The Outer Heliosphere On the largest scales, the hot heliosphere encounters the much colder (T 100 K) interstellar medium (ISM).

Size: px
Start display at page:

Download "The Outer Heliosphere On the largest scales, the hot heliosphere encounters the much colder (T 100 K) interstellar medium (ISM)."

Transcription

1 The Outer Heliosphere On the largest scales, the hot heliosphere encounters the much colder (T 100 K) interstellar medium (ISM). We are in a Local Bubble that s slightly hotter (T up to 10 4 K in places) and lower-density than mean ISM. Still, the conditions inside vs. outside are quite different, so the plasma must readjust itself, in stages. The whole solar system is also in motion with respect to the surrounding Bubble & ISM: u 23 km/s. We can think of u as either a flow coming at us, or as us moving through a static ISM like a bullet. (These views are essentially equivalent!) When two plasma parcels are in relative motion, with supersonic speeds involved, the system forms a series of shocks & other sharp discontinuities: 12.1

2 We ll go through these layers soon, but first it s good to review what shocks really are: the response of a gas to bulk flows faster than the sound speed. Think of an acoustic wave. There are pressure variations along the direction of propagation, and those give rise to longitudinal velocity perturbations δv too. Small-amplitude (linear) waves all drift along with c s δv, but when the velocity amplitude starts to approach c s, then the wave STEEPENS: The region ahead of the shock is unaware that it s coming; i.e., shocks occur when there s insufficient time for the system to react by means of simple linear waves. Shocks are inherently nonlinear... they are entropy increasing engines of the 2nd law of thermodynamics: as gas passes through them, they convert (ordered) kinetic energy into (disordered) thermal energy. In shock s frame, gas flows from upstream (side 1) to downstream (side 2): (1) Upstream/Inflow (2) Downstream/Outflow supersonic (u 1 > c s1 ) subsonic (u 2 < c s2 ) cold hot low ρ, P high ρ,p low entropy high entropy Note: We have seen that nature allows fluids to flow from hot/dense regions to cold/fast regions, but shocks don t form in those cases... rarefaction zones are fanned out & continuous. Mass/momentum/energy conservation laws also apply to shock discontinuities; these form the Rankine-Hugoniot jump conditions. Cravens 4.9 gives them, but we ll just make use of 2 basic ideas: 12.2

3 (1) Mass conservation means ρu = constant across a shock, but the density jump cannot be arbitrarily large. For an ideal gas, ( ) ( ) ρ2 u1 = = γ +1 = 4, for γ = 5/3. γ 1 ρ 1 max u 2 max (2) For B = 0, the total pressure balance across a shock must take into account ram pressure, too... P + ρu 2 = constant across shock. Taking the extreme limit of a very strong shock (u 1 c s1 ), the end result is that all that supersonic motion is converted into heat on the downstream side: k B T 2 = γp 2 = c 2 s2 µm H ρ u2 1 and if u 1 a few hundred km/s, T 2 can be millions of K!... Layers of the Outer Heliosphere Cravens gives a brief overview, but it s showing its age....no spacecraft has yet traveled far enough from the Sun to reach the heliopause. Not anymore! Voyager 1 hit it around r 120 AU. When two flows collide with one another, a steady, stable situation can be attained if the two plasmas can come into total pressure equilibrium. We ve seen that before, but usually for slow/subsonic flows (e.g., convective blobs; static flux tubes) However, the solar wind is locally supersonic. Also: the overall relative flow ( u = 23 km/s) may also be supersonic out in the ISM. If so, then there must be TWO shocks to first decelerate the flows, and then a layer in between where the (subsonic) flows meet, stagnate, and then P tot can be balanced. 12.3

4 Recent observations from IBEX (which detects neutral particles from local ISM) gave evidence there is no Bow Shock. ISM gas gets piled up and deflected by the heliosphere, but it remains subsonic (actually sub-magnetosonic). Cravens summarizes a way of estimating where the heliopause (pressure-balance surface) occurs. P ISM N/m 2 P HS ( ( ) 2 ρ sw u 2 sw )TS ρ 1auu 2 R1au r and for P ISM = P HS, solve for r AU. Really, TS is 95 AU, HP at 120 AU. Breathes in & out with solar cycle. 12.4

5 New development: the 2015 croissant revolution The shape of the heliosphere was assumed to be comet-like (as in the cartoons above) for decades. However, numerical MHD simulations have shown that it may not look quite like that. At r 1 AU, the Parker spiral angle φ p reaches 90, and B B φ ê φ. Opher et al. (2015) realized that the inward magnetic tension ( hoop force ) is strong, and the time-steady heliosheath must heat up even more than we thought (i.e., increase its P gas ) in order to balance it. However, that higher P gas rapidly spreads & fills the whole spherical heliosheath. Over the north & south poles, there s no hoop force, so it drives a collimated jet resembling astrophysical jets above protostars, black holes, etc. There is still comet-like deflection by our motion through the ISM, but instead of the entire region bending back, it s just the jets. This seems to still be controversial

6 Flares and Coronal Mass Ejections (CMEs) These are violent eruptions that range from photosphere to corona to outer heliosphere. Flares & CMEs are related, but they don t always occur together. (Many flares without CMEs... many CMEs without flares) They involve magnetic reconnection, and so we ll go into some detail about what happens there. Observations: Before talking about the eruption, we need to outline what kinds of B configurations exist prior to the eruption. Prominences & filaments: These are twisted strands of magnetic field, seen either off-limb (bright) or on-disk (dark). They re filled with cool (chromospheric) gas, up at coronal heights! Prominences are sometimes loop-like; sometimes spray, hedgerow, surge, fan. These features all have twists & tangles in B. How do they form? 12.6

7 For the footpoints, there are many ideas that involve a combination of: shear & convergence What gets created is a twisted flux rope, with J B 0 but J 0: Cool gas is levitated by the field; collects (in dips ) in local hydrostatic equilibrium often very tangled & turbulent. Overall, though, J B, so in MHD we can write B = αb. 12.7

8 In general, α can be a function of position, but it s been found that many systems like to relax to the so-called LFFF (linear force-free field) that occurs when α = constant. Lundquist (1950) worked out an analytic solution in cylindrical geometry, using Bessel functions J n (x), B r (r) = 0 B φ (r) = ±B 0 J 1 (αr) B z (r) = B 0 J 0 (αr) The constant α is a magnetic torsion parameter that describes how twisted up the field is. The outer edge of the cylinder is the first zero of J 0 (x), which occurs at x = αr edge The Lundquist solution works very well as a fitting formula for twisted magnetic clouds encountered by spacecraft. Those are the interplanetary remnants of CMEs (ICMEs).... However, we re getting ahead of ourselves. Despite the cool prominence gas collected in the dips, these regions tend to have high P mag, so lower P gas than surrounding corona. Thus, flux ropes want to be buoyant and float away. Usually, though, there s lots of nearby potential B (i.e., in an active region) that overlies it. Magnetic tension holds it down. What triggers a release? Still not agreed-upon. Jim Klimchuk (2001) published a set of heuristic cartoons that summarize various ideas from the theorists. 12.8

9 Thermal blast: Sometimes the flare seems to come before the CME? Mass loading: If there s cool, highdensity prominence gas, it may keep the field held down. But as B evolves, there might open up avenues for gas to drain away... Tether-cutting: If the overlying field gets weaker, then magnetic tension nolongercanholddownthebuoyant flux rope. There s a lot of interesting math concerning the catastrophic loss of equilibrium. The model that I think works best is a variant of tether-cutting, developed by Forbes, Isenberg, & Lin (& many others). If the footpoints of the overlying fields are pushed together, then magnetic reconnection cuts the tether: We ll talk more about magnetic reconnection in a bit, but this model seems to account not only for the light-bulb shaped CME, but also for the downward flow of energy (out of the reconnection zone) that powers many solar flares. Flares are bright spikes of emission in just about every spectral band: radio, microwave, IR, visible, UV, X-ray, & gamma-ray! If a supersonic flow of hot coronal gas comes slamming down onto the surface, part of the chromosphere evaporates away quickly, and particles of all kinds get energized. 12.9

10 We re still not quite sure why so much energy gets released by a flare, E J, equivalent to L 1 second! but this is roughly equal to the extra magnetic energy stored in twisted active regions. Getting rid of it relaxes the active-region B back down to a potential field. CMEs expand through the solar wind & heliosphere, creating a strong shock out in front, & pushing everything else out of the way

11 Magnetic Reconnection (Cravens 4.10) What happens when oppositely-directed regions of B are pushed together? If magnetic flux was perfectly frozen-in to the flow, the field would build up in a log-jam. However, we know there s another term in the induction equation: diffusion. B t = (u B) + D B 2 B where D B is the magnetic diffusion coefficient (units of m 2 /s), and it s set by the resistivity of the plasma (depends on ρ, T, composition). Let s look at the magnitudes of the two terms using 1/L. B {FF} + {Diff} where {FF} ub {Diff} D BB t L L 2 The 2 terms have the same units, so their ratio tells us about their relative strengths. Define the magnetic Reynolds number, Rm = {FF} {Diff} ul D B (B cancels out) For most macroscopic/observable spatial scales (L) and speeds (u) in the corona, Rm 1 in fact, Rm ! (so it s a good approximation to think about frozen-in flux!) However, in this problem we re looking at steep variations in the y direction. Define the thickness of the reconnection region (in y) as δ, and assume spatial derivatives are strongest in y. As magnetic flux piles up, gradients get sharper, so δ gets smaller

12 Thus, the dominant terms in the derivatives are the ones with the smallest spatial scales, so, e.g., B x y B x. δ Replacing u by u in (fixed speed at which fields are pushed together) and L by δ (which is shrinking), we find that eventually, Rm 1... i.e., diffusion starts to beat flux freezing, i.e., the thickness of a reconnection region is δ D B u in and once the region gets this thin, diffusion starts to annihilate magnetic energy and convert it to heat. Problem: We don t know either δ or u in! In order to figure out what s really going on when B starts to get destroyed, we need to bring in more information. This step is still unsolved & controversial. Aside: The sharp, flattened region where opposing fields meet is often called a current sheet. Why? In MHD, J = 1 µ 0 B and in this geometry, J z B x µ 0 δ because the / y term dominates. Outside the current sheet, J 0. Also, in the reference frame moving with the flow, E = ηj, so E z ηb µ 0 δ D BB δ i.e., u in E B so the faster the reconnection inflow, the more of a DC electric field is built up in the current sheet. Thus, once we know all the parameters, the volumetric heating rate inside the current sheet can be computed; Q heat = J E = J z E z. I ll go over one of the earliest models of what happens when incoming field lines are broken and reconnected to field lines from the opposite side. In the 2D Sweet Parker model (1957), the reconnection region can be thought of as flattened & rectangular

13 The large-scale length L of the system is something we already know, like ρ (which we can assume is uniform everywhere). If it s steady-state, then the total mass coming in must balance the mass going out, in proportion to the dimensions, u in L z u out δ z i.e., mass flux depends on ρua, but the full A depends on the z extent in/out of the board. That s the same for both in & out motions. We can also make use of energy conservation, (E kin +E mag +E thermal ) in = (E kin +E mag +E thermal ) out In the low-β corona, we ignore E thermal (not true inside diffusion region, but we re staying outside for now). Also, assume that slow inflow dominated by magnetic energy, and fast outflow dominated by kinetic energy: E = volume energy density, so E in = x y z U B ( ) B 2 = L(u in t) z 2µ 0 E out = x y z U K = (u out t)δ z ( ) 1 2 ρu2 out If E in = E out, then u out = B µ0 ρ = V A (the Alfvén speed). In the corona, V A c s, so the reconnection outflow is strongly supersonic

14 Some context: Note that V A is showing up as a characteristic macroscopic/large-scale speed of the system. It s not just a wave phase speed. Really, E in E out, since a part of E in must go into heating up the diffusion region! We shouldn t ignore E thermal. Note that a larger u in means larger E in, so the total reconnection heating rate scales with u in. Finally, we can put together everything we know to write u in = u outδ (from mass conservation) L = V A(D B /u in ) (from energy conservation & Rm 1 in box) L Multiplying the right side by V A /V A, we can write u 2 in = V 2 A Rm 0 where Rm 0 = V AL D B is the macroscopic/large-scale magnetic Reynolds number. Thus, u in V A δ L 1 Rm0 Unfortunately, this is extremely slow. If Rm , then u in is 10 5 times the local Alfvén speed. In the solar corona, it would take months years to fully process an active region s worth of B via reconnection this way. However, we see in flares that it can all happen in 5 10 minutes! Observations (and more detailed computer simulations) show that real reconnecting systems often find their way to u in V A 0.01 to 0.1 which is sufficiently fast and efficient to account for what we see. The details (how the universe gets around Sweet-Parker constraints ) are still unclear

15 Ideas include: The thin current sheet (diffusion region) can be turbulent, in which small magnetic islands can form & grow along the thin interface region. Chaotic eddies produce extra anomalous diffusion: larger D B smaller effective Rm 0 thicker δ, faster u in Maybe the reconnecting fields come together in a series of X-points rather than all along a parallel line. Petschek proposed a model where not all reconnecting plasma has to go through the diffusion region. Some plasma short-circuits the diffusion region and forms SHOCKS along the inflow/outflow interface. Petschek s u in V A 1 ln(rm 0 ) which isn t as tiny as Sweet-Parker s. If the diffusion region wants to get smaller than the particle Larmor radii, then non-mhd collisionless effects can take over. (Electrons and ions decouple from a common fluid motion.) This is called the Hall effect. Now that we know more about reconnection, we can explore more about the space weather consequences of flares & CMEs

16 1. Coronal reconnection regions have DC E-fields, so some particles can get accelerated to relativistic speeds (energies of order MeV GeV!). The ones that propagate down hit the chromosphere, produce solar flares, and are rapidly decelerated via collisions with atoms/ions. Some of that energy goes into producing X-rays & gamma-rays, some of which can reach the Earth. Dangerous to life & technology! Some of the Solar Energetic Particles (SEPs) can escape, too. In-situ detectors see impulsive SEP events: 2. Once CME flux ropes are ejected, they accelerate to speeds > V A. (Continual injection of nonthermal particles from below helps to heat & accelerate flux rope plasma!) CMEs form shocks ahead of them; high-energy SEPs tend to cross shocks multiple times, and get accelerated at each crossing. These generate gradual SEP events (see above). 3. CMEs also disturb the background solar wind s B(r, θ, φ). Since Earth s field points northward, if a CME produces swings between northward & southward B, the ability to reconnect with Earth s magnetosphere swings around wildly, producing geomagnetic storms

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Nick Murphy Harvard-Smithsonian Center for Astrophysics namurphy@cfa.harvard.edu http://www.cfa.harvard.edu/ namurphy/ November 18,

More information

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona)

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Solar Flares Solar Flare A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Flares release 1027-1032 ergs energy in tens of minutes. (Note: one H-bomb: 10

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

Solar-Terrestrial Physics. The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection

Solar-Terrestrial Physics. The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection Week 2 Lecture Notes Solar-Terrestrial Physics The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection www.cac.cornell.edu/~slantz The Solar Corona is the Sun s Extended Atmosphere Scattered light

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Institute for Astronomy, University of Hawai i Solar and Heliospheric Influences on the Geospace Bucharest, 1-5 Oct 2012

More information

Heliophysics Shocks. Merav Opher, George Mason University,

Heliophysics Shocks. Merav Opher, George Mason University, Heliophysics Shocks QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Merav Opher, George Mason University, mopher@gmu.edu Heliophysics Summer School, July 25, 2008 Outline

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun The Sun Our Star Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun General Properties Not a large star, but larger than most Spectral type G2 It

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

Science Questions from inside 150AU Heliosheath/Heliopause. Merav Opher Boston University

Science Questions from inside 150AU Heliosheath/Heliopause. Merav Opher Boston University Science Questions from inside 150AU Heliosheath/Heliopause Merav Opher Boston University The heliosphere as test-bed for other astrospheres WISE bow shock image, PIA13455 Closeup of IRS8, resolving the

More information

Interstellar Medium V1

Interstellar Medium V1 Interstellar Medium V1 Heliosheath Termina/on Shock V2 which can be used to distinguish spatial and temporal effects. The V2 flows derived from the energetic particles using the Compton-Getting effect

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

1-4-1A. Sun Structure

1-4-1A. Sun Structure Sun Structure A cross section of the Sun reveals its various layers. The Core is the hottest part of the internal sun and is the location of nuclear fusion. The heat and energy produced in the core is

More information

Astronomy 404 October 18, 2013

Astronomy 404 October 18, 2013 Astronomy 404 October 18, 2013 Parker Wind Model Assumes an isothermal corona, simplified HSE Why does this model fail? Dynamic mass flow of particles from the corona, the system is not closed Re-write

More information

Radiative & Magnetohydrodynamic Shocks

Radiative & Magnetohydrodynamic Shocks Chapter 4 Radiative & Magnetohydrodynamic Shocks I have been dealing, so far, with non-radiative shocks. Since, as we have seen, a shock raises the density and temperature of the gas, it is quite likely,

More information

Coronal Heating versus Solar Wind Acceleration

Coronal Heating versus Solar Wind Acceleration SOHO 15: Coronal Heating, 6 9 September 2004, University of St. Andrews, Scotland Coronal Heating versus Solar Wind Acceleration Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE STUDY MATERIAL AND WORKSHEET Monday 28 th October 2002 Dr R J Forsyth, room 308, r.forsyth@ic.ac.uk I will be happy to discuss the material

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange A Multi-ion Model of the Heliosphere with Secondary Charge Exchange Matthew Bedford, University of Alabama in Huntsville, Department of Space Science Nikolai Pogorelov, faculty advisor The heliosphere

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave

Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave, A. A. van Ballegooijen, and the UVCS/SOHO Team Harvard-Smithsonian Center for Astrophysics Alfvénic Turbulence in the Fast Solar Wind:

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

What do we see on the face of the Sun? Lecture 3: The solar atmosphere

What do we see on the face of the Sun? Lecture 3: The solar atmosphere What do we see on the face of the Sun? Lecture 3: The solar atmosphere The Sun s atmosphere Solar atmosphere is generally subdivided into multiple layers. From bottom to top: photosphere, chromosphere,

More information

Physical mechanism of spontaneous fast reconnection evolution

Physical mechanism of spontaneous fast reconnection evolution Earth Planets Space, 53, 431 437, 2001 Physical mechanism of spontaneous fast reconnection evolution M. Ugai Department of Computer Science, Faculty of Engineering, Ehime University, Matsuyama 790-8577,

More information

The General Properties of the Sun

The General Properties of the Sun Notes: The General Properties of the Sun The sun is an average star with average brightness. It only looks bright because it s so close. It contains 99% of the mass of the solar system. It is made of entirely

More information

An Overview of the Details

An Overview of the Details Guiding Questions The Sun Our Extraordinary Ordinary Star 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the Sun

More information

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun.

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun. Chapter 12 The Sun, Our Star 1 With a radius 100 and a mass of 300,000 that of Earth, the Sun must expend a large amount of energy to withstand its own gravitational desire to collapse To understand this

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

The Sun Our Extraordinary Ordinary Star

The Sun Our Extraordinary Ordinary Star The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

Chapter 14 Our Star Pearson Education, Inc.

Chapter 14 Our Star Pearson Education, Inc. Chapter 14 Our Star Basic Types of Energy Kinetic (motion) Radiative (light) Potential (stored) Energy can change type, but cannot be created or destroyed. Thermal Energy: the collective kinetic energy

More information

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do. The Sun: Our Star The Sun is an ordinary star and shines the same way other stars do. Announcements q Homework # 4 is due today! q Units 49 and 51 Assigned Reading Today s Goals q Today we start section

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

Astronomy 150: Killer Skies. Lecture 18, March 1

Astronomy 150: Killer Skies. Lecture 18, March 1 Assignments: Astronomy 150: Killer Skies HW6 due next Friday at start of class HW5 and Computer Lab 1 due Night Observing continues next week Lecture 18, March 1 Computer Lab 1 due next Friday Guest Lecturer:

More information

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle 1 Table of contents Introduction to planetary magnetospheres and the interplanetary medium... 3 A short introduction

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

Chapter 10 Our Star. X-ray. visible

Chapter 10 Our Star. X-ray. visible Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

Random Walk on the Surface of the Sun

Random Walk on the Surface of the Sun Random Walk on the Surface of the Sun Chung-Sang Ng Geophysical Institute, University of Alaska Fairbanks UAF Physics Journal Club September 10, 2010 Collaborators/Acknowledgements Amitava Bhattacharjee,

More information

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest St Andrews CONTENTS - Lecture 2 1. Introduction 2. Flux Tubes *Examples 3. Fundamental Equations 4. Induction Equation *Examples 5. Equation

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Solar-terrestrial relation and space weather Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Planets Comets Solar wind Interplanetary magnetic field Cosmic rays Satellites Astronauts HELIOSPHERE

More information

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from:

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from: Astronomy 154 Lab 3: The Sun NASA Image comparing the Earth with the Sun. Image from: http://www.universetoday.com/16338/the-sun/ The Sun at the center of our Solar System is a massive ball of Hydrogen,

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text 1 Astr 102 Lec 7: Classification of Stars, the Sun What prevents stars from collapsing under the weight of their own gravity? Text Why is the center of the Sun hot? What is the source of the Sun s energy?

More information

Solar eruptive phenomena

Solar eruptive phenomena Solar eruptive phenomena Andrei Zhukov Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium 26/01/2018 1 Eruptive solar activity Solar activity exerts continous influence on the solar

More information

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 9 Tues 14 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Helioseismology:

More information

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS What can we learn from light? Hydrogen Lines Temperature Energy Chemical Composition Speed towards or away from us All from the! Lower E, Lower f, λ Visible! Higher E, Higher f, λ Visible Hydrogen Spectrum

More information

1. Solar Atmosphere Surface Features and Magnetic Fields

1. Solar Atmosphere Surface Features and Magnetic Fields 1. Solar Atmosphere Surface Features and Magnetic Fields Sunspots, Granulation, Filaments and Prominences, Coronal Loops 2. Solar Cycle: Observations The Sun: applying black-body radiation laws Radius

More information

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Total Solar Eclipse Aug. 1, 2008 M. Druckmuller Coronal Soft X-rays Yohkoh / SXT Surface Magnetic

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

Solar flares have been phenomena of both academic

Solar flares have been phenomena of both academic eruptive events It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into how they work have only recently become available. Gordon D. Holman

More information

Introduction to Space Weather

Introduction to Space Weather Introduction to Space Weather We may have been taught that there is a friendly, peaceful nonhostile relationship between the Sun and the Earth and that the Sun provides a constant stream of energy and

More information

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of Overview Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy source

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

Solar energetic particles and cosmic rays

Solar energetic particles and cosmic rays Solar energetic particles and cosmic rays Energetic particles in the heliosphere Solar energetic particles and cosmic rays Energy spectra and acceleration Particle propagation and transport Pick-up ions,

More information

Modelling the Initiation of Solar Eruptions. Tibor Török. LESIA, Paris Observatory, France

Modelling the Initiation of Solar Eruptions. Tibor Török. LESIA, Paris Observatory, France Modelling the Initiation of Solar Eruptions Tibor Török LESIA, Paris Observatory, France What I will not talk about: global CME models Roussev et al., 2004 Manchester et al., 2004 Tóth et al., 2007 numerical

More information

You ll see in the final homework (also Cravens, chapter 6.1.1) that a purely hydrostatic corona doesn t make sense. P is way too big.

You ll see in the final homework (also Cravens, chapter 6.1.1) that a purely hydrostatic corona doesn t make sense. P is way too big. THE SOLAR WIND You ll see in the final homework (also Cravens, chapter 6.1.1) that a purely hydrostatic corona doesn t make sense. P is way too big. We now know that the outer corona requires a dynamic

More information

Magnetic Effects Change Our View of the Heliosheath

Magnetic Effects Change Our View of the Heliosheath Magnetic Effects Change Our View of the Heliosheath M. Opher Λ, P. C. Liewer Λ, M. Velli, T. I. Gombosi ΛΛ, W.Manchester ΛΛ,D. L. DeZeeuw ΛΛ,G.Toth ΛΛ and I. Sokolov ΛΛ Λ Jet Propulsion Laboratory, MS

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent?

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent? Our Beacon: The Sun Learning Objectives! What are the outer layers of the Sun, in order? What wavelengths of light do we use to see each of them?! Why does limb darkening tell us the inner Sun is hotter?!

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

More information

Some open problems for magnetic reconnection in solar flares

Some open problems for magnetic reconnection in solar flares Some open problems for magnetic reconnection in solar flares Bernhard Kliem Astrophysical Institute Potsdam 1. Introduction 2. Reconnection outflow termination shock 3. Supra-arcade downflows 4. Impulsive

More information

Solutions to Merav Opher (2010) Problems

Solutions to Merav Opher (2010) Problems Solutions to Merav Opher 00 Problems. The normal of the shock is Since from the plot you can obtain all the three components of Bu and Bd, the normal can be easily found. The shock speed is: With the shock

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 9 Tues 13 Feb 2018 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur+ Helioseismology:

More information

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE.

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. Messenger also contains instruments that can do some solar studies. http://www.stereo.gsfc.nasa.gov

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

Lecture 9: Instabilities, Solar Flares and CMEs

Lecture 9: Instabilities, Solar Flares and CMEs HSE Valery Nakariakov Solar Physics 1 Lecture 9: Instabilities, Solar Flares and CMEs MHD Instabilities Equilibria could be unstable: when a small perturbation grows: An (incomplete) list of plasma instabilities:

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other 7/1 VII. VIII. Uranus A. Gas Giant 1. Rings but not visible 2. HUGE axial tilt 97! 3. Mostly hydrogen and helium 4. Medium rotation rate 5. Cold 55 K at the cloud tops B. Physical characteristics 1. Mass:

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

Coronal Heating Problem

Coronal Heating Problem PHY 690C Project Report Coronal Heating Problem by Mani Chandra, Arnab Dhabal and Raziman T V (Y6233) (Y7081) (Y7355) Mentor: Dr. M.K. Verma 1 Contents 1 Introduction 3 2 The Coronal Heating Problem 4

More information

Student Instruction Sheet: Unit 4 Lesson 3. Sun

Student Instruction Sheet: Unit 4 Lesson 3. Sun Student Instruction Sheet: Unit 4 Lesson 3 Suggested time: 1.25 Hours What s important in this lesson: Sun demonstrate an understanding of the structure, and nature of our solar system investigate the

More information

Stars and Galaxies. The Sun and Other Stars

Stars and Galaxies. The Sun and Other Stars CHAPTER 22 Stars and Galaxies LESSON 2 The Sun and Other Stars What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you

More information

Exploring the Solar Wind with Ultraviolet Light

Exploring the Solar Wind with Ultraviolet Light Timbuktu Academy Seminar, Southern University and A&M College, November 19, 2003 Exploring the Solar Wind with Ultraviolet Light Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications 3D Reconnection of Weakly Stochastic Magnetic Field and its Implications Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration:

More information

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science Solar Magnetism Arnab Rai Choudhuri Department of Physics Indian Institute of Science Iron filings around a bar magnet Solar corona during a total solar eclipse Solar magnetic fields do affect our lives!

More information

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T.

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. Heliosphere Overview Heliopause: boundary of LIC and SW plasma He H Termination

More information

Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets

Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets Nicholas Murphy, 1 Mari Paz Miralles, 1 Crystal Pope, 1,2 John Raymond, 1 Kathy Reeves, 1 Dan Seaton, 3 & David Webb 4 1 Harvard-Smithsonian

More information