ESTIMATION OF PITCHING MOMENT OF A HYBRID LIFTING FUSELAGE - DISGUISED AS HULL OF AN AIRSHIP

Size: px
Start display at page:

Download "ESTIMATION OF PITCHING MOMENT OF A HYBRID LIFTING FUSELAGE - DISGUISED AS HULL OF AN AIRSHIP"

Transcription

1 Asian Research Publishing Netork (ARPN). All rights reserved..arpnjournals.com ESTIMATION OF PITCHING MOMENT OF A HYBRID LIFTING FUSELAGE - DISGUISED AS HULL OF AN AIRSHIP Anar Ul Haque 1, Waqar Asrar 1, Ashraf Ali Omar 2, Erin Sulaeman 1 and JS Mohamed Ali 1 1 Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia 2 Department of Aeronautical Engineering, University of Tripoli, Libya aqar@iium.edu.my ABSTRACT Munk-Multhop s method is usually used for estimation of pitching moment of fuselage of conventional aircraft but application of the same for hybrid lifting fuselage had not been earlier explored. CFD methods can also be applied for the said purpose but it is difficult to separate out the portion of the moment caused by the fuselage, since the ing and fuselage affect each other. In the present ork, a hull disguised as hybrid lifting fuselage of a hybrid buoyant aircraft as taken as a test case. Slope of the pitching moment obtained from the Munk-Multhop s method as further corrected to account for the effect of slenderness ratio. Good agreement of results as found after defining the camber profile of the hybrid lifting fuselage and applying the said correction. The location of the ing relative to the fuselage and lift curve slope of ings has a dominant role in estimation of pitching moment coefficient of the fuselage. Keyords: munk-multhop s method, zero lift pitching moment coefficient, pitching moment coefficient, hybrid lifting hull. INTRODUCTION The concept of hybrid lifting fuselage is derived from lighter than air aircraft (LTA), hich get aerostatic lift due to buoyancy effect of lifting gas and aerodynamic lift generated by the aerodynamic profile of fuselage. The static longitudinal stability characteristics of airships is estimated by applying the methods either derived from the ind tunnel testing or by using the potential flo theory. Results of previous ork related to stability analysis of airships (Acanfora and Lecce, 2011; Moutinho and Azinheira, 2005; Wang, 2012) have shon that static stability criteria for aircrafts is not applicable for airships. This is perhaps due to the fact that airships donat have a ing attracted to it and that is the reason the airships do not have negative value of slope of the pitching moment coefficient as function of angle of attack, ( Carichner and Nicolai, 2013). Due to the absence of a comprehensive databank of (A&S) parameters, advanced design and analysis methods for such aircrafts are not yet fully established. In this regard an analytical effort as done in present research ork to use computational fluid dynamics and lo fidility tools to evaluate the applicability of Munk-Multhop s method. For hybrid lifting hull ith small ings attached to it; analytical relationship of pitching moment coefficient of fuselage at zero lift, and the slope of the pitching moment coefficient as function of angle of attack are shon belo as Equation. (1), taken from reference (Gudmundsson, 2013) and Equation. (2), derived from the Munk-Multhop s method to cater the effect of the shape, respectively. These equations contain the constant 36.5, hich facilitate the conversion of the angle (, i ) and slope C ZL f L from per radian to per degree, respectively. (1) (2) In Equation. (1-2), terms C ref and S ref are the reference dimensions for the chord length and reference area, respectively. Complete derivation of Equation. 2 is beyond the scope of this ork. It is important to note that in Equation. (2) the ing lift curve slope is in per degree; alloing the use of in per degree. dback x ( ) d back d front x ( ) d front and are upash gradient before the ind and donash gradient after the ing, respectively. The integrals in Equation (2) can be solved by using Simpson s rule or any other quadrature formula. Equation. (1-2) are no applied on a generic model of hybrid lifting hull of the hybrid buoyant aircraft. MATERIALS AND METHODS Fuselage used in the present study as taken from a recent ork by reference (Haque et al. 2014), hich has fineness ratio equal to 5.5 and internal volume of 535 m 3. Profile as obtained by using standard airfoils Eppler-1200 and S-1016 till 80 percent of chord length i.e. 2217

2 Asian Research Publishing Netork (ARPN). All rights reserved..arpnjournals.com in side vie, this lifting hull has a shape of Eppler-1200 airfoil and it is S-1016 as the top/plan vie. The extended version of Munk-Multhop s method (Equation. (1-2)) as then applied hich accounts for the effect of ing upash and its donash effects. Figure-1 shos the major dimensions of the fuselage used in the numerical integration ork. The fuselage as divided into 13 planes in lateral direction and slices their mid sections as are shon in the Figure-2. Figure-1. Implementation of Munk-Multhop method for estimating the and. Figure-2. Mid-sectional vie of the fuselage of hybrid lifting hull. Nose of the fuselage as defined as the datum/reference point. Sign convention used to define i is the same as that used in reference f (Gudmundsson, 2013), Figure-3. Effect of as included by estimating its valve using XFLR softare. Although the geometry of the fuselage as also modeled alongith ith that of the ing; but due to knon constrains of modeling, this analytical tool could not predict the aerodynamic forces acting on the voluminous fuselage. Therefore, only the ing as considered here for the analysis ork and for cruise flight condition; as estimated to be equal to (/degree) and is shon here as Figure-4. ANSYS-FLUENT, a commercial CFD analysis softare as used to obtain the aerodynamic properties of the fuselage. Numerical simulations ere run by employing the Menter Shear Stress Transport (MSST) turbulence model for cruise velocity, V cruise equal to 100 km/hr. No-slip all condition is employed at the surface of the fuselage. Figure-3. Fuselage camber incidence angle, i. f 2218

3 Asian Research Publishing Netork (ARPN). All rights reserved..arpnjournals.com Figure-4. Plot to get the slope of. (d) Variation in pitching moment coefficient of fuselage ith different reference areas. (a) Computational Grid. (e) Trendline of lift produced by the lifting fuselage. (b)surface Grid. (f) Plot used to find the C m (/degree). Figure-5. CFD results of fuselage alone case at V=100 km/hr (Haque et al. 2015). (c) Sectional vie of the grid and contours of total prssure on the surface of fuselage. In the simulation ork, steady-state condition is considered and a pressure-based solver; SIMPLEC as used. The C-O computational grid type used in this numerical ork is shon in Figure-5(a) and surface grid is given in Figure-5(b). Fully structured grid is generated so that the flo is aligned ith the grid. Sectional vies of the grid are shon in Figure-5(c). Grid independence study as also carried out by changing the number of grid points in the circumferential and axial direction. Grid 2219

4 Asian Research Publishing Netork (ARPN). All rights reserved..arpnjournals.com skeness as also checked before defining the properties of the boundary conditions. as estimated for different available options of reference area S ref and it as found that slope of decreases ith increase fus in its value, Figure-5(d). For the present study, similar to conventional aircraft S ref as taken equal to the total platform area of ing, equal to m 2. as fus also plotted as Figure-5(e) hich as further utilized to get the plot of C m vs C L. Plot shon in Figure-5(f) had provided the value of C m equal to -0.6, here lift becomes equal to zero. Moreover, it can be observed from Table-3 that ithout correction for slenderness ratio k 2 k 1, in comparison ith CFD result; the values of m as over predicted by the Munk-Multhop s C fus method. It can be observed from this table that although the CFD ork did not include the upash and donash fus effects due to the ing, but overall the results are quite in agreement ith those obtained from extended version of Munk-Multhop s method. It is cited in reference that the pitching moment contribution of the fuselage can also be approximated by Equation. (3), taken from a NACA Reprt (Gilruth and White, 1941). In this relationship; W f is the maximum idth of the fuselage and L f is the length. Figure (16.14) of reference (Raymer, 2012) provides the empirical pitching moment factor K f. fus 2 K f W f L f CS fus, perdeg (3) value obtained by using Equation. (2) for lifting fuselage under study as almost double than that predicted by CFD and Munk-Multhop s method and its value is equal to fus and Table-1. Implemntation of Munk s Multhop matrix to find C for ing location at m, including the sensitivity analysis for. ZL m BACK FUSELAGE FRONT FUSLEAGE ID Ii Dx x c i fi x dβ/dα 2 Δ 2 Δ Δ 2 Δ i ii iii iv i ii iii iv i ii iii iv WING W Table-2. and fus for ing at m. Table-3.Comparison of results. ID Ii Dx x c i fi x dβ/dα 2 Δ 2 Δ BACK FUSELAGE FRONT FUSLEAGE WING W The difference beteen the CFD and analytical results may not be treated as error because ( Multhop. H., 1936) mentioned that so far based on the comparison study, the Munk s correction for slenderness ratio had little effect on longitudinal motion of fuselage. 2220

5 Asian Research Publishing Netork (ARPN). All rights reserved..arpnjournals.com But hen his theory is applied for the lift producing fuselage than a need is perceived to cater the effect of the slendernss ratio. The forces and moments due to upash and don effects of the presented ing have a small influence on the values of and C m, but may have a much fus greater effect on very large fuselages. Boundary layer separation and vortex flo at aft body are the potential reasons of small difference beteen the results for C m. For accurate estimation of C m, value of should be defined ith accuracy for knon value ZL of zero lift angle attack of ing. Based on the comparison of analytical and computational results, correction to account the effect of the slenderness ratio is suggested. CONUSIONS In this analytical and numerical study, Multhop's method hich is based on Munk's ork on the pitching moment of airships as evaluated for its potential usage for hybrid lifting fuselage. Correction had been applied in C m and C m to account for the effects of fineness fus ratio. If the correction to account the shape/slenderness ratio effects is not included, then in comparison ith CFD results, existing Munk-Multhop's method for conventional aircraft has over-predicted the slope of pitching moment coefficient for a hybrid lifting fuselage. ACKNOWLEDGEMENTS The support of the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, under the grant SF0189 is gratefully acknoledged. Special thanks to Professor Snorri Gudmundsson for useful discussions during the course of this research ork. [4] Grant E Carichner and Leland M Nicolai. (2013). Fundamentals of Aircraft and Airship Design: Volume II, Airship Design. (J. A. Schetz, Ed.). American Institute of Aeronautics and Astronautics,AIAA. [5] Gudmundsson, S. (2013). General Aviation Aircraft Design: Applied Methods and Procedures. Butterorth-Heinemann. [6] Haque, A. U., Asrar, W., Omar, A. a., Sulaeman, E., & Ali, J. M. (2014). Conceptual Design of a Winged Hybrid Airship. 21 st AIAA Lighter-Than-Air Systems Technology Conference, doi: / [7] Moutinho, A., & Azinheira, J. R. (2005). Stability and robustness analysis of the AURORA airship control system using dynamic inversion. In Robotics and Automation, ICRA Proceedings of the IEEE International Conference on (pp ). [8] Multhop. H., (1941). The Aerodynamics of Fuselage, NACA Technical Report. [9] Raymer, D. (2012). Aircraft Design: A Conceptual Approach. (J. A. Schetz, Ed.) (Fifth Edit.). Washington, DC: American Institute of Aeronautics and Astronautics, Inc. doi: / [10] Wang, X. L. (2012). Computational Fluid Dynamics Predictions of Stability Derivatives for Airship. Journal of Aircraft, 49(3), doi: /1.c REFERENCES [1] Acanfora, M. and Lecce. L, (2011) On the Development of the Linear Longitudinal Model for Airships Stability in Heaviness Condition, Aerotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems. Aerotecnica, 90(1), (2011) [2] Gilruth, R., R. and White, M., D., (1941), "Analysis and prediction of longitudinal stability of airplanes", NACA Report No: NACA-TR-711. [3] Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, JS. M., (2015), Poer-off static stability analysis of a clean configuration of a hybrid buoyant aircraft, 7 th Ankara Internatıonal Aerospace conference, September METU, Ankara Turkey. 2221

Wind Tunnel Testing on a Generic Model of a Hybrid Lifting Hull

Wind Tunnel Testing on a Generic Model of a Hybrid Lifting Hull doi: 10.5028/jatm.v8i4.645 Wind Tunnel Testing on a Generic Model of a Hybrid Lifting Hull Anwar Ul Haque 1, Waqar Asrar 1, Asharf Ali Omar 2, Erwin Suleiman 1 ABSTRACT: In this research, an experimental

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

Wind Tunnel Study of a Large Aerostat, CFD Validation

Wind Tunnel Study of a Large Aerostat, CFD Validation AIAA Lighter-Than-Air Systems Technology (LTA) Conference 25-28 March 2013, Daytona Beach, Florida AIAA 2013-1339 Wind Tunnel Study of a Large Aerostat, CFD Validation Stephen C. Chan 1, Kaleb Shervington

More information

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-2016-226 Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Emre Sazak

More information

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM)

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) Journal of Fundamental and Applied Sciences ISSN 1112-9867 Available online at http://www.jfas.info NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) M. Y. Habib

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

The Study on Re Effect Correction for Laminar Wing with High Lift

The Study on Re Effect Correction for Laminar Wing with High Lift The Study on Re Effect Correction for Laminar Wing with High Lift Jieke Yao, Wenliang Feng, Lingying Lv and Bin Chen Chengdu Aircraft Industrial (group) CO.LTD, 692, Chengdu, China Abstract. In the past

More information

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING Sun Tae Kim*, Youngtae Kim**, Tae Kyu Reu* *Agency for Defense Development,

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

OpenFOAM Simulations for MAV Applications

OpenFOAM Simulations for MAV Applications 16 th Annual CFD Symposium 11th-12th August 2014, Bangalore 1 OpenFOAM Simulations for MAV Applications Syed Zahid*, A. Rajesh, M.B. Subrahmanya, B.N. Rajani *Student, Dept. of Mech. Engg, SDM, Dharwad,

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

More information

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681 Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics Erik D. Olson NASA Langley Research Center, Hampton, VA 23681 This paper lays out a comprehensive methodology for computing a

More information

Introduction to Aeronautics

Introduction to Aeronautics Introduction to Aeronautics ARO 101 Sections 03 & 04 Sep 30, 2015 thru Dec 9, 2015 Instructor: Raymond A. Hudson Week #8 Lecture Material 1 Topics For Week #8 Airfoil Geometry & Nomenclature Identify the

More information

Aerodynamic Investigation of a 2D Wing and Flows in Ground Effect

Aerodynamic Investigation of a 2D Wing and Flows in Ground Effect 26 2 2009 3 CHINESE JOURNAL OF COMPUTATIONAL PHYSICS Vol. 26,No. 2 Mar., 2009 Article ID : 10012246 X(2009) 0220231210 Aerodynamic Investigation of a 2D Wing and Flows in Ground Effect YANG Wei, YANG Zhigang

More information

Coupled Fluid and Heat Flow Analysis Around NACA Aerofoil Profiles at Various Mach Numbers

Coupled Fluid and Heat Flow Analysis Around NACA Aerofoil Profiles at Various Mach Numbers International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 249-258 International Research Publication House http://www.irphouse.com Coupled Fluid and Heat

More information

Computational Fluid Dynamics Study Of Fluid Flow And Aerodynamic Forces On An Airfoil S.Kandwal 1, Dr. S. Singh 2

Computational Fluid Dynamics Study Of Fluid Flow And Aerodynamic Forces On An Airfoil S.Kandwal 1, Dr. S. Singh 2 Computational Fluid Dynamics Study Of Fluid Flow And Aerodynamic Forces On An Airfoil S.Kandwal 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin Tripathi

More information

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag Drag () Induced Drag Friction Drag Form Drag Wave Drag Outline Nomenclature and Concepts Farfield Drag Analysis Induced Drag Multiple Lifting Surfaces Zero Lift Drag :Friction and Form Drag Supersonic

More information

Numerical Investigation of Wind Tunnel Wall Effects on a Supersonic Finned Missile

Numerical Investigation of Wind Tunnel Wall Effects on a Supersonic Finned Missile 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

Numerical study of battle damaged two-dimensional wings

Numerical study of battle damaged two-dimensional wings Advances in Fluid Mechanics IX 141 Numerical study of battle damaged two-dimensional wings S. Djellal, T. Azzam, M. Djellab & K. Lakkaichi Fluid Mechanics Laboratory Polytechnical School Bordj El Bahri,

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.1

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.1 Colloquium FLUID DYNAMICS 1 Institute of Thermomechanics AS CR, v.v.i., Prague, October 4-6, 1 p.1 REMARKS ABOUT THE CONTROL OF THE GRID GENERATED TURBULENCE DECAY Pavel Jonáš Institute of Thermomechanics

More information

LEE-SIDE FLOW SIMULATIONS OF CRUCIFORM WING- BODY CONFIGURATIONS AT INCOMPRESSIBLE MACH NUMBERS

LEE-SIDE FLOW SIMULATIONS OF CRUCIFORM WING- BODY CONFIGURATIONS AT INCOMPRESSIBLE MACH NUMBERS LEE-SIDE FLOW SIMULATIONS OF CRUCIFORM WING- BODY CONFIGURATIONS AT INCOMPRESSIBLE MACH NUMBERS Janine Versteegh* ** *University of the Witwatersrand **Council for Scientific and Industrial Research (CSIR)

More information

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics Chapter 5 Wing design - selection of wing parameters Lecture 0 Topics 5..4 Effects of geometric parameters, Reynolds number and roughness on aerodynamic characteristics of airfoils 5..5 Choice of airfoil

More information

Aerodynamic and Stability Analysis of Blended Wing Body Aircraft

Aerodynamic and Stability Analysis of Blended Wing Body Aircraft International Journal of Mechanical Engineering and Applications 2016; 4(4): 143-151 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20160404.12 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Transition Modeling Activities at AS-C²A²S²E (DLR)

Transition Modeling Activities at AS-C²A²S²E (DLR) Transition Modeling Activities at AS-C²A²S²E (DLR) Andreas Krumbein German Aerospace Center (DLR) Institute of Aerodynamics and Flow Technology (AS) C²A²S²E - Center for Computer Applications in AeroSpace

More information

Prediction of Aircraft s Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach

Prediction of Aircraft s Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach Journal of Mechanics Engineering and Automation 4 (2014) 584-594 D DAVID PUBLISHING Prediction of Aircraft s Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach

More information

Design and Computational Studies on Plain Flaps

Design and Computational Studies on Plain Flaps Bonfring International Journal of Industrial Engineering and Management Science, Vol. 3, No. 2, June 2013 33 Design and Computational Studies on Plain Flaps M. Senthil Kumar and K. Naveen Kumar Abstract---

More information

Wind Tunnel Study of a Large Aerostat

Wind Tunnel Study of a Large Aerostat 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIA 20-22 September 2011, Virginia Beach, VA AIAA 2011-7068 Wind Tunnel Study of a Large Aerostat Stephen C.

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

Design of a Droopnose Configuration for a Coanda Active Flap Application. Marco Burnazzi and Rolf Radespiel

Design of a Droopnose Configuration for a Coanda Active Flap Application. Marco Burnazzi and Rolf Radespiel Design of a Droopnose Configuration for a Coanda Active Flap Application Marco Burnazzi and Rolf Radespiel Institute of Fluid Mechanics, Technische Universität Braunschweig, 38108 Braunschweig, Germany

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Yuichiro Goto, Shigeru Obayashi and Yasuaki Kohama Tohoku University, Sendai, Japan In this paper, a new concept for low-drag,

More information

Analysis of Missile Bodies with Various Cross sections and Enhancement of Aerodynamic Performance

Analysis of Missile Bodies with Various Cross sections and Enhancement of Aerodynamic Performance International Conference on Systems, Science, Control, Communication, Engineering and Technology 115 International Conference on Systems, Science, Control, Communication, Engineering and Technology 2015

More information

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics hapter 2 eture 5 ongitudinal stik fied stati stability and ontrol 2 Topis 2.2 mg and mα as sum of the ontributions of various omponent 2.3 ontributions of ing to mg and mα 2.3.1 orretion to mα for effets

More information

A Numerical Blade Element Approach to Estimating Propeller Flowfields

A Numerical Blade Element Approach to Estimating Propeller Flowfields Utah State University DigitalCommons@USU Mechanical and Aerospace Engineering Faculty Publications Mechanical and Aerospace Engineering 1-8-27 A Numerical Blade Element Approach to Estimating Propeller

More information

Computation of turbulent natural convection at vertical walls using new wall functions

Computation of turbulent natural convection at vertical walls using new wall functions Computation of turbulent natural convection at vertical alls using ne all functions M. Hölling, H. Herig Institute of Thermo-Fluid Dynamics Hamburg University of Technology Denickestraße 17, 2173 Hamburg,

More information

A Numerical Study of Circulation Control on a Flapless UAV

A Numerical Study of Circulation Control on a Flapless UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx A Numerical Study of Circulation Control on a Flapless UAV Huaixun Ren 1, Weimin

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Far Field Noise Minimization Using an Adjoint Approach

Far Field Noise Minimization Using an Adjoint Approach Far Field Noise Minimization Using an Adjoint Approach Markus P. Rumpfkeil and David W. Zingg University of Toronto Institute for Aerospace Studies 4925 Dufferin Street, Toronto, Ontario, M3H 5T6, Canada

More information

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION Joaquim Rafael Rost Ávila Martins Department of Aeronautics and Astronautics Stanford University Ph.D. Oral Examination, Stanford

More information

Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes Boeing Commercial Airplane Group, Seattle, Washington, 98124

Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes Boeing Commercial Airplane Group, Seattle, Washington, 98124 AIAA--2007-0684 Pressures and Drag Characteristics of Bodies of Revolution at Near Sonic Speeds Including the Effects of Viscosity and Wind Tunnel Walls Brenda M. Kulfan, John E. Bussoletti, and Craig

More information

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH 82 CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH The coefficient of lift, drag and power for wind turbine rotor is optimized using an iterative approach. The coefficient

More information

Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

More information

Aircraft Performance, Stability and control with experiments in Flight. Questions

Aircraft Performance, Stability and control with experiments in Flight. Questions Aircraft Performance, Stability and control with experiments in Flight Questions Q. If only the elevator size of a given aircraft is decreased; keeping horizontal tail area unchanged; then the aircraft

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

Flow field in the compressor blade cascade NACA

Flow field in the compressor blade cascade NACA Flow field in the compressor blade cascade NACA 65-100 Tomáš Turek Thesis Supervisor: Ing. Tomáš Hyhlík, Ph.D. Abstract An investigation is made into the effects of a flow field in the compressor blade

More information

AN ENGINEERING LEVEL PREDICTION METHOD FOR NORMAL-FORCE INCREASE DUE TO WEDGE SECTIONS

AN ENGINEERING LEVEL PREDICTION METHOD FOR NORMAL-FORCE INCREASE DUE TO WEDGE SECTIONS 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN ENGINEERING LEVEL PREDICTION ETHOD FOR NORAL-FORCE INCREASE DUE TO WEDGE SECTIONS Asher Sigal Shehafim R&D, Haifa 34861, Israel Keywords: wedge

More information

Consider a wing of finite span with an elliptic circulation distribution:

Consider a wing of finite span with an elliptic circulation distribution: Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

More information

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Daniel J. Lesieutre 1 Nielsen Engineering & Research, Inc., Santa Clara, CA, 95054 The nonlinear missile aerodynamic

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institution of Technology-Kanpur

Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institution of Technology-Kanpur Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institution of Technology-Kanpur Problems Stability Tail Contribution Completed We were trying to understand whatever

More information

Evaluation of Surface Finish Affect on Aerodynamic Coefficients Of Wind Tunnel Testing Models

Evaluation of Surface Finish Affect on Aerodynamic Coefficients Of Wind Tunnel Testing Models Evaluation of Finish Affect on Aerodynamic Coefficients Of Wind Tunnel Testing s R. ADELNIA 1, S. AGHANAJAFI 2, S. DANESHMAND 3 Department of Mechanical Engineering Islamic Azad University Majlesi Branch

More information

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 05 NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

More information

Experimental Aerodynamics. Experimental Aerodynamics

Experimental Aerodynamics. Experimental Aerodynamics Lecture 6: Slender Body Aerodynamics G. Dimitriadis Slender bodies! Wings are only one of the types of body that can be tested in a wind tunnel.! Although wings play a crucial role in aeronautical applications

More information

Data analysis from capillary rheometry can be enhanced by a method that is an alternative to the Rabinowitsch correction

Data analysis from capillary rheometry can be enhanced by a method that is an alternative to the Rabinowitsch correction ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 18, 2010 Data analysis from capillary rheometry can be enhanced by a method that is an alternative to the Rabinoitsch correction Carlos Salas-Bringas1,

More information

344 JAXA Special Publication JAXA-SP E 2. Prediction by the CFD Approach 2.1 Numerical Procedure The plane shape of the thin delta wing of the r

344 JAXA Special Publication JAXA-SP E 2. Prediction by the CFD Approach 2.1 Numerical Procedure The plane shape of the thin delta wing of the r 5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 343 Aerodynamic Characteristics of a Delta Wing with Arc Camber for Mars Exploration Takao Unoguchi,* 1 Shogo Aoyama,*

More information

Chapter 2 Lecture 7 Longitudinal stick fixed static stability and control 4 Topics

Chapter 2 Lecture 7 Longitudinal stick fixed static stability and control 4 Topics hapter 2 Lecture 7 Longitudinal stick ixed static stability and control 4 Topics 2.4.6 Revised expression or mcgt 2.4.7 mαt in stick-ixed case 2.5 ontributions o uselage to mcg and mα 2.5.1 ontribution

More information

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Denis B. Kholodar, United States Air Force Academy, Colorado Springs, CO 88 Earl H. Dowell, Jeffrey P. Thomas, and Kenneth C. Hall Duke University,

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research  e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 CFD Analysis of Airfoil NACA0012 Pritesh S. Gugliya 1, Yogesh R. Jaiswal 2,

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

The Simulation of Wraparound Fins Aerodynamic Characteristics

The Simulation of Wraparound Fins Aerodynamic Characteristics The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

Resolving the dependence on free-stream values for the k-omega turbulence model

Resolving the dependence on free-stream values for the k-omega turbulence model Resolving the dependence on free-stream values for the k-omega turbulence model J.C. Kok Resolving the dependence on free-stream values for the k-omega turbulence model J.C. Kok This report is based on

More information

Effect of Camber on Badminton Shuttlecock

Effect of Camber on Badminton Shuttlecock Proceedings Effect of Camber on Badminton Shuttlecock Yasufumi Konishi 1, *, Yusuke Matsushima 2, Takashi Misaka 1, Hiroyuki Okuizumi 1, Kensuke Tanaka 2 and Shigeru Obayashi 1 1 Institute of Fluid Science,

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Numerical Computation of Pressure Distributions over Conical Forebody at High Angles of Attack

Numerical Computation of Pressure Distributions over Conical Forebody at High Angles of Attack 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-1237 Numerical Computation of Pressure Distributions over

More information

Air Loads. Airfoil Geometry. Upper surface. Lower surface

Air Loads. Airfoil Geometry. Upper surface. Lower surface AE1 Jha Loads-1 Air Loads Airfoil Geometry z LE circle (radius) Chord line Upper surface thickness Zt camber Zc Zl Zu Lower surface TE thickness Camber line line joining the midpoints between upper and

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

Analysis of a Dual-Mode Scramjet Engine Isolator Operating From Mach 3.5 to Mach 6

Analysis of a Dual-Mode Scramjet Engine Isolator Operating From Mach 3.5 to Mach 6 International Journal of Mechanical Engineering and Applications 016; 4(5): 189-198 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.0160405.14 ISSN: 330-03X (Print); ISSN: 330-048 (Online)

More information

Interaction of impeller and guide vane in a seriesdesigned

Interaction of impeller and guide vane in a seriesdesigned IOP Conference Series: Earth and Environmental Science Interaction of impeller and guide vane in a seriesdesigned axial-flow pump To cite this article: S Kim et al 212 IOP Conf. Ser.: Earth Environ. Sci.

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing Proceedings of ICTACEM 2017 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 28-30, 2017, IIT Kharagpur, India ICTACEM-2017/XXXX(paper No.) An Experimental

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

Study of Preliminary Configuration Design of F-35 using simple CFD

Study of Preliminary Configuration Design of F-35 using simple CFD Study of Preliminary Configuration Design of F-35 using simple CFD http://www.aerospaceweb.org/aircraft/research/x35/pics.shtml David Hall Sangeon Chun David Andrews Center of Gravity Estimation.5873 Conventional

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university cissyvp@gmail.com Jancy Rose K Scientist/Engineer,VSSC, Thiruvananthapuram, India R Neetha

More information

RECENT near-sonic and low-sonic boom transport aircraft

RECENT near-sonic and low-sonic boom transport aircraft JOURNAL OF AIRCRAFT Vol. 44, No. 6, November December 2007 Aerodynamic Characteristics of Bodies of Revolution at Near-Sonic Speeds Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes The Boeing

More information

COMPUTATIONAL STUDY OF SEPARATION CONTROL MECHANISM WITH THE IMAGINARY BODY FORCE ADDED TO THE FLOWS OVER AN AIRFOIL

COMPUTATIONAL STUDY OF SEPARATION CONTROL MECHANISM WITH THE IMAGINARY BODY FORCE ADDED TO THE FLOWS OVER AN AIRFOIL COMPUTATIONAL STUDY OF SEPARATION CONTROL MECHANISM WITH THE IMAGINARY BODY FORCE ADDED TO THE FLOWS OVER AN AIRFOIL Kengo Asada 1 and Kozo Fujii 2 ABSTRACT The effects of body force distribution on the

More information

Study. Aerodynamics. Small UAV. AVL Software

Study. Aerodynamics. Small UAV. AVL Software Study of the Aerodynamics of a Small UAV using AVL Software Prepared For: Prof. Luis Bernal Prepared By: Paul Dorman April 24, 2006 Table of Contents Introduction.1 Aerodynamic Data...2 Flight Assessment..

More information

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration Claudio Marongiu, Renato Tognaccini 2 CIRA, Italian Center for Aerospace Research, Capua (CE), Italy E-mail: c.marongiu@cira.it

More information

German Aerospace Center (DLR)

German Aerospace Center (DLR) German Aerospace Center (DLR) AEROGUST M30 Progress Meeting 23-24 November 2017, Bordeaux Presented by P. Bekemeryer / J. Nitzsche With contributions of C. Kaiser 1, S. Görtz 2, R. Heinrich 2, J. Nitzsche

More information

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 27, Reno, Nevada AIAA 27-672 AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE Wei-Jen Su 1, Curtis Wilson 2, Tony Farina

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved. Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Rotor reference axis

Rotor reference axis Rotor reference axis So far we have used the same reference axis: Z aligned with the rotor shaft Y perpendicular to Z and along the blade (in the rotor plane). X in the rotor plane and perpendicular do

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

AIAA Envelope Protection and Atmospheric Disturbances in Icing Encounters

AIAA Envelope Protection and Atmospheric Disturbances in Icing Encounters AIAA 22-814 Envelope Protection and Atmospheric Disturbances in Icing Encounters J.M. Merret, K.N. Hossain, and M.B. Bragg University of Illinois Urbana, IL 4th AIAA Aerospace Sciences Meetings & Exhibit

More information

Design for the Ocean Environment. Massachusetts Institute of Technology 2.017

Design for the Ocean Environment. Massachusetts Institute of Technology 2.017 Design for the Ocean Environment Some Major Considerations Hydrostatic pressure Heat dissipation in housings Waves Forces on bodies in steady flow But don t forget: wind and rain, corrosion, biofouling,

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

Characteristic Variables and Entrainment in 3-D Density Currents

Characteristic Variables and Entrainment in 3-D Density Currents Scientia Iranica, Vol. 15, No. 5, pp 575{583 c Sharif University of Technology, October 28 Characteristic Variables and Entrainment in 3-D Density Currents S. Hormozi 1, B. Firoozabadi 1; and H. Ghasvari

More information

1082. Computational study on aerodynamic characteristics of a flying wing MAV

1082. Computational study on aerodynamic characteristics of a flying wing MAV 1082. Computational study on aerodynamic characteristics of a flying wing MAV Hongming Cai 1, Zhilin Wu 2, Tianhang Xiao 3, Shuanghou Deng 4 1, 2 School of Mechanical Engineering, Nanjing University of

More information

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future OVERVIEW Presentation Aircraft Review of Current Icing Environments Pending Changes to

More information