L5: Quadratic classifiers

Size: px
Start display at page:

Download "L5: Quadratic classifiers"

Transcription

1 L5: Quadratic classifiers Bayes classifiers for Normally distributed classes Case 1: Σ i = σ 2 I Case 2: Σ i = Σ (Σ diagonal) Case 3: Σ i = Σ (Σ non-diagonal) Case 4: Σ i = σ 2 i I Case 5: Σ i Σ j (general case) Numerical example Linear and quadratic classifiers: conclusions CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 1

2 Bayes classifiers for Gaussian classes Recap On L4 we showed that the decision rule that minimized P[error] could be formulated in terms of a family of discriminant functions For normally Gaussian classes, these DFs reduce to simple expressions The multivariate Normal pdf is Discriminant functions Features f X x = 2π N/2 Σ 1/2 e 1 2 x μ T Σ 1 x μ Using Bayes rule, the DFs become g i x = P ω i x = P ω i p x ω i p x x 1 g 1 (x) Class assignment Select max g 2 (x) x 2 x 3 g C (x) x d Costs = 2π N/2 Σ i 1/2 e 1 2 x μ i T Σ i 1 x μi P ω i p x Eliminating constant terms g i x = Σ i 1/2 e 1 2 x μ i T Σ i 1 x μi P ω i And taking natural logs g i x = 1 2 x μ i T Σ i 1 x μ i 1 2 log Σ i + logp(ω i ) This expression is called a quadratic discriminant function CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 2

3 Minimum Selector Case 1: Σ i = σ 2 I This situation occurs when features are statistically independent with equal variance for all classes In this case, the quadratic DFs become g i x = 1 2 x μ i T σ 2 I 1 x μ i 1 2 log σ2 I + logp i 1 2σ 2 x μ i T x μ i + logp i Expanding this expression g i x = 1 2σ 2 xt x 2μ T i x + μ T i μ i + logp i Eliminating the term x T x, which is constant for all classes g i x = 1 2σ 2 2μ i T x + μ T i μ i + logp i = w T i x + w 0 So the DFs are linear, and the boundaries g i (x) = g j (x) are hyper-planes If we assume equal priors g i x = 1 2σ 2 x μ i T x μ i This is called a minimum-distance or nearest mean classifier The equiprobable contours are hyper-spheres For unit variance (σ 2 = 1), g i x is the Euclidean distance Distance CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 3 x 1 2 C Distance Distance [Schalkoff, 1992] class

4 Example Three-class 2D problem with equal priors μ 1 = 3 2 T μ 2 = 7 4 T μ 3 = 2 5 T Σ 1 = 2 2 Σ 1 = 2 2 Σ 1 = 2 2 CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 4

5 Case 2: Σ i = Σ (diagonal) Classes still have the same covariance, but features are allowed to have different variances In this case, the quadratic DFs becomes g i x = 1 2 x μ i T Σ i 1 x μ i 1 2 log Σ i + logp i = x N k μ i,k k=1 2 σ k 1 2 log k=1 N σ 2 k + logp i Eliminating the term x k 2, which is constant for all classes g i x = 1 2 N k=1 2x kμ i,k + μ i,k σ k 2 CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU logπ k=1 N σ 2 k + logp i This discriminant is also linear, so the decision boundaries g i (x) = g j (x) will also be hyper-planes The equiprobable contours are hyper-ellipses aligned with the reference frame Note that the only difference with the previous classifier is that the distance of each axis is normalized by its variance

6 Example Three-class 2D problem with equal priors μ 1 = 3 2 T μ 2 = 5 4 T μ 3 = 2 5 T Σ 1 = 1 2 Σ 2 = 1 2 Σ 3 = 1 2 CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 6

7 Case 3: Σ i = Σ (non-diagonal) Classes have equal covariance matrix, but no longer diagonal The quadratic discriminant becomes g i x = 1 2 x μ i T Σ 1 x μ i 1 2 log Σ + logp i Eliminating the term log Σ, which is constant for all classes, and assuming equal priors g i x = 1 2 x μ i T Σ 1 x μ i The quadratic term is called the Mahalanobis distance, a very important concept in statistical pattern recognition The Mahalanobis distance is a vector distance that uses a Σ 1 norm, Σ 1 acts as a stretching factor on the space Note that when Σ = I, the Mahalanobis distance becomes the familiar Euclidean distance x 1 x 2 2 xi - μ -1 = K å 2 xi - μ = Κ CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 7

8 Minimum Selector Expanding the quadratic term g i x = 1 2 xt Σ 1 x 2μ i T Σ 1 x + μ i T Σ 1 μ i Removing the term x T Σ 1 x, which is constant for all classes g i x = 1 2 2μ i T Σ 1 x + μ i T Σ 1 μ i = w 1 T x + w 0 So the DFs are still linear, and the decision boundaries will also be hyper-planes The equiprobable contours are hyper-ellipses aligned with the eigenvectors of Σ This is known as a minimum (Mahalanobis) distance classifier x å 1 Distance 2 Distance class C Distance CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 8

9 Example Three-class 2D problem with equal priors μ 1 = 3 2 T μ 2 = 5 4 T μ 3 = 2 5 T Σ 1 = Σ 2 = Σ 3 = CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 9

10 Case 4: Σ i = σ i 2 I In this case, each class has a different covariance matrix, which is proportional to the identity matrix The quadratic discriminant becomes g i x = 1 2 x μ i T σ i 2 x μ i 1 2 Nlog σ i 2 + logp i This expression cannot be reduced further The decision boundaries are quadratic: hyper-ellipses The equiprobable contours are hyper-spheres aligned with the feature axis CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 10

11 Example Three-class 2D problem with equal priors μ 1 = 3 2 T μ 2 = 5 4 T μ 3 = 2 5 T Σ 1 =.5.5 Σ 2 = 1 1 Σ 3 = 2 2 Zoom out CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 11

12 Case 5: Σ i Σ j (general case) We already derived the expression for the general case g i x = 1 2 x μ i T Σ i 1 x μ i 1 2 log Σ i + logp i Reorganizing terms in a quadratic form yields g i x = x T W 2,i x + w T 1,i x + w 0,i W 2,i = 1 2 Σ i 1 where w 1,i = Σ i 1 μ i w o,i = 1 2 μ i T Σ i 1 μ i 1 2 log Σ i + logp i The equiprobable contours are hyper-ellipses, oriented with the eigenvectors of Σ i for that class The decision boundaries are again quadratic: hyper-ellipses or hyperparabolloids Notice that the quadratic expression in the discriminant is proportional to the Mahalanobis distance for covariance Σ i CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 12

13 Example Three-class 2D problem with equal priors μ 1 = 3 2 T μ 2 = 5 4 T μ 3 = 3 4 T Σ 1 = Σ 2 = Σ 3 = Zoom out CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 13

14 Numerical example Derive a linear DF for the following 2-class 3D problem g 1 x Solution μ 1 = T ; μ 2 = T ; Σ 1 = Σ 2 = g 1 x = 1 2σ 2 x μ 1 T x μ 1 + logp 1 = 1 2 g 2 x = 1 2 x 1 y 1 z 1 T 4 ω 1 > < ω 2 g 2 x 2 x 2 + y 2 + z 2 + lg 1 3 x + y + z x 0 y 0 z T 4 x 1 y 1 z 1 ; P 2 = 2P log x 0 y 0 z 0 + log 1 3 ω 1 > < ω 2 2 x y z lg 2 3 ω 2 > 6 log2 < 4 ω 1 Classify the test example x u = T = 1.6 = 1.32 ω 2 > < ω x u ω 2 CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 14

15 Conclusions The examples in this lecture illustrate the following points The Bayes classifier for Gaussian classes (general case) is quadratic The Bayes classifier for Gaussian classes with equal covariance is linear The Mahalanobis distance classifier is Bayes-optimal for normally distributed classes and equal covariance matrices and equal priors The Euclidean distance classifier is Bayes-optimal for normally distributed classes and equal covariance matrices proportional to the identity matrix and equal priors Both Euclidean and Mahalanobis distance classifiers are linear classifiers Thus, some of the simplest and most popular classifiers can be derived from decision-theoretic principles Using a specific (Euclidean or Mahalanobis) minimum distance classifier implicitly corresponds to certain statistical assumptions The question whether these assumptions hold or don t can rarely be answered in practice; in most cases we can only determine whether the classifier solves our problem CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU 15

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

L2: Review of probability and statistics

L2: Review of probability and statistics Probability L2: Review of probability and statistics Definition of probability Axioms and properties Conditional probability Bayes theorem Random variables Definition of a random variable Cumulative distribution

More information

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs L0: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

L3: Review of linear algebra and MATLAB

L3: Review of linear algebra and MATLAB L3: Review of linear algebra and MATLAB Vector and matrix notation Vectors Matrices Vector spaces Linear transformations Eigenvalues and eigenvectors MATLAB primer CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Dimensionality Reduction and Principal Components

Dimensionality Reduction and Principal Components Dimensionality Reduction and Principal Components Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Motivation Recall, in Bayesian decision theory we have: World: States Y in {1,..., M} and observations of X

More information

CSC 411: Lecture 09: Naive Bayes

CSC 411: Lecture 09: Naive Bayes CSC 411: Lecture 09: Naive Bayes Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 8, 2015 Urtasun, Zemel, Fidler (UofT) CSC 411: 09-Naive Bayes Feb 8, 2015 1

More information

Informatics 2B: Learning and Data Lecture 10 Discriminant functions 2. Minimal misclassifications. Decision Boundaries

Informatics 2B: Learning and Data Lecture 10 Discriminant functions 2. Minimal misclassifications. Decision Boundaries Overview Gaussians estimated from training data Guido Sanguinetti Informatics B Learning and Data Lecture 1 9 March 1 Today s lecture Posterior probabilities, decision regions and minimising the probability

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Minimum Error Rate Classification

Minimum Error Rate Classification Minimum Error Rate Classification Dr. K.Vijayarekha Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur-613 401 Table of Contents 1.Minimum Error Rate Classification...

More information

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis CS 3 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis AD March 11 AD ( March 11 1 / 17 Multivariate Gaussian Consider data { x i } N i=1 where xi R D and we assume they are

More information

Dimensionality Reduction and Principle Components

Dimensionality Reduction and Principle Components Dimensionality Reduction and Principle Components Ken Kreutz-Delgado (Nuno Vasconcelos) UCSD ECE Department Winter 2012 Motivation Recall, in Bayesian decision theory we have: World: States Y in {1,...,

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians University of Cambridge Engineering Part IIB Module 4F: Statistical Pattern Processing Handout 2: Multivariate Gaussians.2.5..5 8 6 4 2 2 4 6 8 Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2 2 Engineering

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

Whitening and Coloring Transformations for Multivariate Gaussian Data. A Slecture for ECE 662 by Maliha Hossain

Whitening and Coloring Transformations for Multivariate Gaussian Data. A Slecture for ECE 662 by Maliha Hossain Whitening and Coloring Transformations for Multivariate Gaussian Data A Slecture for ECE 662 by Maliha Hossain Introduction This slecture discusses how to whiten data that is normally distributed. Data

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

L29: Fourier analysis

L29: Fourier analysis L29: Fourier analysis Introduction The discrete Fourier Transform (DFT) The DFT matrix The Fast Fourier Transform (FFT) The Short-time Fourier Transform (STFT) Fourier Descriptors CSCE 666 Pattern Analysis

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 6 May 18, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 Review Distance-based Classification

More information

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Bayesian decision theory 8001652 Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Jussi Tohka jussi.tohka@tut.fi Institute of Signal Processing Tampere University of Technology

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

Motivating the Covariance Matrix

Motivating the Covariance Matrix Motivating the Covariance Matrix Raúl Rojas Computer Science Department Freie Universität Berlin January 2009 Abstract This note reviews some interesting properties of the covariance matrix and its role

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

Machine Learning (CS 567) Lecture 5

Machine Learning (CS 567) Lecture 5 Machine Learning (CS 567) Lecture 5 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density 0 Minimum-Error-Rate Classification Actions are decisions on classes

More information

Discriminant analysis and supervised classification

Discriminant analysis and supervised classification Discriminant analysis and supervised classification Angela Montanari 1 Linear discriminant analysis Linear discriminant analysis (LDA) also known as Fisher s linear discriminant analysis or as Canonical

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016 Lecture 5 Gaussian Models - Part 1 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza November 29, 2016 Luigi Freda ( La Sapienza University) Lecture 5 November 29, 2016 1 / 42 Outline 1 Basics

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p( ω i ). ω.3.. 9 3 FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value given the pattern is in category ω i.if represents

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

The Gaussian distribution

The Gaussian distribution The Gaussian distribution Probability density function: A continuous probability density function, px), satisfies the following properties:. The probability that x is between two points a and b b P a

More information

Lecture 13: Data Modelling and Distributions. Intelligent Data Analysis and Probabilistic Inference Lecture 13 Slide No 1

Lecture 13: Data Modelling and Distributions. Intelligent Data Analysis and Probabilistic Inference Lecture 13 Slide No 1 Lecture 13: Data Modelling and Distributions Intelligent Data Analysis and Probabilistic Inference Lecture 13 Slide No 1 Why data distributions? It is a well established fact that many naturally occurring

More information

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Intelligent Data Analysis and Probabilistic Inference Lecture

More information

Regularized Discriminant Analysis. Part I. Linear and Quadratic Discriminant Analysis. Discriminant Analysis. Example. Example. Class distribution

Regularized Discriminant Analysis. Part I. Linear and Quadratic Discriminant Analysis. Discriminant Analysis. Example. Example. Class distribution Part I 09.06.2006 Discriminant Analysis The purpose of discriminant analysis is to assign objects to one of several (K) groups based on a set of measurements X = (X 1, X 2,..., X p ) which are obtained

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Introduction to Machine Learning Bayesian Classification Varun Chandola March 8, 017 1. {circular,large,light,smooth,thick}, malignant. {circular,large,light,irregular,thick}, malignant 3. {oval,large,dark,smooth,thin},

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Bayesian Classification Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes November 9, 2012 1 / 1 Nearest centroid rule Suppose we break down our data matrix as by the labels yielding (X

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

L7: Linear prediction of speech

L7: Linear prediction of speech L7: Linear prediction of speech Introduction Linear prediction Finding the linear prediction coefficients Alternative representations This lecture is based on [Dutoit and Marques, 2009, ch1; Taylor, 2009,

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis Week 5 Based in part on slides from textbook, slides of Susan Holmes Part I Linear Discriminant Analysis October 29, 2012 1 / 1 2 / 1 Nearest centroid rule Suppose we break down our data matrix as by the

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

Principal component analysis

Principal component analysis Principal component analysis Motivation i for PCA came from major-axis regression. Strong assumption: single homogeneous sample. Free of assumptions when used for exploration. Classical tests of significance

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Gaussian Models

Gaussian Models Gaussian Models ddebarr@uw.edu 2016-04-28 Agenda Introduction Gaussian Discriminant Analysis Inference Linear Gaussian Systems The Wishart Distribution Inferring Parameters Introduction Gaussian Density

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Mengye Ren mren@cs.toronto.edu October 18, 2015 Mengye Ren Naive Bayes and Gaussian Bayes Classifier October 18, 2015 1 / 21 Naive Bayes Bayes Rules: Naive Bayes

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Ladislav Rampasek slides by Mengye Ren and others February 22, 2016 Naive Bayes and Gaussian Bayes Classifier February 22, 2016 1 / 21 Naive Bayes Bayes Rule:

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Design and Implementation of Speech Recognition Systems

Design and Implementation of Speech Recognition Systems Design and Implementation of Speech Recognition Systems Spring 2013 Class 7: Templates to HMMs 13 Feb 2013 1 Recap Thus far, we have looked at dynamic programming for string matching, And derived DTW from

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Small sample size in high dimensional space - minimum distance based classification.

Small sample size in high dimensional space - minimum distance based classification. Small sample size in high dimensional space - minimum distance based classification. Ewa Skubalska-Rafaj lowicz Institute of Computer Engineering, Automatics and Robotics, Department of Electronics, Wroc

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

8 Eigenvectors and the Anisotropic Multivariate Gaussian Distribution

8 Eigenvectors and the Anisotropic Multivariate Gaussian Distribution Eigenvectors and the Anisotropic Multivariate Gaussian Distribution Eigenvectors and the Anisotropic Multivariate Gaussian Distribution EIGENVECTORS [I don t know if you were properly taught about eigenvectors

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

Linear Classifiers as Pattern Detectors

Linear Classifiers as Pattern Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2014/2015 Lesson 16 8 April 2015 Contents Linear Classifiers as Pattern Detectors Notation...2 Linear

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA)

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) CS68: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) Tim Roughgarden & Gregory Valiant April 0, 05 Introduction. Lecture Goal Principal components analysis

More information

Probability Models for Bayesian Recognition

Probability Models for Bayesian Recognition Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIAG / osig Second Semester 06/07 Lesson 9 0 arch 07 Probability odels for Bayesian Recognition Notation... Supervised Learning for Bayesian

More information

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber Machine Learning Regression-Based Classification & Gaussian Discriminant Analysis Manfred Huber 2015 1 Logistic Regression Linear regression provides a nice representation and an efficient solution to

More information

A Novel PCA-Based Bayes Classifier and Face Analysis

A Novel PCA-Based Bayes Classifier and Face Analysis A Novel PCA-Based Bayes Classifier and Face Analysis Zhong Jin 1,2, Franck Davoine 3,ZhenLou 2, and Jingyu Yang 2 1 Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain zhong.in@cvc.uab.es

More information

Stat 206: Sampling theory, sample moments, mahalanobis

Stat 206: Sampling theory, sample moments, mahalanobis Stat 206: Sampling theory, sample moments, mahalanobis topology James Johndrow (adapted from Iain Johnstone s notes) 2016-11-02 Notation My notation is different from the book s. This is partly because

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 6 Computing Announcements Machine Learning Lecture 2 Course webpage http://www.vision.rwth-aachen.de/teaching/ Slides will be made available on

More information

Distances and similarities Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Distances and similarities Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Distances and similarities Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Similarities Start with X which we assume is centered and standardized. The PCA loadings were

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 15 Computing Many slides adapted from B. Schiele Machine Learning Lecture 2 Probability Density Estimation 16.04.2015 Bastian Leibe RWTH Aachen

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Machine Learning 1. Linear Classifiers. Marius Kloft. Humboldt University of Berlin Summer Term Machine Learning 1 Linear Classifiers 1

Machine Learning 1. Linear Classifiers. Marius Kloft. Humboldt University of Berlin Summer Term Machine Learning 1 Linear Classifiers 1 Machine Learning 1 Linear Classifiers Marius Kloft Humboldt University of Berlin Summer Term 2014 Machine Learning 1 Linear Classifiers 1 Recap Past lectures: Machine Learning 1 Linear Classifiers 2 Recap

More information

CLASSICAL NORMAL-BASED DISCRIMINANT ANALYSIS

CLASSICAL NORMAL-BASED DISCRIMINANT ANALYSIS CLASSICAL NORMAL-BASED DISCRIMINANT ANALYSIS EECS 833, March 006 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@gs.u.edu 864-093 Overheads and resources available at http://people.u.edu/~gbohling/eecs833

More information

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing Supervised Learning Unsupervised learning: To extract structure and postulate hypotheses about data generating process from observations x 1,...,x n. Visualize, summarize and compress data. We have seen

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

MSA220 Statistical Learning for Big Data

MSA220 Statistical Learning for Big Data MSA220 Statistical Learning for Big Data Lecture 4 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology More on Discriminant analysis More on Discriminant

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis Lecture Recalls of probability theory Massimo Piccardi University of Technology, Sydney,

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

SGN (4 cr) Chapter 5

SGN (4 cr) Chapter 5 SGN-41006 (4 cr) Chapter 5 Linear Discriminant Analysis Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology January 21, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Contents 2 Bayesian decision theory

Contents 2 Bayesian decision theory Contents Bayesian decision theory 3. Introduction... 3. Bayesian Decision Theory Continuous Features... 7.. Two-Category Classification... 8.3 Minimum-Error-Rate Classification... 9.3. *Minimax Criterion....3.

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Classification. Sandro Cumani. Politecnico di Torino

Classification. Sandro Cumani. Politecnico di Torino Politecnico di Torino Outline Generative model: Gaussian classifier (Linear) discriminative model: logistic regression (Non linear) discriminative model: neural networks Gaussian Classifier We want to

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 16 Decision Theory Winter Semester 014/15 Dr. Benjamin Seppke Prof. Siegfried SKehl

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Elias Tragas tragas@cs.toronto.edu October 3, 2016 Elias Tragas Naive Bayes and Gaussian Bayes Classifier October 3, 2016 1 / 23 Naive Bayes Bayes Rules: Naive

More information

CS534: Machine Learning. Thomas G. Dietterich 221C Dearborn Hall

CS534: Machine Learning. Thomas G. Dietterich 221C Dearborn Hall CS534: Machine Learning Thomas G. Dietterich 221C Dearborn Hall tgd@cs.orst.edu http://www.cs.orst.edu/~tgd/classes/534 1 Course Overview Introduction: Basic problems and questions in machine learning.

More information

LECTURE NOTE #10 PROF. ALAN YUILLE

LECTURE NOTE #10 PROF. ALAN YUILLE LECTURE NOTE #10 PROF. ALAN YUILLE 1. Principle Component Analysis (PCA) One way to deal with the curse of dimensionality is to project data down onto a space of low dimensions, see figure (1). Figure

More information

ISyE 6416: Computational Statistics Spring Lecture 5: Discriminant analysis and classification

ISyE 6416: Computational Statistics Spring Lecture 5: Discriminant analysis and classification ISyE 6416: Computational Statistics Spring 2017 Lecture 5: Discriminant analysis and classification Prof. Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Gaussian Models (9/9/13)

Gaussian Models (9/9/13) STA561: Probabilistic machine learning Gaussian Models (9/9/13) Lecturer: Barbara Engelhardt Scribes: Xi He, Jiangwei Pan, Ali Razeen, Animesh Srivastava 1 Multivariate Normal Distribution The multivariate

More information