Introduction to ODE's (0A) Young Won Lim 3/9/15

Size: px
Start display at page:

Download "Introduction to ODE's (0A) Young Won Lim 3/9/15"

Transcription

1 Introduction to ODE's (0A)

2 Copyright (c) Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

3 A triangle and its slope y = f x, f f h f h f ( +h) f ( ) +h h, f h f Intro to ODEs (0A) 3

4 Many smaller triangles and their slopes f ( + h) f ( ) h ( +h, f ( +h)) f ( + h 1 ) f ( ) h 1 f ( + h 2 ) f ( ) h 2 f ( +h) f ( +h 1 ) f ( +h 2 ) f ( ) (, f ( )) +h 2 +h 1 +h h 2 h 1 lim h 0 f ( + h) f ( ) h h ( +h, f ( +h)) (, f ( )) Intro to ODEs (0A) 4

5 The limit of triangles and their slopes y = f x The derivative of the function f at The derivative function of the function f f ' ( ) = lim h 0 f ( + h) f ( ) h f '(x) = lim h 0 f (x + h) f (x) h y ' = f ' (x) = df dx = d dx f (x) Intro to ODEs (0A) 5

6 The derivative as a function f x y = f x x 3 f f f x 3 Derivative Function y ' = f ' (x) f ' x f ' = lim h 0 f (x + h) f (x) h x 3 f ' f ' x 3 Intro to ODEs (0A) 6

7 The notations of derivative functions Largrange's Notation y ' = f ' x f ' (x) f ' Leibniz's Notation f ' dy dx = d dx f (x) x 3 f ' x 3 not a ratio. Newton's Notation ẏ = ḟ x slope of a tangent line lim h 0 f (x + h) f (x) h Euler's Notation D x y = D x f x derivative with respect to x x is an independent variable Intro to ODEs (0A) 7

8 Another kind of triangles and their slopes y = f x y ' = f ' x given x1 f the slope of a tangent line Intro to ODEs (0A) 8

9 Differential in calculus Differential: dx, dy, infinitesimals a change in the linearization of a function of, or relating to differentiation function f dx the linearization of a function f dy f dx dx dx f Intro to ODEs (0A) 9

10 Approximation Differential: dx, dy, f ( + dx) f ( ) + dy = f ( ) + f '( )dx f '( ) = lim h 0 f ( + h) f ( ) h function the linearization of a function f dx f dy f dx dx dx f Intro to ODEs (0A) 10

11 Differential as a function Line equation in the new coordinate. dy dy = f ' ( ) dx slope = f ' ( ) f ( ) dx Intro to ODEs (0A) 11

12 Differential as a function The differential of a function ƒ(x) of a single real variable x is the function of two independent real variables x and dx given by dy = f ' (x) dx Line equation in the new coordinate. dy dy = f ' dx slope = f ' (x, dx) dy f dx Intro to ODEs (0A) 12

13 Differentials and Derivatives (1) differentials ratio dy = f ' (x) dx dy = df dx dx derivative dy dx = f ' (x) not a ratio f ( + dx) f ( ) + dy for small enough dx = f ( ) + f '( )dx f ( + dx) = f ( ) + dy f ( + dx) f ( ) dx = f ( ) + f '( )dx = f '( ) Intro to ODEs (0A) 13

14 Differentials and Derivatives (2) dy = f ' (x) dx dy = df dx dx dy = ḟ dx dy = f '(x) dx dy = df dx dx dy = 1dy = y dy = D x f dx Intro to ODEs (0A) 14

15 Differentials and Derivatives (3) dy = f '(x) dx dy = f '(x) dx + C dy = df dx dx dy = df dx dx + C a constant is included another constant is included differ by a constant y + C 1 = f (x) + C 2 y = f (x) + C y = f (x) + C Intro to ODEs (0A) 15

16 Applications of Differentials (1) Substitution Rule f ( g(x) ) g'(x) dx = f ( u ) du (I) u = g( x) du = g ' (x)dx du = dg dx dx (II) f (g) dg dx dx = f ( g ) dg Intro to ODEs (0A) 16

17 Applications of Differentials (2) Integration by parts f (x)g ' (x) dx = f (x)g(x) f ' (x)g(x) dx u = f (x) v = g(x) du = f ' (x) dx dv = g'( x)dx du = df dx dx dv = dg dx dx f (x)g ' (x) dx = f (x)g(x) f ' (x)g(x) dx u dv = u v v du Intro to ODEs (0A) 17

18 Anti-derivative and Indefinite Integral F '(x) = f (x) F(x) Anti-derivative without constant the most simple anti-derivative F( x) + C the most general anti-derivative f (x)dx Indefinite Integral : a function of x f (x)dx = F (x) + C Intro to ODEs (0A) 18

19 Anti-derivative Examples (1)? Anti-derivative of f(x) differentiation Anti-differentiation derivative of f (x)? F 1 (x)= 1 3 x3 f (x)= All are Anti-derivative of f(x) F 2 (x)= 1 3 x F 3 (x)= 1 3 x3 49 the most general anti-derivative of f(x) 1 3 x3 + C dx indefinite Integral of f(x) Intro to ODEs (0A) 19

20 Anti-derivative Examples (2)? Anti-derivative of f(x) differentiation Anti-differentiation derivative of? f (x) x 0 f (x) dx = [ 1 3 x3]0 x = 1 3 x3 f (x)= x a f (x) dx = [ 1 3 x3]a x = 1 3 x3 1 3 a3 x a f (t ) dt = [ 1 3 t3]a x = 1 3 x3 1 3 a3 anti-derivative by the definite integral of f(x) x a t 2 dt = 1 3 x3 + C d x dx a f (t ) dt = f (x) = the Indefinite Integral of f(x) dx = 1 3 x3 + C Intro to ODEs (0A) 20

21 Definite Integrals on [a, ] 1 y = 1 1 a a a f ' (x) = 1 f (x) = 1 a 1 dx a 1 dx [ x ] a = a dx dy = dy dx dx view (I) view (II) a a f ' (x) dx [ f (x) ] a = f ( ) f (a) f (x) dx [ F (x)] a = F ( ) F (a) Intro to ODEs (0A) 21

22 Definite Integrals on [, ] view (I) view (II) f (x) F (x) : anti-derivative of f '(x) : anti-derivative of f ( x) 1 dx Anti-derivative x 1 y = 1 area Anti-derivative without constant a [ x + c ] x1 = = [ x ] x1 length view (I) [ f (x) ] x1 = f ( ) f ( ) x view (II) [ F (x)] x1 = F ( ) F ( ) a Intro to ODEs (0A) 22

23 Definite Integrals on [, ] through F(x)+C view (I) Anti-derivative view (II) Anti-derivative 1 dx f (x) = x 1 dx F (x) = x f '(x) f (x) = [ f (x)] x1 = [ F (x)] x1 = {f ( ) f (a)} {f ( ) f (a)} = {F ( ) F(a)} {F ( ) F(a)} = [ f (x) f (a)] x1 = [ F (x) F (a) ] x1 = [ f (x) + C ] x1 arbitrary reference point (a, f(a)) = [ F (x) + C ] x1 arbitrary reference point (a, F(a)) = [ f ' (x)dx ] x1 = [ f (x)dx ] x1 Intro to ODEs (0A) 23

24 Indefinite Integrals through Definite Integrals view (I) view (II) 1 dx x a 1 dx 1 dx x a 1 dx f ' (x) dx a f ' (x) dx f (x) dx a f (x) dx = f (x) f (a) = x a = f (x) + C = F(x) + C = F(x) F (a) = x a a a f (x) = x a F (x) = x a a a a a Intro to ODEs (0A) 24

25 Definite Integrals on [a, ] and [a, ] (I) a f '(x) dx (II) a f (x) dx a (I) a f '(x) dx (II) a f (x) dx a Intro to ODEs (0A) 25

26 Definite Integrals on [, ] through F(x) d f d x dx Anti-derivative F (x) = f (x) y = f ' (x) area a f ( ) f ( ) = [ F (x)] x1 F (x) = f (x) F ( ) F ( ) length a Intro to ODEs (0A) 26

27 Definite Integrals on [, ] through F(x)+C d f d x dx F (x) = f (x) y = f ' (x) a common reference point a f ( ) f ( ) = [ F (x)] x1 = {F ( ) F(a)} {F ( ) F(a)} = [ F (x) F (a)] x1 = [ F (x) C ] x1 = [ f (x) f (a)] x1 arbitrary reference point (a, F(a)) Intro to ODEs (0A) 27

28 Indefinite Integrals through F(x)+C d f d x dx = F ( x) + C x a d f d x dx y = f ' (x) a common reference point a F (x) F (a) = F (x) f (a) f ( ) f (a) y = f (x) f (a) a Intro to ODEs (0A) 28

29 Indefinite Integrals a 1 dx x a 1 dx dx dy a x a x + C y + C given a variable x indefinite integral a d f d x dx x c d f d x dx d f d x dx f ( ) f (a) f (x) f (a) f (x) + C given a variable x indefinite integral Intro to ODEs (0A) 29

30 Derivative Function and Indefinite Integrals f ' ( ) lim h 0 f ( + h) f ( ) h f ( x) dx f ' ( ) lim h 0 f ( + h) f ( ) h x 4 x 3 f ( x) dx f ' (x 3 ) lim h 0 f (x 3 + h) f (x 3 ) h x 6 x 5 f ( x) dx,, x 3 [, ],[ x 3, x 4 ], [x 5, x 6 ] f ' (x) = lim h 0 f (x + h) f ( x) h x F (x) + C = a f ( x) dx f ' ( ), f ' ( ), f '( x 3 ) [ F( x) ], [ F( x) ]x 3 x 4 x, [ F (x) 6 ]x5 Intro to ODEs (0A) 30

31 a Intro to ODEs (0A) 31

32 Differential Equation f (x) = e 3 x f (x)? f ' (x) = 3e 3 x f ' (x) 3 f (x) = 3 e 3x 3 e 3 x = 0 f ' (x) 3 f (x) = 0 Intro to ODEs (0A) 32

33 First Order Examples (y=f(x)) f ' (x) = f (x) y ' = y f (x)? y? An Example of A First Order Differential Equation f (x) = c e x for all x y = c e x I : (, + ) f ' (x) = f (x) y ' = y f (x)? y? f (0) = 3 f (0) = 3 An Example of A First Order Initial Value Problem f (x) = 3e x for all x y = 3e x I : (, + ) Intro to ODEs (0A) 33

34 Second Order Examples (y=f(x)) f ' ' (x) = f (x) y ' ' = y f (x) = y = An Example of A Second Order Differential Equation c 1 e +x + c 2 e x for all x c 1 e +x + c 2 e x I : (, + ) f ' ' (x) = f (x) y ' ' = y f (x) = y = f ' (0) = 0 y ' (0) = 0 f (0) = 1 f (0) = 1 +1 e +x 1 e x +1 e +x 1 e x An Example of A Second Order Initial Value Problem for all x I : (, + ) Guess the possible solution. Intro to ODEs (0A) 34

35 General First & Second Order IVPs (y=f(x)) First Order Initial Value Problem f ' (x) = f (x) y ' = y f (0) = 3 f (0) = 3 d y = g(x, y) y ' = g(x, y) d x y(x 0 ) = y 0 y(x 0 ) = y 0 Second Order Initial Value Problem f ' ' (x) = f (x) y ' ' = y f ' (0) = 0 y ' (0) = 0 f (0) = 1 f (0) = 1 d 2 y d = g(x, y, y ') y(x 0 ) = y 0 y ' (x 0 ) = y 1 y ' ' = g(x, y, y ' ) y(x 0 ) = y 0 y ' (x 0 ) = y 1 Guess the possible solution. Intro to ODEs (0A) 35

36 References [1] [2] M.L. Boas, Mathematical Methods in the Physical Sciences [3] E. Kreyszig, Advanced Engineering Mathematics [4] D. G. Zill, W. S. Wright, Advanced Engineering Mathematics

ODE Background: Differential (1A) Young Won Lim 12/29/15

ODE Background: Differential (1A) Young Won Lim 12/29/15 ODE Background: Differential (1A Copyright (c 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Separable Equations (1A) Young Won Lim 3/24/15

Separable Equations (1A) Young Won Lim 3/24/15 Separable Equations (1A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Introduction to ODE's (0A) Young Won Lim 3/12/15

Introduction to ODE's (0A) Young Won Lim 3/12/15 Introduction to ODE's (0A) Copyright (c) 2011-2015 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version 1.2 or

More information

Higher Order ODE's (3A) Young Won Lim 7/7/14

Higher Order ODE's (3A) Young Won Lim 7/7/14 Higher Order ODE's (3A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Higher Order ODE's (3A) Young Won Lim 12/27/15

Higher Order ODE's (3A) Young Won Lim 12/27/15 Higher Order ODE's (3A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Higher Order ODE's (3A) Young Won Lim 7/8/14

Higher Order ODE's (3A) Young Won Lim 7/8/14 Higher Order ODE's (3A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Higher Order ODE's, (3A)

Higher Order ODE's, (3A) Higher Order ODE's, (3A) Initial Value Problems, and Boundary Value Problems Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms

More information

Introduction to ODE's (0P) Young Won Lim 12/27/14

Introduction to ODE's (0P) Young Won Lim 12/27/14 Introuction to ODE's (0P) Copyright (c) 2011-2014 Young W. Lim. Permission is grante to copy, istribute an/or moify this ocument uner the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Second Order ODE's (2A) Young Won Lim 5/5/15

Second Order ODE's (2A) Young Won Lim 5/5/15 Second Order ODE's (2A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Background Trigonmetry (2A) Young Won Lim 5/5/15

Background Trigonmetry (2A) Young Won Lim 5/5/15 Background Trigonmetry (A) Copyright (c) 014 015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or

More information

Differentiation Rules (2A) Young Won Lim 1/30/16

Differentiation Rules (2A) Young Won Lim 1/30/16 Differentiation Rules (2A) Copyright (c) 2011-2016 Young W. Lim. Permission is grante to copy, istribute an/or moify this ocument uner the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15 Linear Equations with Constant Coefficients (2A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15 Definitions of the Laplace Transform (A) Copyright (c) 24 Young W. Lim. Permission is granted to copy, distriute and/or modify this document under the terms of the GNU Free Documentation License, Version.2

More information

Definite Integrals. Young Won Lim 6/25/15

Definite Integrals. Young Won Lim 6/25/15 Definite Integrls Copyright (c 2011-2015 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version 1.2 or ny lter version

More information

General Vector Space (2A) Young Won Lim 11/4/12

General Vector Space (2A) Young Won Lim 11/4/12 General (2A Copyright (c 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Matrix Transformation (2A) Young Won Lim 11/9/12

Matrix Transformation (2A) Young Won Lim 11/9/12 Matrix (A Copyright (c 01 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any later version published

More information

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12 Line Integrals (4A Line Integral Path Independence Copyright (c 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Differentiation Rules (2A) Young Won Lim 2/22/16

Differentiation Rules (2A) Young Won Lim 2/22/16 Differentiation Rules (2A) Copyright (c) 2011-2016 Young W. Lim. Permission is grante to copy, istribute an/or moify this ocument uner the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Relations (3A) Young Won Lim 3/27/18

Relations (3A) Young Won Lim 3/27/18 Relations (3A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Surface Integrals (6A)

Surface Integrals (6A) Surface Integrals (6A) Surface Integral Stokes' Theorem Copright (c) 2012 Young W. Lim. Permission is granted to cop, distribute and/or modif this document under the terms of the GNU Free Documentation

More information

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12 Line Integrals (4A Line Integral Path Independence Copyright (c 2012 Young W. Lim. Permission is granted to copy, distriute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Expected Value (10D) Young Won Lim 6/12/17

Expected Value (10D) Young Won Lim 6/12/17 Expected Value (10D) Copyright (c) 2017 Young W. Lim. Permissios granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Complex Series (3A) Young Won Lim 8/17/13

Complex Series (3A) Young Won Lim 8/17/13 Complex Series (3A) 8/7/3 Copyright (c) 202, 203 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or

More information

CT Rectangular Function Pairs (5B)

CT Rectangular Function Pairs (5B) C Rectangular Function Pairs (5B) Continuous ime Rect Function Pairs Copyright (c) 009-013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

More information

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10 DFT Frequency (9A) Each ow of the DFT Matrix Copyright (c) 2009, 2010 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GU Free Documentation License,

More information

Matrix Transformation (2A) Young Won Lim 11/10/12

Matrix Transformation (2A) Young Won Lim 11/10/12 Matrix (A Copyright (c 0 Young W. im. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation icense, Version. or any later version published

More information

Background ODEs (2A) Young Won Lim 3/7/15

Background ODEs (2A) Young Won Lim 3/7/15 Background ODEs (2A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

General CORDIC Description (1A)

General CORDIC Description (1A) General CORDIC Description (1A) Copyright (c) 2010, 2011, 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Complex Functions (1A) Young Won Lim 2/22/14

Complex Functions (1A) Young Won Lim 2/22/14 Complex Functions (1A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Integrals. Young Won Lim 12/29/15

Integrals. Young Won Lim 12/29/15 Integrls Copyright (c) 2011-2015 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version 1.2 or ny lter version published

More information

Fourier Analysis Overview (0A)

Fourier Analysis Overview (0A) CTFS: Fourier Series CTFT: Fourier Transform DTFS: Fourier Series DTFT: Fourier Transform DFT: Discrete Fourier Transform Copyright (c) 2011-2016 Young W. Lim. Permission is granted to copy, distribute

More information

Surface Integrals (6A)

Surface Integrals (6A) urface Integrals (6A) urface Integral tokes' Theorem Copright (c) 2012 Young W. Lim. Permission is granted to cop, distribute and/or modif this document under the terms of the GNU Free Documentation License,

More information

Root Locus (2A) Young Won Lim 10/15/14

Root Locus (2A) Young Won Lim 10/15/14 Root Locus (2A Copyright (c 2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Fourier Analysis Overview (0A)

Fourier Analysis Overview (0A) CTFS: Fourier Series CTFT: Fourier Transform DTFS: Fourier Series DTFT: Fourier Transform DFT: Discrete Fourier Transform Copyright (c) 2011-2016 Young W. Lim. Permission is granted to copy, distribute

More information

Capacitor Young Won Lim 06/22/2017

Capacitor Young Won Lim 06/22/2017 Capacitor Copyright (c) 2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Background Complex Analysis (1A) Young Won Lim 9/2/14

Background Complex Analysis (1A) Young Won Lim 9/2/14 Background Complex Analsis (1A) Copright (c) 2014 Young W. Lim. Permission is granted to cop, distribute and/or modif this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

The Growth of Functions (2A) Young Won Lim 4/6/18

The Growth of Functions (2A) Young Won Lim 4/6/18 Copyright (c) 2015-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09 Detect Sensor (6B) Eddy Current Sensor Copyright (c) 2009 Young W. Lim. Permission is granteo copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Capacitor in an AC circuit

Capacitor in an AC circuit Capacitor in an AC circuit Copyright (c) 2011 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Complex Trigonometric and Hyperbolic Functions (7A)

Complex Trigonometric and Hyperbolic Functions (7A) Complex Trigonometric and Hyperbolic Functions (7A) 07/08/015 Copyright (c) 011-015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Phasor Young Won Lim 05/19/2015

Phasor Young Won Lim 05/19/2015 Phasor Copyright (c) 2009-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Signal Functions (0B)

Signal Functions (0B) Signal Functions (0B) Signal Functions Copyright (c) 2009-203 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Fourier Analysis Overview (0B)

Fourier Analysis Overview (0B) CTFS: Continuous Time Fourier Series CTFT: Continuous Time Fourier Transform DTFS: Fourier Series DTFT: Fourier Transform DFT: Discrete Fourier Transform Copyright (c) 2009-2016 Young W. Lim. Permission

More information

Background LTI Systems (4A) Young Won Lim 4/20/15

Background LTI Systems (4A) Young Won Lim 4/20/15 Background LTI Systems (4A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Capacitor and Inductor

Capacitor and Inductor Capacitor and Inductor Copyright (c) 2015 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Capacitor and Inductor

Capacitor and Inductor Capacitor and Inductor Copyright (c) 2015 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Discrete Time Rect Function(4B)

Discrete Time Rect Function(4B) Discrete Time Rect Function(4B) Discrete Time Rect Functions Copyright (c) 29-213 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

CLTI System Response (4A) Young Won Lim 4/11/15

CLTI System Response (4A) Young Won Lim 4/11/15 CLTI System Response (4A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09 Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect Copyright (c) 2009 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Down-Sampling (4B) Young Won Lim 10/25/12

Down-Sampling (4B) Young Won Lim 10/25/12 Down-Sampling (4B) /5/ Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

Audio Signal Generation. Young Won Lim 1/29/18

Audio Signal Generation. Young Won Lim 1/29/18 Generation Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Discrete Time Rect Function(4B)

Discrete Time Rect Function(4B) Discrete Time Rect Function(4B) Discrete Time Rect Functions Copyright (c) 29-23 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Hamiltonian Cycle (3A) Young Won Lim 5/5/18

Hamiltonian Cycle (3A) Young Won Lim 5/5/18 Hamiltonian Cycle (3A) Copyright (c) 015 018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any

More information

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13 1-D Dispersion Copyright (c) 013. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any later version published

More information

Bayes Theorem (10B) Young Won Lim 6/3/17

Bayes Theorem (10B) Young Won Lim 6/3/17 Bayes Theorem (10B) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15 Definition of the aplace Tranform (A) 2/9/5 Copyright (c) 24 Young W. im. Permiion i granted to copy, ditriute and/or modify thi document under the term of the GNU Free Documentation icene, Verion.2 or

More information

Down-Sampling (4B) Young Won Lim 11/15/12

Down-Sampling (4B) Young Won Lim 11/15/12 Down-Sampling (B) /5/ Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

Group & Phase Velocities (2A)

Group & Phase Velocities (2A) (2A) 1-D Copyright (c) 2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Up-Sampling (5B) Young Won Lim 11/15/12

Up-Sampling (5B) Young Won Lim 11/15/12 Up-Sampling (5B) Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later version

More information

Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point

Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point Line through P and Q approaches to the tangent line at P as Q approaches P. That is as a + h a = h gets smaller. Slope of the

More information

Propagating Wave (1B)

Propagating Wave (1B) Wave (1B) 3-D Wave Copyright (c) 2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

Double Integrals (5A)

Double Integrals (5A) Doule Integrls (5A) Doule Integrl Doule Integrls in Polr oordintes Green's Theorem opyright (c) 2012 Young W. Lim. Permission is grnted to copy, distriute nd/or modify this document under the terms of

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Bilateral Laplace Transform (6A) Young Won Lim 2/16/15

Bilateral Laplace Transform (6A) Young Won Lim 2/16/15 Bilterl Lplce Trnsform (6A) 2/6/5 Copyright (c) 25 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version.2 or ny

More information

FSM Examples. Young Won Lim 11/6/15

FSM Examples. Young Won Lim 11/6/15 /6/5 Copyright (c) 2 25 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version published

More information

CLTI Differential Equations (3A) Young Won Lim 6/4/15

CLTI Differential Equations (3A) Young Won Lim 6/4/15 CLTI Differential Equations (3A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Bilateral Laplace Transform (6A) Young Won Lim 2/23/15

Bilateral Laplace Transform (6A) Young Won Lim 2/23/15 Bilterl Lplce Trnsform (6A) Copyright (c) 25 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version.2 or ny lter

More information

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A) Digital Signal Periodic Conditions Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12 Hilbert nner Product Space (2B) Copyright (c) 2009-2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Implication (6A) Young Won Lim 3/17/18

Implication (6A) Young Won Lim 3/17/18 Implication (6A) 3/17/18 Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Audio Signal Generation. Young Won Lim 2/2/18

Audio Signal Generation. Young Won Lim 2/2/18 Generation Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Bayes Theorem (4A) Young Won Lim 3/5/18

Bayes Theorem (4A) Young Won Lim 3/5/18 Bayes Theorem (4A) Copyright (c) 2017-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Propositional Logic Resolution (6A) Young W. Lim 12/12/16

Propositional Logic Resolution (6A) Young W. Lim 12/12/16 Propositional Logic Resolution (6A) Young W. Lim Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Sequential Circuit Timing. Young Won Lim 11/6/15

Sequential Circuit Timing. Young Won Lim 11/6/15 Copyright (c) 2011 2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

Capacitor in an AC circuit

Capacitor in an AC circuit Capacitor in an AC circuit Copyright (c) 2011 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Capacitor in an AC circuit

Capacitor in an AC circuit Capacitor in an AC circuit Copyright (c) 2011 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Group Delay and Phase Delay (1A) Young Won Lim 7/19/12

Group Delay and Phase Delay (1A) Young Won Lim 7/19/12 Group Delay and Phase Delay (A) 7/9/2 Copyright (c) 2 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2

More information

General Vector Space (3A) Young Won Lim 11/19/12

General Vector Space (3A) Young Won Lim 11/19/12 General (3A) /9/2 Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version

More information

Capacitor in an AC circuit

Capacitor in an AC circuit Capacitor in an AC circuit Copyright (c) 2011 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Math 104: l Hospital s rule, Differential Equations and Integration

Math 104: l Hospital s rule, Differential Equations and Integration Math 104: l Hospital s rule, and Integration Ryan Blair University of Pennsylvania Tuesday January 22, 2013 Math 104:l Hospital s rule, andtuesday Integration January 22, 2013 1 / 8 Outline 1 l Hospital

More information

Propositional Logic Logical Implication (4A) Young W. Lim 4/11/17

Propositional Logic Logical Implication (4A) Young W. Lim 4/11/17 Propositional Logic Logical Implication (4A) Young W. Lim Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A) Digital Signal Periodic Conditions Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Propositional Logic Resolution (6A) Young W. Lim 12/31/16

Propositional Logic Resolution (6A) Young W. Lim 12/31/16 Propositional Logic Resolution (6A) Young W. Lim Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

Audio Signal Generation. Young Won Lim 2/2/18

Audio Signal Generation. Young Won Lim 2/2/18 Generation Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Capacitors in an AC circuit

Capacitors in an AC circuit Capacitors in an AC circuit Copyright (c) 2011 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Group Velocity and Phase Velocity (1A) Young Won Lim 5/26/12

Group Velocity and Phase Velocity (1A) Young Won Lim 5/26/12 Group Velocity and Phase Velocity (1A) Copyright (c) 211 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A) Digital Signal Periodic Conditions Copyright (c) 2009-207 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2

More information

Math 3B: Lecture 11. Noah White. October 25, 2017

Math 3B: Lecture 11. Noah White. October 25, 2017 Math 3B: Lecture 11 Noah White October 25, 2017 Introduction Midterm 1 Introduction Midterm 1 Average is 73%. This is higher than I expected which is good. Introduction Midterm 1 Average is 73%. This is

More information

Hyperbolic Functions (1A)

Hyperbolic Functions (1A) Hyperbolic Functions (A) 08/3/04 Copyright (c) 0-04 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or

More information

Capacitor in an AC circuit

Capacitor in an AC circuit Capacitor in an AC circuit Copyright (c) 2011 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A) Digital Signal Periodic Conditions Copyright (c) 2009-207 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2

More information

Bandpass Sampling (2B) Young Won Lim 3/27/12

Bandpass Sampling (2B) Young Won Lim 3/27/12 andpass Sapling (2) Copyright (c) 2009-2012 Young W. Li. Perission is granted to copy, distribute and/or odify this docuent under the ters of the GNU Free Docuentation License, Version 1.2 or any later

More information

Propositional Logic Logical Implication (4A) Young W. Lim 4/21/17

Propositional Logic Logical Implication (4A) Young W. Lim 4/21/17 Propositional Logic Logical Implication (4A) Young W. Lim Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information