# 2. Associative Law: A binary operator * on a set S is said to be associated whenever (A*B)*C = A*(B*C) for all A,B,C S.

Save this PDF as:

Size: px
Start display at page:

Download "2. Associative Law: A binary operator * on a set S is said to be associated whenever (A*B)*C = A*(B*C) for all A,B,C S."

## Transcription

1 BOOLEAN ALGEBRA 2.1 Introduction Binary logic deals with variables that have two discrete values: 1 for TRUE and 0 for FALSE. A simple switching circuit containing active elements such as a diode and transistor can demonstrate the binary logic, which can either be ON (switch closed) or OFF (switch open). Electrical signals such as voltage and current exist in the digital system in either one of the two recognized values, except during transition. The switching functions can be expressed with Boolean equations. Complex Boolean equations can be simplified by a new kind of algebra, which is popularly called Switching Algebra or Boolean Algebra, invented by the mathematician George Boole in Boolean Algebra deals with the rules by which logical operations are carried out. 2.2 BASIC DEFINITIONS Boolean algebra, like any other deductive mathematical system, may be defined with a set of elements, a set of operators, and a number of assumptions and postulates. A set of elements means any collection of objects having common properties. If S denotes a set, and X and Y are certain objects, then X S denotes X is an object of set S, whereas Y S denotes Y is not the object of set S. A binary operator defined on a set S of elements is a rule that assigns to each pair of elements from S a unique element from S. As an example, consider this relation X*Y = Z. This implies that * is a binary operator if it specifies a rule for finding Z from the objects ( X, Y ) and also if all X, Y, and Z are of the same set S. On the other hand, * can not be binary operator if X and Y are of set S and Z is not from the same set S. The postulates of a mathematical system are based on the basic assumptions, which make possible to deduce the rules, theorems, and properties of the system. Various algebraic structures are formulated on the basis of the most common postulates, which are described as follows: 1. Closer: A set is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S. For example, the set of natural numbers N = {1, 2, 3, 4,...} is said to be closed with respect to the binary operator plus ( + ) by the rules of arithmetic addition, since for any X,Y N we obtain a unique element Z N by the operation X + Y = Z. However, note that the set of natural numbers is not closed with respect to the binary operator minus ( ) by the rules of arithmetic subtraction because for 1 2 = 1, where 1 is not of the set of naturals numbers. 2. Associative Law: A binary operator * on a set S is said to be associated whenever (A*B)*C = A*(B*C) for all A,B,C S. 3. Commutative Law: A binary operator * on a set S is said to be commutative Whenever A*B = B*A for all A,B S. 1

2 4. Identity Element: A set S is to have an identity element with respect to a binary operation * on S, if there exists an element E S with the property E*A = A*E = A. Example: The element 0 is an identity element with respect to the binary operator + on the set of integers I = {... 4, 3, 2, 1, 0, 1, 2, 3, 4,...} as A + 0 = 0 + A = A. Similarly, the element 1 is the identity element with respect to the binary operator as A 1 = 1 A = A. 5. Inverse: If a set S has the identity element E with respect to a binary operator *, there exists an element B S, which is called the inverse, for every A S, such that A*B = E. Example: In the set of integers I with E = 0, the inverse of an element A is (-A) since A + ( A) = Distributive Law: If * and (.) are two binary operators on a set S, * is said to be distributive over (.), whenever A*(B.C) = (A*B).(A*C). If summarized, for the field of real numbers, the operators and postulates have the following meanings: The binary operator + defines addition. The additive identity is 0. The additive inverse defines subtraction. The binary operator (.) defines multiplication. The multiplication identity is 1. The multiplication inverse of A is 1/A, defines division i.e., A. 1/A = 1. The only distributive law applicable is that of (.) over + A. (B + C) = (A. B) + (A. C) 2.3 DEFINITION OF BOOLEAN ALGEBRA In 1854 George Boole introduced a systematic approach of logic and developed an algebraic system to treat the logic functions, which is now called Boolean algebra. In 1938 C.E. Shannon developed a two-valued Boolean algebra called Switching algebra, and demonstrated that the properties of two-valued or bistable electrical switching circuits can be represented by this algebra. The postulates formulated by E.V. Huntington in 1904 are employed for the formal definition of Boolean algebra. However, Huntington postulates are not unique for defining Boolean algebra and other postulates are also used. The following Huntington postulates are satisfied for the definition of Boolean algebra on a set of elements S together with two binary operators (+) and (.). 1. (a) Closer with respect to the operator (+). (b) Closer with respect to the operator (.). 2. (a) An identity element with respect to + is designated by 0 i.e., A + 0 = 0 + A = A. 2

3 (b) An identity element with respect to. is designated by 1 i.e., A.1 = 1. A = A. 3. (a) Commutative with respect to (+), i.e., A + B = B + A. (b) Commutative with respect to (.), i.e., A.B = B.A. 4. (a) (.) is distributive over (+), i.e., A. (B+C) = (A. B) + (A. C). (b) (+) is distributive over (.), i.e., A + (B.C) = (A + B). (A + C). 5. For every element A S, there exists an element A' S (called the complement of A) such that A + A = 1 and A. A = There exists at least two elements A,B S, such that A is not equal to B. Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real numbers), the following differences are observed: 1. Huntington postulates do not include the associate law. However, Boolean algebra follows the law and can be derived from the other postulates for both operations. 2. The distributive law of (+) over (. ) i.e., A+ (B.C) = (A+B). (A+C) is valid for Boolean algebra, but not for ordinary algebra. 3. Boolean algebra does not have additive or multiplicative inverses, so there are no subtraction or division operations. 4. Postulate 5 defines an operator called Complement, which is not available in ordinary algebra. 5. Ordinary algebra deals with real numbers, which consist of an infinite set of elements. Boolean algebra deals with the as yet undefined set of elements S, but in the two valued Boolean algebra, the set S consists of only two elements: 0 and 1. Boolean algebra is very much similar to ordinary algebra in some respects. The symbols (+) and (.) are chosen intentionally to facilitate Boolean algebraic manipulations by persons already familiar to ordinary algebra. Although one can use some knowledge from ordinary algebra to deal with Boolean algebra, beginners must be careful not to substitute the rules of ordinary algebra where they are not applicable. 2.4 TWO-VALUED BOOLEAN ALGEBRA Two-valued Boolean algebra is defined on a set of only two elements, S = {0,1}, with rules for two binary operators (+) and (.) and inversion or complement as shown in the following operator tables at Figures 2.1, 2.2, and 2.3 respectively. Figure 2-1 Figure 2-2 Figure 2-3 The rule for the complement operator is for verification of postulate 5. 3

4 These rules are exactly the same for as the logical OR, AND, and NOT operations, respectively. It can be shown that the Huntington postulates are applicable for the set S = {0,1} and the two binary operators defined above. 1. Closure is obviously valid, as form the table it is observed that the result of each operation is either 0 or 1 and 0,1 S. 2. From the tables, we can see that: (i) = = = 1 (ii) 1. 1 = = 1. 0 = 0 which verifies the two identity elements 0 for (+) and 1 for (.) as defined by postulate The commutative laws are confirmed by the symmetry of binary operator tables. 4. The distributive laws of (.) over (+) i.e., A. (B+C) = (A. B) + (A. C), and (+) over (.) i.e., A + ( B. C) = (A+B). (A+C) can be shown to be applicable with the help of the truth tables considering all the possible values of A, B, and C as under. From the complement table it can be observed that: (a) Operator (.) over (+) A B C B+C A.(B+C) A.B A.C (A.B)+(A.C) Figure 2-4 (b) Operator (+) over (.) A B C B.C A+(B.C) A+B A+C (A+B).(A+C) Figure 2-5 (c) A + A = 1, since 0 + 0' = 1 and 1 + 1' = 1. (d) A. A = 0, since 0. 0' = 0 and 1. 1' = 0. These confirm postulate Postulate 6 also satisfies two-valued Boolean algebra that has two distinct elements 0 and 1 where 0 is not equal to 1. 4

5 2.5 BASIC PROPERTIES AND THEOREMS OF BOOLEAN ALGEBRA DeMorgan's Theorem Two theorems that were proposed by DeMorgan play important parts in Boolean algebra. The first theorem states that the complement of a product is equal to the sum of the complements. That is, if the variables are A and B, then: (A.B) = A + B The second theorem states that the complement of a sum is equal to the product of the complements. In equation form, this can be expressed as: (A + B) = A. B The complements of Boolean logic function or a logic expression may be simplified or expanded by the following steps of DeMorgan s theorem. (a) Replace the operator (+) with (.) and (.) with (+) given in the expression. (b) Complement each of the terms or variables in the expression. DeMorgan s theorems are applicable to any number of variables. For three variables A, B, and C, the equations are: (A.B.C) = A + B + C and (A + B + C) = A.B.C The following is the complete list of postulates and theorems useful for two-valued Boolean algebra. Figure 2-6 5

### Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

### Boolean Algebra & Logic Gates. By : Ali Mustafa

Boolean Algebra & Logic Gates By : Ali Mustafa Digital Logic Gates There are three fundamental logical operations, from which all other functions, no matter how complex, can be derived. These Basic functions

### INTRO TO I & CT. (Boolean Algebra and Logic Simplification.) Lecture # By: Department of CS & IT.

INTRO TO I & CT. (Boolean Algebra and Logic Simplification.) Lecture # 13-14 By: M.Nadeem Akhtar. Department of CS & IT. URL: https://sites.google.com/site/nadeemcsuoliict/home/lectures 1 Boolean Algebra

### CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

### Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines Basic

### Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.

The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or

### Switches: basic element of physical implementations

Combinational logic Switches Basic logic and truth tables Logic functions Boolean algebra Proofs by re-writing and by perfect induction Winter 200 CSE370 - II - Boolean Algebra Switches: basic element

### UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits

2 Wawrzynek, Garcia 2004 c UCB UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits 1 Introduction Original document by J. Wawrzynek (2003-11-15) Revised

### Combinational Logic Design Principles

Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

### Chapter 2 : Boolean Algebra and Logic Gates

Chapter 2 : Boolean Algebra and Logic Gates By Electrical Engineering Department College of Engineering King Saud University 1431-1432 2.1. Basic Definitions 2.2. Basic Theorems and Properties of Boolean

### ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

### CHAPTER III BOOLEAN ALGEBRA

CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

### Lecture 3: Boolean Algebra

Lecture 3: Boolean Algebra Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University Overview

### Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates The most common postulates used to formulate various algebraic structures are: 1. Closure. N={1,2,3,4 }, for any a,b N we obtain a unique c N by the operation

### Logic Synthesis and Verification

Logic Synthesis and Verification Boolean Algebra Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2014 1 2 Boolean Algebra Reading F. M. Brown. Boolean Reasoning:

### Combinational Logic. By : Ali Mustafa

Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

### Signals and Systems Digital Logic System

Signals and Systems Digital Logic System Prof. Wonhee Kim Chapter 2 Design Process for Combinational Systems Step 1: Represent each of the inputs and outputs in binary Step 1.5: If necessary, break the

### Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

### Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Huntington Postulates 1. (a) Closure w.r.t. +. (b) Closure w.r.t.. 2. (a) Identity element 0 w.r.t. +. x + 0 = 0 + x = x. (b) Identity element 1 w.r.t.. x 1 =

### Digital electronics form a class of circuitry where the ability of the electronics to process data is the primary focus.

Chapter 2 Digital Electronics Objectives 1. Understand the operation of basic digital electronic devices. 2. Understand how to describe circuits which can process digital data. 3. Understand how to design

### Chap 2. Combinational Logic Circuits

Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

### Binary logic consists of binary variables and logical operations. The variables are

1) Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets such as A, B, C, x, y, z, etc., with each variable having only two

### Cs302 Quiz for MID TERM Exam Solved

Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

### Doc112: Hardware. Department of Computing, Imperial College London. Doc112: Hardware Lecture 1 Slide 1

Doc112: Hardware Department of Computing, Imperial College London Doc112: Hardware Lecture 1 Slide 1 First Year Computer Hardware Course Lecturers Duncan Gillies Bjoern Schuller Doc112: Hardware Lecture

### Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

### Week-I. Combinational Logic & Circuits

Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

### If f = ABC + ABC + A B C then f = AB C + A BC + AB C + A BC + A B C

Examples: If f 5 = AB + AB then f 5 = A B + A B = f 10 If f = ABC + ABC + A B C then f = AB C + A BC + AB C + A BC + A B C In terms of a truth table, if f is the sum (OR) of all the minterms with a 1 in

### Adequate set of connectives, logic gates and circuits

Adequate set of connectives, logic gates and circuits Lila Kari University of Waterloo Adequate set of connectives, logic gates and circuits CS245, Logic and Computation 1 / 59 Connectives We have mentioned

### 12/31/2010. Overview. 05-Boolean Algebra Part 3 Text: Unit 3, 7. DeMorgan s Law. Example. Example. DeMorgan s Law

Overview 05-oolean lgebra Part 3 Text: Unit 3, 7 EEGR/ISS 201 Digital Operations and omputations Winter 2011 DeMorgan s Laws lgebraic Simplifications Exclusive-OR and Equivalence Functionally omplete NND-NOR

### CS/COE0447: Computer Organization

Logic design? CS/COE0447: Computer Organization and Assembly Language Logic Design Review Digital hardware is implemented by way of logic design Digital circuits process and produce two discrete values:

### Ch 3.2: Direct proofs

Math 299 Lectures 8 and 9: Chapter 3 0. Ch3.1 A trivial proof and a vacuous proof (Reading assignment) 1. Ch3.2 Direct proofs 2. Ch3.3 Proof by contrapositive 3. Ch3.4 Proof by cases 4. Ch3.5 Proof evaluations

### Standard Expression Forms

ThisLecture will cover the following points: Canonical and Standard Forms MinTerms and MaxTerms Digital Logic Families 24 March 2010 Standard Expression Forms Two standard (canonical) expression forms

### Boolean Algebra CHAPTER 15

CHAPTER 15 Boolean Algebra 15.1 INTRODUCTION Both sets and propositions satisfy similar laws, which are listed in Tables 1-1 and 4-1 (in Chapters 1 and 4, respectively). These laws are used to define an

### Digital Systems and Information Part II

Digital Systems and Information Part II Overview Arithmetic Operations General Remarks Unsigned and Signed Binary Operations Number representation using Decimal Codes BCD code and Seven-Segment Code Text

### Boolean Algebra. The Building Blocks of Digital Logic Design. Section. Section Overview. Binary Operations and Their Representation.

Section 3 Boolean Algebra The Building Blocks of Digital Logic Design Section Overview Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan s Theorem, Canonical and Standard

### Boolean Algebra. Digital Logic Appendix A. Boolean Algebra Other operations. Boolean Algebra. Postulates, Identities in Boolean Algebra

Digital Logic Appendix A Gates Combinatorial Circuits Sequential Circuits George Boole ideas 1854 Claude Shannon, apply to circuit design, 1938 (piirisuunnittelu) Describe digital circuitry function programming

### Karnaugh Maps Objectives

Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

### ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

### Boolean Algebra. Digital Logic Appendix A. Postulates, Identities in Boolean Algebra How can I manipulate expressions?

Digital Logic Appendix A Gates Combinatorial Circuits Sequential Circuits Other operations NAND A NAND B = NOT ( A ANDB) = AB NOR A NOR B = NOT ( A ORB) = A + B Truth tables What is the result of the operation

### Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

### Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra

oolean lgebra Introduction 1854: Logical algebra was published by George oole known today as oolean lgebra It s a convenient way and systematic way of expressing and analyzing the operation of logic circuits.

### Lecture 4: More Boolean Algebra

Lecture 4: More Boolean Algebra Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University ENGIN2

### Implementation of Boolean Logic by Digital Circuits

Implementation of Boolean Logic by Digital Circuits We now consider the use of electronic circuits to implement Boolean functions and arithmetic functions that can be derived from these Boolean functions.

### Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits

Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University See: P&H ppendix C.2 and C.3 (lso, see C.0 and

### Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways:

Boolean Algebra (1) Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: An expression is finite but not unique f(x,y)

### Intro to Algebra Today. We will learn names for the properties of real numbers. Homework Next Week. Due Tuesday 45-47/ 15-20, 32-35, 40-41, *28,29,38

Intro to Algebra Today We will learn names for the properties of real numbers. Homework Next Week Due Tuesday 45-47/ 15-20, 32-35, 40-41, *28,29,38 Due Thursday Pages 51-53/ 19-24, 29-36, *48-50, 60-65

### Solutions to Assignment No 5 Digital Techniques Fall 2007

Solutions to Assignment No 5 Digital Techniques Fall 2007 André Deutz October 19, 2007 1 Simplifying and Manipulating Boolean Expressions 1. Simplification (a) Simplify each of the following expressions,

### Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1.

COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 6.1 ROBERT SEDGEWICK

### Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1

Digital Logic COMP370 Introduction to Computer Architecture Logic Simplification It is frequently possible to simplify a logical expression. This makes it easier to understand and requires fewer gates

### Commutative Rings and Fields

Commutative Rings and Fields 1-22-2017 Different algebraic systems are used in linear algebra. The most important are commutative rings with identity and fields. Definition. A ring is a set R with two

### Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

### Boolean Algebra and Digital Logic

All modern digital computers are dependent on circuits that implement Boolean functions. We shall discuss two classes of such circuits: Combinational and Sequential. The difference between the two types

### Chapter 1: Fundamentals of Algebra Lecture notes Math 1010

Section 1.1: The Real Number System Definition of set and subset A set is a collection of objects and its objects are called members. If all the members of a set A are also members of a set B, then A is

### Learning Objectives 10/7/2010. CE 411 Digital System Design. Fundamental of Logic Design. Review the basic concepts of logic circuits. Dr.

/7/ CE 4 Digital ystem Design Dr. Arshad Aziz Fundamental of ogic Design earning Objectives Review the basic concepts of logic circuits Variables and functions Boolean algebra Minterms and materms ogic

### Introduction to Digital Logic Missouri S&T University CPE 2210 Subtractors

Introduction to Digital Logic Missouri S&T University CPE 2210 Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology cetinkayae@mst.edu

### Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

### of Digital Electronics

26 Digital Electronics 729 Digital Electronics 26.1 Analog and Digital Signals 26.3 Binary Number System 26.5 Decimal to Binary Conversion 26.7 Octal Number System 26.9 Binary-Coded Decimal Code (BCD Code)

### Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

### GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

### Advanced Boolean Logic and Applications to Control Systems

Advanced Boolean Logic and Applications to Control Systems Course No: E0-0 Credit: PDH Jeffrey Cwalinski, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 0980 P:

### ECE380 Digital Logic. Axioms of Boolean algebra

ECE380 Digital Logic Introduction to Logic Circuits: Boolean algebra Dr. D. J. Jackson Lecture 3-1 Axioms of Boolean algebra Boolean algebra: based on a set of rules derived from a small number of basic

### Proofs. Chapter 2 P P Q Q

Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

### Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24

Direct Proof MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Direct Proof Fall 2014 1 / 24 Outline 1 Overview of Proof 2 Theorems 3 Definitions 4 Direct Proof 5 Using

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Overview Part 1 Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra

### Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hperlinks are active in

### Propositional Logic. Logical Expressions. Logic Minimization. CNF and DNF. Algebraic Laws for Logical Expressions CSC 173

Propositional Logic CSC 17 Propositional logic mathematical model (or algebra) for reasoning about the truth of logical expressions (propositions) Logical expressions propositional variables or logical

### Computer Organization I. Lecture 13: Design of Combinational Logic Circuits

Computer Organization I Lecture 13: Design of Combinational Logic Circuits Overview The optimization of multiple-level circuits Mapping Technology Verification Objectives To know how to optimize the multiple-level

### UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

### control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on.

Chapter 2 Digital Circuits Page 1 of 18 2. Digital Circuits Our world is an analog world. Measurements that we make of the physical objects around us are never in discrete units but rather in a continuous

### EE260: Digital Design, Spring n Digital Computers. n Number Systems. n Representations. n Conversions. n Arithmetic Operations.

EE 260: Introduction to Digital Design Number Systems Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Digital Computers n Number Systems n Representations n Conversions

### Example. Addition, subtraction, and multiplication in Z are binary operations; division in Z is not ( Z).

CHAPTER 2 Groups Definition (Binary Operation). Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of G an element of G. Note. This condition of assigning

### DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS Digital logic circuits BINARY NUMBER SYSTEM electronic circuits that handle information encoded in binary form (deal with signals that have only two values, and ) Digital. computers,

### CHAPTER 1. MATHEMATICAL LOGIC 1.1 Fundamentals of Mathematical Logic

CHAPER 1 MAHEMAICAL LOGIC 1.1 undamentals of Mathematical Logic Logic is commonly known as the science of reasoning. Some of the reasons to study logic are the following: At the hardware level the design

### EE 110 Practice Problems for Exam 1: Solutions, Fall 2008

EE Practice Problems for Exam : Solutions, Fall 28. ircle T (true) or F (false) for each of these oolean equations. (a). T FO + = (b). T FO + = ( + )( + ) (c). TO F = (d). TO F () = () (e). TO F + + =

### Supplementary Material for MTH 299 Online Edition

Supplementary Material for MTH 299 Online Edition Abstract This document contains supplementary material, such as definitions, explanations, examples, etc., to complement that of the text, How to Think

### Class IX Chapter 5 Introduction to Euclid's Geometry Maths

Class IX Chapter 5 Introduction to Euclid's Geometry Maths Exercise 5.1 Question 1: Which of the following statements are true and which are false? Give reasons for your answers. (i) Only one line can

### CSE 20. Lecture 4: Introduction to Boolean algebra. CSE 20: Lecture4

CSE 20 Lecture 4: Introduction to Boolean algebra Reminder First quiz will be on Friday (17th January) in class. It is a paper quiz. Syllabus is all that has been done till Wednesday. If you want you may

### The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

The Karnaugh Map COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Boolean Function Minimization The Karnaugh Map (K-Map) Two, Three,

### DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY

HANDOUT ABSTRACT ALGEBRA MUSTHOFA DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY 2012 BINARY OPERATION We are all familiar with addition and multiplication of two numbers. Both

### Lecture 3. Title goes here 1. level Networks. Boolean Algebra and Multi-level. level. level. level. level

Lecture 3 Dr Richard Reilly Dept. of Electronic & Electrical Engineering Room 53, Engineering uilding oolean lgebra and Multi- oolean algebra George oole, little formal education yet was a brilliant scholar.

### Lecture A: Logic Design and Gates

Lecture A: Logic Design and Gates Syllabus My office hours 9.15-10.35am T,Th or gchoi@ece.tamu.edu 333G WERC Text: Brown and Vranesic Fundamentals of Digital Logic,» Buy it.. Or borrow it» Other book:

### Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

4-1Divisibility Divisibility Divisibility Rules Divisibility An integer is if it has a remainder of 0 when divided by 2; it is otherwise. We say that 3 divides 18, written, because the remainder is 0 when

### CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic:

x NOT ~x x y AND x /\ y x y OR x \/ y Figure 1: Types of gates in a digital circuit. CS2742 midterm test 2 study sheet Boolean circuits: Boolean circuits is a generalization of Boolean formulas in which

### Digital Electronics I

References Digital Electronics I Katz, R.H. (2004). Contemporary logic design. Benjamin/Cummings. Hayes, J.P. (1993). Introduction to digital logic design. Addison-Wesley. Horowitz, P. & Hill, W. (1989).

### MATH 115 Concepts in Mathematics

South Central College MATH 115 Concepts in Mathematics Course Outcome Summary Course Information Description Total Credits 4.00 Total Hours 64.00 Concepts in Mathematics is a general education survey course

### Solutions to Assignment 3

Solutions to Assignment 3 Question 1. [Exercises 3.1 # 2] Let R = {0 e b c} with addition multiplication defined by the following tables. Assume associativity distributivity show that R is a ring with

### Chapter 2 Sets, Relations and Functions

Chapter 2 Sets, Relations and Functions Key Topics Sets Set Operations Russell s Paradox Relations Composition of Relations Reflexive, Symmetric and Transitive Relations Functions Partial and Total Functions

### Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

### Order of Operations. Real numbers

Order of Operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply and divide from left to right. 4. Add

### Introduction to Digital Logic Missouri S&T University CPE 2210 Boolean Algebra

Introduction to Digital Logic Missouri S&T University CPE 2210 Boolean Algebra Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

### DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

### Part IV. Rings and Fields

IV.18 Rings and Fields 1 Part IV. Rings and Fields Section IV.18. Rings and Fields Note. Roughly put, modern algebra deals with three types of structures: groups, rings, and fields. In this section we

### 2. Two binary operations (addition, denoted + and multiplication, denoted

Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

### Playing with Numbers. introduction. numbers in general FOrM. remarks (i) The number ab does not mean a b. (ii) The number abc does not mean a b c.

5 Playing with Numbers introduction In earlier classes, you have learnt about natural numbers, whole numbers, integers and their properties. In this chapter, we shall understand 2-digit and 3-digit numbers

### 2. BOOLEAN SWITCHING ALGEBRA

Boolean witching Algebra 2-2. BOOLEAN WITCHIN ALEBRA Objectives. Understand Boolean algebra. 2. tudy the basic rules governing logic analysis and design. eorge Boole, 85~864 John Venn, 834~923 2. Logic

### Boolean Algebras. Chapter 2

Chapter 2 Boolean Algebras Let X be an arbitrary set and let P(X) be the class of all subsets of X (the power set of X). Three natural set-theoretic operations on P(X) are the binary operations of union

### Electronics. Overview. Introducction to Synthetic Biology

Electronics Introducction to Synthetic iology E Navarro Montagud P Fernandez de Cordoba JF Urchueguía Overview Introduction oolean algebras Logical gates Representation of boolean functions Karnaugh maps

### Outline. We will now investigate the structure of this important set.

The Reals Outline As we have seen, the set of real numbers, R, has cardinality c. This doesn't tell us very much about the reals, since there are many sets with this cardinality and cardinality doesn't