βx usng To estmate σ σ squared error Y X x ε s ε we

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Marginal Effects of Explanatory Variables: Constant or Variable? 1. Constant Marginal Effects of Explanatory Variables: A Starting Point

Marginal Effects of Explanatory Variables: Constant or Variable? 1. Constant Marginal Effects of Explanatory Variables: A Starting Point CONOMICS * -- NOT CON * -- NOT Margnal ffects of xplanatory Varables: Constant or Varable?. Constant Margnal ffects of xplanatory Varables: A Startng Pont Nature: A contnuous explanatory varable has a

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Scatter Plot x

Scatter Plot x Construct a scatter plot usng excel for the gven data. Determne whether there s a postve lnear correlaton, negatve lnear correlaton, or no lnear correlaton. Complete the table and fnd the correlaton coeffcent

More information

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10)

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10) I. Defnton and Problems Econ7 Appled Econometrcs Topc 9: Heteroskedastcty (Studenmund, Chapter ) We now relax another classcal assumpton. Ths s a problem that arses often wth cross sectons of ndvduals,

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT?

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT? Basc Econometrcs, Gujarat and Porter CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT? 11.1 (a) False. The estmators are unbased but are neffcent. (b) True. See Sec. 11.4

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Regression. The Simple Linear Regression Model

Regression. The Simple Linear Regression Model Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng the Estmated Regresson Equaton for Estmaton and Predcton Resdual Analss: Valdatng

More information

Production Function Estimation

Production Function Estimation Producton Functon Estmaton Producton functon L: labor nput K: captal nput m: other nput Q = f (L, K, m ) Example, Cobb-Douglas Producton functon Q = AL α K β exp(ɛ ) ln(q ) = ln(a) + αln(l ) + βln(k )

More information

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal 9/3/009 Sstematc Error Illustraton of Bas Sources of Sstematc Errors Instrument Errors Method Errors Personal Prejudce Preconceved noton of true value umber bas Prefer 0/5 Small over large Even over odd

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

Diagnostics in Poisson Regression. Models - Residual Analysis

Diagnostics in Poisson Regression. Models - Residual Analysis Dagnostcs n Posson Regresson Models - Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models - Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent

More information

The SAS program I used to obtain the analyses for my answers is given below.

The SAS program I used to obtain the analyses for my answers is given below. Homework 1 Answer sheet Page 1 The SAS program I used to obtan the analyses for my answers s gven below. dm'log;clear;output;clear'; *************************************************************; *** EXST7034

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011 A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegan Busness School 2011 Functons featurng constant elastcty of substtuton CES are wdely used n appled economcs and fnance. In ths note, I do two thngs. Frst,

More information

) is violated, so that V( instead. That is, the variance changes for at least some observations.

) is violated, so that V( instead. That is, the variance changes for at least some observations. Econ 388 R. Butler 014 revsons Lecture 15 I. HETEROSKEDASTICITY: both pure and mpure (the mpure verson s due to an omtted regressor that s correlated wth the ncluded regressors n the model) A. heteroskedastcty=when

More information

University of California at Berkeley Fall Introductory Applied Econometrics Final examination

University of California at Berkeley Fall Introductory Applied Econometrics Final examination SID: EEP 118 / IAS 118 Elsabeth Sadoulet and Daley Kutzman Unversty of Calforna at Berkeley Fall 01 Introductory Appled Econometrcs Fnal examnaton Scores add up to 10 ponts Your name: SID: 1. (15 ponts)

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

,, MRTS is the marginal rate of technical substitution

,, MRTS is the marginal rate of technical substitution Mscellaneous Notes on roducton Economcs ompled by eter F Orazem September 9, 00 I Implcatons of conve soquants Two nput case, along an soquant 0 along an soquant Slope of the soquant,, MRTS s the margnal

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression STAT 45 BIOSTATISTICS (Fall 26) Handout 5 Introducton to Logstc Regresson Ths handout covers materal found n Secton 3.7 of your text. You may also want to revew regresson technques n Chapter. In ths handout,

More information

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example CONOMICS 5* -- Introducton to NOT CON 5* -- Introducton to NOT : Multple Lnear Regresson Models Interpretng Slope Coeffcents n Multple Lnear Regresson Models: An xample Consder the followng smple lnear

More information

Lecture 3 Specification

Lecture 3 Specification Lecture 3 Specfcaton 1 OLS Estmaton - Assumptons CLM Assumptons (A1) DGP: y = X + s correctly specfed. (A) E[ X] = 0 (A3) Var[ X] = σ I T (A4) X has full column rank rank(x)=k-, where T k. Q: What happens

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION 014-015 MTH35/MH3510 Regresson Analyss December 014 TIME ALLOWED: HOURS INSTRUCTIONS TO CANDIDATES 1. Ths examnaton paper contans FOUR (4) questons

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Biostatistics 360 F&t Tests and Intervals in Regression 1

Biostatistics 360 F&t Tests and Intervals in Regression 1 Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data Lab : TWO-LEVEL NORMAL MODELS wth school chldren popularty data Purpose: Introduce basc two-level models for normally dstrbuted responses usng STATA. In partcular, we dscuss Random ntercept models wthout

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

Introduction to Analysis of Variance (ANOVA) Part 1

Introduction to Analysis of Variance (ANOVA) Part 1 Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned b regresson

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor Reduced sldes Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor 1 The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Midterm Examination. Regression and Forecasting Models

Midterm Examination. Regression and Forecasting Models IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Exam. Econometrics - Exam 1

Exam. Econometrics - Exam 1 Econometrcs - Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a y-value on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information