Distances and similarities Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Size: px
Start display at page:

Download "Distances and similarities Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining"

Transcription

1 Distances and similarities Based in part on slides from textbook, slides of Susan Holmes October 3, / 1

2 Similarities Start with X which we assume is centered and standardized. The PCA loadings were given by eigenvectors of the correlation matrix which is a measure of similarity. The first 2 (or any 2) PCA scores yield an n 2 matrix that can be visualized as a scatter plot. Similarly, the first 2 (or any 2) PCA loadings yield an p 2 matrix that can be visualized as a scatter plot. 2 / 1

3 Olympic data 3 / 1

4 Similarities The PCA loadings were given by eigenvectors of the correlation matrix which is a measure of similarity. The visualization of the cases based on PCA scores were determined by the eigenvectors of X X T, an n n matrix. To see this, remember that X = U V T so X X T = U 2 U T X T X = V 2 V T 4 / 1

5 Similarities The matrix X X T is a measure of similarity between cases. The matrix X T X is a measure of similarity between features. Structure in the two similarity matrices yield insight into the set of cases, or the set of features... 5 / 1

6 Distances Distances are inversely related to similarities. If A and B are similar, then d(a, B) should be small, i.e. they should be near. If A and B are distant, then they should not be similar. For a data matrix, there is a natural distance between cases: d(x i, X k ) 2 = X i X k 2 2 p = X ij X kj 2 2 j=1 = (X X T ) ii 2(X X T ) ik + (X X T ) kk 6 / 1

7 Distances Suggests a natural transformation between a similarity matrix S and a distance matrix D D ik = (S ii 2 S ik + S kk ) 1/2 The reverse transformation is not so obvious. Some suggestions from your book: S ik = D ik = e D ik 1 = 1 + D ik 7 / 1

8 Distances A distance (or a metric) on a set S is a function d : S S [0, + ) that satisfies d(x, x) = 0; d(x, y) = 0 x = y d(x, y) = d(y, x) d(x, y) d(x, z) + d(z, y) If d(x, y) = 0 for some x y then d is a pseudo-metric. 8 / 1

9 Similarities A similarity on a set S is a function s : S S R and should satisfy s(x, x) s(x, y) for all x y s(x, y) = s(y, x) By adding a constant, we can often assume that s(x, y) 0. 9 / 1

10 Examples: nominal data The simplest example for nominal data is just the discrete metric { 0 x = y d(x, y) = 1 otherwise. The corresponding similarity would be { 1 x = y s(x, y) = 0 otherwise. = 1 d(x, y) 10 / 1

11 Examples: ordinal data If S is ordered, we can think of S as (or identify S with) a subset of the non-negative integers. If S = m then a natural distance is d(x, y) = x y m 1 1 The corresponding similarity would be s(x, y) = 1 d(x, y) 11 / 1

12 Examples: vectors of continuous data If S = R k there are lots of distances determined by norms. The Minkowski p or l p norm, for p 1: ( k ) 1/p d(x, y) = x y p = x i y i p i=1 Examples: p = 2 the usual Euclidean distance, l 2 p = 1 d(x, y) = k i=1 x i y i, the taxicab distance, l 1 p = the d(x, y) = max 1 i k x i y i, the sup norm, l 12 / 1

13 Examples: vectors of continuous data If 0 < p < 1 this is not a norm, but it still defines a metric. The preceding transformations can be used to construct similarities. Examples: binary vectors If S = {0, 1} k R k the vectors can be thought of as vectors of bits. The l 1 norm counts the number of mismatched bits. This is known as Hamming distance. 13 / 1

14 Example: Mahalanobis distance Given Σ k k that is positive definite, we define Mahalanobis distance on R k by d Σ (x, y) = ( ) 1/2 (x y) T Σ 1 (x y) This is the usual Euclidean distance, with a change of basis given by a rotation and stretching of the axes. If Σ is only non-negative definite, then we can replace Σ 1 with Σ, its pseudo-inverse. This yields a pseudo-metric because it fails the test d(x, y) = 0 x = y. 14 / 1

15 Example: similarities for binary vectors Given binary vectors x, y {0, 1} k we can summarize their agreement in a 2 2 table x = 0 x = 1 total y y = 0 f 00 f 01 f 0 y = 1 f 10 f 11 f 1 total x f 0 f 1 k 15 / 1

16 Example: similarities for binary vectors We define the simple matching coefficient (SMC) similarity by SMC(x, y) = f 00 + f 11 = f 00 + f 11 f 00 + f 01 + f 10 + f 11 k = 1 x y 1 k The Jaccard coefficient ignores entries where x i = y i = 0 J(x, y) = f 11 f 01 + f 10 + f / 1

17 Example: cosine similarity & correlation Given vectors x, y R k the cosine similarity is defined as 1 cos(x, y) = x, y x 2 y 2 1. The correlation between two vectors is defined as 1 cor(x, y) = x x 1, y ȳ 1 x x 1 2 y ȳ / 1

18 Example: correlation An alternative, perhaps more familiar definition: S xy cor(x, y) = S x S y S xy = 1 k 1 S 2 x = 1 k 1 S 2 y = 1 k 1 k (x i x)(y i ȳ) i=1 k (x i x) 2 i=1 k (y i ȳ) 2 i=1 18 / 1

19 Correlation & PCA The matrix 1 n 1 X T X was actually the matrix of pair-wise correlations of the features. Why? How? 1 ( X T ) X n 1 = 1 (D 1/2 X T HX D 1/2) ij n 1 The diagonal entries of D are the sample variances of each feature. The inner matrix multiplication computes the pair-wise dot-products of the columns of HX ( n X T HX )ij = (X ki X i )(X kj X j ) k=1 19 / 1

20 High positive correlation 20 / 1

21 High negative correlation 21 / 1

22 No correlation 22 / 1

23 Small positive 23 / 1

24 Small negative 24 / 1

25 Combining similarities In a given data set, each case may have many attributes or features. Example: see the health data set for HW 1. To compute similarities of cases, we must pool similarities across features. In a data set with M different features, we write x i = (x i1,..., x im ), with each x im S m. 25 / 1

26 Combining similarities Given similarities s m on each S m we can define an overall similarity between case x i and x j by s(x i, x j ) = M w m s m (x im, x jm ) m=1 with optional weights w m for each feature. Your book modifies this to deal with asymmetric attributes, i.e. attributes for which Jaccard similarity might be used. 26 / 1

27 27 / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Similarity and Dissimilarity Similarity Numerical measure of how alike two data objects are. Is higher

More information

Distances & Similarities

Distances & Similarities Introduction to Data Mining Distances & Similarities CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 1 / 22 Outline

More information

Descriptive Data Summarization

Descriptive Data Summarization Descriptive Data Summarization Descriptive data summarization gives the general characteristics of the data and identify the presence of noise or outliers, which is useful for successful data cleaning

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

proximity similarity dissimilarity distance Proximity Measures:

proximity similarity dissimilarity distance Proximity Measures: Similarity Measures Similarity and dissimilarity are important because they are used by a number of data mining techniques, such as clustering nearest neighbor classification and anomaly detection. The

More information

University of Florida CISE department Gator Engineering. Clustering Part 1

University of Florida CISE department Gator Engineering. Clustering Part 1 Clustering Part 1 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville What is Cluster Analysis? Finding groups of objects such that the objects

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 10 What is Data? Collection of data objects

More information

Assignment 3: Chapter 2 & 3 (2.6, 3.8)

Assignment 3: Chapter 2 & 3 (2.6, 3.8) Neha Aggarwal Comp 578 Data Mining Fall 8 9-12-8 Assignment 3: Chapter 2 & 3 (2.6, 3.8) 2.6 Q.18 This exercise compares and contrasts some similarity and distance measures. (a) For binary data, the L1

More information

Mathematics for Graphics and Vision

Mathematics for Graphics and Vision Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on

More information

Lecture 5: Ecological distance metrics; Principal Coordinates Analysis. Univariate testing vs. community analysis

Lecture 5: Ecological distance metrics; Principal Coordinates Analysis. Univariate testing vs. community analysis Lecture 5: Ecological distance metrics; Principal Coordinates Analysis Univariate testing vs. community analysis Univariate testing deals with hypotheses concerning individual taxa Is this taxon differentially

More information

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis Week 5 Based in part on slides from textbook, slides of Susan Holmes Part I Linear Discriminant Analysis October 29, 2012 1 / 1 2 / 1 Nearest centroid rule Suppose we break down our data matrix as by the

More information

Stat 206: Sampling theory, sample moments, mahalanobis

Stat 206: Sampling theory, sample moments, mahalanobis Stat 206: Sampling theory, sample moments, mahalanobis topology James Johndrow (adapted from Iain Johnstone s notes) 2016-11-02 Notation My notation is different from the book s. This is partly because

More information

2 Metric Spaces Definitions Exotic Examples... 3

2 Metric Spaces Definitions Exotic Examples... 3 Contents 1 Vector Spaces and Norms 1 2 Metric Spaces 2 2.1 Definitions.......................................... 2 2.2 Exotic Examples...................................... 3 3 Topologies 4 3.1 Open Sets..........................................

More information

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes November 9, 2012 1 / 1 Nearest centroid rule Suppose we break down our data matrix as by the labels yielding (X

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 02: Data Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) 1 10 What is Data? Collection of data objects and their attributes An attribute

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix. Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric

More information

Chapter II. Metric Spaces and the Topology of C

Chapter II. Metric Spaces and the Topology of C II.1. Definitions and Examples of Metric Spaces 1 Chapter II. Metric Spaces and the Topology of C Note. In this chapter we study, in a general setting, a space (really, just a set) in which we can measure

More information

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques Data Mining: Concepts and Techniques Chapter 2 1 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University 2011 Han, Kamber, and Pei. All rights reserved.

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar 10 What is Data? Collection of data objects and their attributes Attributes An attribute is a property

More information

Algorithms for Data Science: Lecture on Finding Similar Items

Algorithms for Data Science: Lecture on Finding Similar Items Algorithms for Data Science: Lecture on Finding Similar Items Barna Saha 1 Finding Similar Items Finding similar items is a fundamental data mining task. We may want to find whether two documents are similar

More information

Lecture 5: Ecological distance metrics; Principal Coordinates Analysis. Univariate testing vs. community analysis

Lecture 5: Ecological distance metrics; Principal Coordinates Analysis. Univariate testing vs. community analysis Lecture 5: Ecological distance metrics; Principal Coordinates Analysis Univariate testing vs. community analysis Univariate testing deals with hypotheses concerning individual taxa Is this taxon differentially

More information

Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1]

Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1] Similarity and Dissimilarity Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1] Dissimilarity (e.g., distance) Numerical

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar 1 Types of data sets Record Tables Document Data Transaction Data Graph World Wide Web Molecular Structures

More information

3d scatterplots. You can also make 3d scatterplots, although these are less common than scatterplot matrices.

3d scatterplots. You can also make 3d scatterplots, although these are less common than scatterplot matrices. 3d scatterplots You can also make 3d scatterplots, although these are less common than scatterplot matrices. > library(scatterplot3d) > y par(mfrow=c(2,2)) > scatterplot3d(y,highlight.3d=t,angle=20)

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

Basic Math Review for CS4830

Basic Math Review for CS4830 Basic Math Review for CS4830 Dr. Mihail August 18, 2016 (Dr. Mihail) Math Review for CS4830 August 18, 2016 1 / 35 Sets Definition of a set A set is a collection of distinct objects, considered as an object

More information

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 07 Exercise set Please justify your answers! The most important part is how you arrive at an

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y.

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y. Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.1, 7.3 7.5 of Rosen cse235@cse.unl.edu

More information

Principal Component Analysis (PCA) Theory, Practice, and Examples

Principal Component Analysis (PCA) Theory, Practice, and Examples Principal Component Analysis (PCA) Theory, Practice, and Examples Data Reduction summarization of data with many (p) variables by a smaller set of (k) derived (synthetic, composite) variables. p k n A

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 1. Basic Linear Algebra Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki Example

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 10 What is Data? Collection of data objects

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Professor Terje Haukaas University of British Columbia, Vancouver Notation

Professor Terje Haukaas University of British Columbia, Vancouver  Notation Notation This document establishes the notation that is employed throughout these notes. It is intended as a look-up source during the study of other documents and software on this website. As a general

More information

Introduction to Linear Regression

Introduction to Linear Regression Introduction to Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Introduction to Linear Regression 1 / 46

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 6: Probability and Random Processes Problem Set 3 Spring 9 Self-Graded Scores Due: February 8, 9 Submit your self-graded scores

More information

Dimensionality Reduction Techniques (DRT)

Dimensionality Reduction Techniques (DRT) Dimensionality Reduction Techniques (DRT) Introduction: Sometimes we have lot of variables in the data for analysis which create multidimensional matrix. To simplify calculation and to get appropriate,

More information

Determine for which real numbers s the series n>1 (log n)s /n converges, giving reasons for your answer.

Determine for which real numbers s the series n>1 (log n)s /n converges, giving reasons for your answer. Problem A. Determine for which real numbers s the series n> (log n)s /n converges, giving reasons for your answer. Solution: It converges for s < and diverges otherwise. To see this use the integral test,

More information

Lecture 2: Vector Spaces, Metric Spaces

Lecture 2: Vector Spaces, Metric Spaces CCS Discrete II Professor: Padraic Bartlett Lecture 2: Vector Spaces, Metric Spaces Week 2 UCSB 2015 1 Vector Spaces, Informally The two vector spaces 1 you re probably the most used to working with, from

More information

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x)

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x) 1.4. INNER PRODUCTS,VECTOR NORMS, AND MATRIX NORMS 11 The estimate ^ is unbiased, but E(^ 2 ) = n?1 n 2 and is thus biased. An unbiased estimate is ^ 2 = 1 (x i? ^) 2 : n? 1 In x?? we show that the linear

More information

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012 Revision: Chapter 1-6 Applied Multivariate Statistics Spring 2012 Overview Cov, Cor, Mahalanobis, MV normal distribution Visualization: Stars plot, mosaic plot with shading Outlier: chisq.plot Missing

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

MASTER OF SCIENCE IN ANALYTICS 2014 EMPLOYMENT REPORT

MASTER OF SCIENCE IN ANALYTICS 2014 EMPLOYMENT REPORT MASTER OF SCIENCE IN ANALYTICS 204 EMPLOYMENT REPORT! Results at graduation, May 204 Number of graduates: 79 MSA 205 Number of graduates seeking new employment: 75 Percent with one or more offers of employment

More information

This appendix provides a very basic introduction to linear algebra concepts.

This appendix provides a very basic introduction to linear algebra concepts. APPENDIX Basic Linear Algebra Concepts This appendix provides a very basic introduction to linear algebra concepts. Some of these concepts are intentionally presented here in a somewhat simplified (not

More information

= a. a = Let us now study what is a? c ( a A a )

= a. a = Let us now study what is a? c ( a A a ) 7636S ADVANCED QUANTUM MECHANICS Solutions 1 Spring 010 1 Warm up a Show that the eigenvalues of a Hermitian operator A are real and that the eigenkets of A corresponding to dierent eigenvalues are orthogonal

More information

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Math 443 Differential Geometry Spring 2013 Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Endomorphisms of a Vector Space This handout discusses

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Clustering Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu May 2, 2017 Announcements Homework 2 due later today Due May 3 rd (11:59pm) Course project

More information

MATH 431: FIRST MIDTERM. Thursday, October 3, 2013.

MATH 431: FIRST MIDTERM. Thursday, October 3, 2013. MATH 431: FIRST MIDTERM Thursday, October 3, 213. (1) An inner product on the space of matrices. Let V be the vector space of 2 2 real matrices (that is, the algebra Mat 2 (R), but without the mulitiplicative

More information

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19 Introductory Analysis I Fall 204 Homework #9 Due: Wednesday, November 9 Here is an easy one, to serve as warmup Assume M is a compact metric space and N is a metric space Assume that f n : M N for each

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

A Note on Two Different Types of Matrices and Their Applications

A Note on Two Different Types of Matrices and Their Applications A Note on Two Different Types of Matrices and Their Applications Arjun Krishnan I really enjoyed Prof. Del Vecchio s Linear Systems Theory course and thought I d give something back. So I ve written a

More information

Data Mining 4. Cluster Analysis

Data Mining 4. Cluster Analysis Data Mining 4. Cluster Analysis 4.2 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Data Structures Interval-Valued (Numeric) Variables Binary Variables Categorical Variables Ordinal Variables Variables

More information

Basic Math Review for CS1340

Basic Math Review for CS1340 Basic Math Review for CS1340 Dr. Mihail January 15, 2015 (Dr. Mihail) Math Review for CS1340 January 15, 2015 1 / 34 Sets Definition of a set A set is a collection of distinct objects, considered as an

More information

Linear Algebra and Eigenproblems

Linear Algebra and Eigenproblems Appendix A A Linear Algebra and Eigenproblems A working knowledge of linear algebra is key to understanding many of the issues raised in this work. In particular, many of the discussions of the details

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

Type of data Interval-scaled variables: Binary variables: Nominal, ordinal, and ratio variables: Variables of mixed types: Attribute Types Nominal: Pr

Type of data Interval-scaled variables: Binary variables: Nominal, ordinal, and ratio variables: Variables of mixed types: Attribute Types Nominal: Pr Foundation of Data Mining i Topic: Data CMSC 49D/69D CSEE Department, e t, UMBC Some of the slides used in this presentation are prepared by Jiawei Han and Micheline Kamber Data Data types Quality of data

More information

Some practical remarks (recap) Statistical Natural Language Processing. Today s lecture. Linear algebra. Why study linear algebra?

Some practical remarks (recap) Statistical Natural Language Processing. Today s lecture. Linear algebra. Why study linear algebra? Some practical remarks (recap) Statistical Natural Language Processing Mathematical background: a refresher Çağrı Çöltekin Universit of Tübingen Seminar für Sprachwissenschaft Summer Semester 017 Course

More information

Similarity and Dissimilarity

Similarity and Dissimilarity 1//015 Similarity and Dissimilarity COMP 465 Data Mining Similarity of Data Data Preprocessing Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed.

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 MA 575 Linear Models: Cedric E Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 1 Revision: Probability Theory 11 Random Variables A real-valued random variable is

More information

(x, y) = d(x, y) = x y.

(x, y) = d(x, y) = x y. 1 Euclidean geometry 1.1 Euclidean space Our story begins with a geometry which will be familiar to all readers, namely the geometry of Euclidean space. In this first chapter we study the Euclidean distance

More information

Functional Analysis MATH and MATH M6202

Functional Analysis MATH and MATH M6202 Functional Analysis MATH 36202 and MATH M6202 1 Inner Product Spaces and Normed Spaces Inner Product Spaces Functional analysis involves studying vector spaces where we additionally have the notion of

More information

Archive of past papers, solutions and homeworks for. MATH 224, Linear Algebra 2, Spring 2013, Laurence Barker

Archive of past papers, solutions and homeworks for. MATH 224, Linear Algebra 2, Spring 2013, Laurence Barker Archive of past papers, solutions and homeworks for MATH 224, Linear Algebra 2, Spring 213, Laurence Barker version: 4 June 213 Source file: archfall99.tex page 2: Homeworks. page 3: Quizzes. page 4: Midterm

More information

Econ Lecture 14. Outline

Econ Lecture 14. Outline Econ 204 2010 Lecture 14 Outline 1. Differential Equations and Solutions 2. Existence and Uniqueness of Solutions 3. Autonomous Differential Equations 4. Complex Exponentials 5. Linear Differential Equations

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Lecture 2. Econ August 11

Lecture 2. Econ August 11 Lecture 2 Econ 2001 2015 August 11 Lecture 2 Outline 1 Fields 2 Vector Spaces 3 Real Numbers 4 Sup and Inf, Max and Min 5 Intermediate Value Theorem Announcements: - Friday s exam will be at 3pm, in WWPH

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

EE263 Review Session 1

EE263 Review Session 1 EE263 Review Session 1 October 5, 2018 0.1 Importing Variables from a MALAB.m file If you are importing variables given in file vars.m, use the following code at the beginning of your script. close a l

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15) Problem 1: Chernoff Bounds via Negative Dependence - from MU Ex 5.15) While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of negative dependence.

More information

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Spazi vettoriali e misure di similaritá

Spazi vettoriali e misure di similaritá Spazi vettoriali e misure di similaritá R. Basili Corso di Web Mining e Retrieval a.a. 2009-10 March 25, 2010 Outline Outline Spazi vettoriali a valori reali Operazioni tra vettori Indipendenza Lineare

More information

Math 123, Week 2: Matrix Operations, Inverses

Math 123, Week 2: Matrix Operations, Inverses Math 23, Week 2: Matrix Operations, Inverses Section : Matrices We have introduced ourselves to the grid-like coefficient matrix when performing Gaussian elimination We now formally define general matrices

More information

Measurement and Data

Measurement and Data Measurement and Data Data describes the real world Data maps entities in the domain of interest to symbolic representation by means of a measurement procedure Numerical relationships between variables

More information

Analysis-3 lecture schemes

Analysis-3 lecture schemes Analysis-3 lecture schemes (with Homeworks) 1 Csörgő István November, 2015 1 A jegyzet az ELTE Informatikai Kar 2015. évi Jegyzetpályázatának támogatásával készült Contents 1. Lesson 1 4 1.1. The Space

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture;

More information

L5: Quadratic classifiers

L5: Quadratic classifiers L5: Quadratic classifiers Bayes classifiers for Normally distributed classes Case 1: Σ i = σ 2 I Case 2: Σ i = Σ (Σ diagonal) Case 3: Σ i = Σ (Σ non-diagonal) Case 4: Σ i = σ 2 i I Case 5: Σ i Σ j (general

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

Linear Algebra 2 Spectral Notes

Linear Algebra 2 Spectral Notes Linear Algebra 2 Spectral Notes In what follows, V is an inner product vector space over F, where F = R or C. We will use results seen so far; in particular that every linear operator T L(V ) has a complex

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

Lecture 2j Inner Product Spaces (pages )

Lecture 2j Inner Product Spaces (pages ) Lecture 2j Inner Product Spaces (pages 348-350) So far, we have taken the essential properties of R n and used them to form general vector spaces, and now we have taken the essential properties of the

More information

Contravariant and Covariant as Transforms

Contravariant and Covariant as Transforms Contravariant and Covariant as Transforms There is a lot more behind the concepts of contravariant and covariant tensors (of any rank) than the fact that their basis vectors are mutually orthogonal to

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra The two principal problems in linear algebra are: Linear system Given an n n matrix A and an n-vector b, determine x IR n such that A x = b Eigenvalue problem Given an n n matrix

More information

MATH 320, WEEK 7: Matrices, Matrix Operations

MATH 320, WEEK 7: Matrices, Matrix Operations MATH 320, WEEK 7: Matrices, Matrix Operations 1 Matrices We have introduced ourselves to the notion of the grid-like coefficient matrix as a short-hand coefficient place-keeper for performing Gaussian

More information