PHYS 6710: Nuclear and Particle Physics II

Size: px
Start display at page:

Download "PHYS 6710: Nuclear and Particle Physics II"

Transcription

1 The ellipse of constant chi-square is described by The error ellipse To describe the tilt of the error ellipse, we need to consider the following: For two parameters a,b, there are new coordinates a', b' in which the error ellipse has no tilt. There, the covariance vanishes and the covariance matrix is diagonal (see previous considerations about general form of the covariance matrix). This is equivalent to As C is symmetric and positive semidefinite, there is an orthogonal transformation Q such that C -1 is diagonal in the new coordinates, Eigenvectors build columns of Q, is diagonal matrix with eigenvalues as diagonal elements. Eigenvectors point in the directions of the half axes of the eror ellipse Tilt in (a,b) calculated from this Largest eigenvalue: shortest half-axis Smallest eigenvalue: longest half-a. Useful to find linear combinations of parameters that are most sensitive to the data eliminate superflous parameters!

2 Graphical representation Eigenvalues : Length of half axis i.

3 Correlations a general warning Anscombe's quartet: Source: Wikipedia All four data sets share: It is indispensable to make a graphical representation of your data Be aware of outliners in your data which may grossly change the analysis

4 Correlated chi-square fits So far: we have calculated the covariance matrix to get access to parameter uncertainties confidence regions linear combinations of most/least significant parameters The covariance matrix has another application: whenever data points are not independent (we have assumed independent data points so far). In that case, the covariance matrix transports the full information beyond the individual error bars on each data point

5 (continued) The correct chi-square function gets replaced according to where y is the vector of data points, f is the vector of values of f evaluated at x, and C is the covariance matrix. In case of no correlations, and the original chis-square function is recovered. Example 1: Hadronic physics on the lattice. Researcher A has produced two data points with uncertainties: Energy o o Also, researcher A has determined the correlations between the points, using, e.g., bootstrap. Researcher B would like to use these data points for further analysis. He could fit to the data using normal chi-square, but would lose the correlations. If researcher A provides the covariance matrix, researcher B can perform a correlated chi-square fit without losing information.

6 A real world example A. Alexandru, C. Pelissier, Phys.Rev. D87 (2013) 1, Resonance parameters of the rho-meson from asymmetrical lattices xl uncorrelated for different x (different lattices) correlated at same x (same lattice) x Measurements of Eigenvalues of QCD Hamiltonian in an asymmetric box with periodic boundary conditions Figure shows error bars, but behind it is a 6x6 covariance matrix with 3 blocks of size 2x2 Input to fit hadronic models More in Nuclear Seminar, March 24, 2015, D. Guo, B. Hu, R. Molina

7 Another example [M. Doring, U. G. Meissner, JHEP01(2009) 009] Fit lattice eigenvalues and observe how derived quantities (phase shift and pole positions) behave: Towards a determination of resonance properties directly from QCD. Here, the resonance: Some physics is used to stabilize fit. Known properties from Effective Field Theory in V_2 (see Griesshammer, this course), plus unknown piece V_4 expanded as polynomial in energy much in physics is about finding the best fit hypothesis! Include the Known explicitly and fit the Unknown!

8 (continued) Phase shifts and amplitudes can be continued to complex energies and pole positions (resonance properties) can be determined. Such quantities are complicated, only numerically known functions of the internal paramters (more in second part of this lecture). Bootstrap can be used to calculate confidence regions of pole positions: Actual Pole position unknown Adding parameters and observe how estimated pole position changes Convergence, but quantitative answer is given by F-test. Note the non-linear dependence of pole position on parameters confidence regions are not ellipses any more Bootstrap is used to determine confidence regions.

9 Derived quantities variable transformations In the previous example, the pole position is a complicated function of the internal parameters, used to parameterize a fit function that is used to fit the data points (the latter being correlated or uncorrelated): Internal parameters of fit hypothesis complicated but known nonlinear dependence (un)correlated data complicated but known nonlinear dependence How do uncertainties from data propagate? complicated, not explicitly known,nonlinear dependence Derived quantity of physical interest ( resonance pole position ) Another derived quantity (phase shift delta) Bootstrap solves the problem: Almost automatic workflow: Generate synthetic data ensembles around the real data Perform fits on all enselmbles, save fit parameters of converged fits For every such set, evaluate your quantity of physical interest Perform statistical analysis on set of resulting points (mean, variance, covariance matrix, confidence regions) Applicable to not necessarily linear problems (banana shaped confidence regions are not a problem).

10 Variable transformations explicitly In previous example, coordinates are implicitly transformed: Internal parameterization (no physical meaning of parameters) Derived quantities with physical meaning Bootstrap can be replaced by explicit coordinate transformation. How does the covariance matrix transform? We have already met one very special transformation: Diagonalization of covariance matrix == rotation in the system in which parameters are uncorrelated. General case is of interest, but be aware that you may make a non-linear problem out of your linear one! The resulting covariance matrix is then only an approximation close to the minimum.

11 Transformation in multiple variables consider the new variables as function of old ones: y=f(x) Dimension m of y in general unequal dimension n of x f not necessarily linear Show: The covariance matrix in y,, is given by the covariance matrix in x,, through the transformation Proof: blackboard Allows to determine covariance matrix in derived quantities

12 Example Where do two linear regression lines intersect, and what is the uncertainty in intersection point? Thomson, Univ. of Cambridge, UK]: [inspired by Prof. M.A. Uncertainty in intersection point (derived quantity) (unrelated issue: note how fluctuations are identical don't forget to reset you random number generator!)

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit Statistics Lent Term 2015 Prof. Mark Thomson Lecture 2 : The Gaussian Limit Prof. M.A. Thomson Lent Term 2015 29 Lecture Lecture Lecture Lecture 1: Back to basics Introduction, Probability distribution

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

Discrete Simulation of Power Law Noise

Discrete Simulation of Power Law Noise Discrete Simulation of Power Law Noise Neil Ashby 1,2 1 University of Colorado, Boulder, CO 80309-0390 USA 2 National Institute of Standards and Technology, Boulder, CO 80305 USA ashby@boulder.nist.gov

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

SIO 221B, Rudnick adapted from Davis 1. 1 x lim. N x 2 n = 1 N. { x} 1 N. N x = 1 N. N x = 1 ( N N x ) x = 0 (3) = 1 x N 2

SIO 221B, Rudnick adapted from Davis 1. 1 x lim. N x 2 n = 1 N. { x} 1 N. N x = 1 N. N x = 1 ( N N x ) x = 0 (3) = 1 x N 2 SIO B, Rudnick adapted from Davis VII. Sampling errors We do not have access to the true statistics, so we must compute sample statistics. By this we mean that the number of realizations we average over

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Scattering phaseshift formulas for mesons and baryons in elongated

Scattering phaseshift formulas for mesons and baryons in elongated EPJ Web of Conferences 7, (8) Lattice 7 https://doi.org/./epjconf/87 Scattering phaseshift formulas for mesons and baryons in elongated boxes Frank X. Lee, and Andrei Alexandru, Physics Department, The

More information

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Radu Balan January 31, 2017 G = (V, E) An undirected graph G is given by two pieces of information: a set of vertices V and a set of edges E, G =

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Chapter 6. Eigenvalues. Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45

Chapter 6. Eigenvalues. Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45 Chapter 6 Eigenvalues Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45 Closed Leontief Model In a closed Leontief input-output-model consumption and production coincide, i.e. V x = x

More information

Homework #2 Due Monday, April 18, 2012

Homework #2 Due Monday, April 18, 2012 12.540 Homework #2 Due Monday, April 18, 2012 Matlab solution codes are given in HW02_2012.m This code uses cells and contains the solutions to all the questions. Question 1: Non-linear estimation problem

More information

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Lecture 09 Wave propagation in anisotropic media (Contd.) So, we have seen the various aspects of

More information

Regression with Strongly Correlated Data

Regression with Strongly Correlated Data Regression with Strongly Correlated Data Christopher S Jones, John M Finn and Nicolas engartner T5, Plasma Theory and D, Statistical Sciences os lamos National aboratory, os lamos, NM 7545 st September

More information

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables 1 A factor can be considered to be an underlying latent variable: (a) on which people differ (b) that is explained by unknown variables (c) that cannot be defined (d) that is influenced by observed variables

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture V (12.11.07) Contents: Central Limit Theorem Uncertainties: concepts, propagation and properties Central Limit Theorem Consider the sum X of n independent variables,

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: PCA and the Power Iteration Method

CS168: The Modern Algorithmic Toolbox Lecture #8: PCA and the Power Iteration Method CS168: The Modern Algorithmic Toolbox Lecture #8: PCA and the Power Iteration Method Tim Roughgarden & Gregory Valiant April 15, 015 This lecture began with an extended recap of Lecture 7. Recall that

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

arxiv:hep-ex/ v1 17 Sep 1999

arxiv:hep-ex/ v1 17 Sep 1999 Propagation of Errors for Matrix Inversion M. Lefebvre 1, R.K. Keeler 1, R. Sobie 1,2, J. White 1,3 arxiv:hep-ex/9909031v1 17 Sep 1999 Abstract A formula is given for the propagation of errors during matrix

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 10 December 17, 01 Silvia Masciocchi, GSI Darmstadt Winter Semester 01 / 13 Method of least squares The method of least squares is a standard approach to

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course.

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course. Name of the course Statistical methods and data analysis Audience The course is intended for students of the first or second year of the Graduate School in Materials Engineering. The aim of the course

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

Section 9 Variational Method. Page 492

Section 9 Variational Method. Page 492 Section 9 Variational Method Page 492 Page 493 Lecture 27: The Variational Method Date Given: 2008/12/03 Date Revised: 2008/12/03 Derivation Section 9.1 Variational Method: Derivation Page 494 Motivation

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

Concentration Ellipsoids

Concentration Ellipsoids Concentration Ellipsoids ECE275A Lecture Supplement Fall 2008 Kenneth Kreutz Delgado Electrical and Computer Engineering Jacobs School of Engineering University of California, San Diego VERSION LSECE275CE

More information

Exponential Time Series Analysis in Lattice QCD

Exponential Time Series Analysis in Lattice QCD Yale University QCDNA IV 02 May 2007 Outline Definition of the problem Estimating ground state energies Limitations due to variance growth Estimating excited state energies Bayesian Methods Constrained

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Kernel Methods. Machine Learning A W VO

Kernel Methods. Machine Learning A W VO Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25 4/ Examples of PDF Uncertainty May 2005 CTEQ Summer School 25 Estimate the uncertainty on the predicted cross section for pp bar W+X at the Tevatron collider. global χ 2 local χ 2 s May 2005 CTEQ Summer

More information

Lecture 11: Diagonalization

Lecture 11: Diagonalization Lecture 11: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 11 1 / 11 Definition The n n matrix A is diagonalizableif there exits nonsingular matrix P d 1 0 0. such that P 1 AP = D, where

More information

The Jordan Canonical Form

The Jordan Canonical Form The Jordan Canonical Form The Jordan canonical form describes the structure of an arbitrary linear transformation on a finite-dimensional vector space over an algebraically closed field. Here we develop

More information

Physics 221A Fall 2018 Notes 22 Bound-State Perturbation Theory

Physics 221A Fall 2018 Notes 22 Bound-State Perturbation Theory Copyright c 2018 by Robert G. Littlejohn Physics 221A Fall 2018 Notes 22 Bound-State Perturbation Theory 1. Introduction Bound state perturbation theory applies to the bound states of perturbed systems,

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix KAIST wit Lab 2012. 07. 10 남성호 Introduction The signs of the eigenvalues can be important. The signs can also be related to the minima,

More information

The Plan. Initial value problems (ivps) for ordinary differential equations (odes) Review of basic methods You are here: Hamiltonian systems

The Plan. Initial value problems (ivps) for ordinary differential equations (odes) Review of basic methods You are here: Hamiltonian systems Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 2 Dianne P. O Leary c 2008 The Plan

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Collision Avoidance Lexicon

Collision Avoidance Lexicon Collision Avoidance Lexicon 2017 An understanding of collision avoidance terminology requires an understanding of position uncertainty terminology. This lexicon therefore includes the terminology of both

More information

Rho Resonance Parameters from Lattice QCD

Rho Resonance Parameters from Lattice QCD Rho Resonance Parameters from Lattice QCD Dehua Guo, Andrei Alexandru, Raquel Molina and Michael Döring Jefferson Lab Seminar Oct 03, 2016 Dehua Guo, Andrei Alexandru, Raquel Molina and MichaelRho Döring

More information

Advanced Statistical Methods. Lecture 6

Advanced Statistical Methods. Lecture 6 Advanced Statistical Methods Lecture 6 Convergence distribution of M.-H. MCMC We denote the PDF estimated by the MCMC as. It has the property Convergence distribution After some time, the distribution

More information

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms L03. PROBABILITY REVIEW II COVARIANCE PROJECTION NA568 Mobile Robotics: Methods & Algorithms Today s Agenda State Representation and Uncertainty Multivariate Gaussian Covariance Projection Probabilistic

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Lecture 03 Positive Semidefinite (PSD) and Positive Definite (PD) Matrices and their Properties

Lecture 03 Positive Semidefinite (PSD) and Positive Definite (PD) Matrices and their Properties Applied Optimization for Wireless, Machine Learning, Big Data Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture 03 Positive Semidefinite (PSD)

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Remedial Measures for Multiple Linear Regression Models

Remedial Measures for Multiple Linear Regression Models Remedial Measures for Multiple Linear Regression Models Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Remedial Measures for Multiple Linear Regression Models 1 / 25 Outline

More information

Part I. Experimental Error

Part I. Experimental Error Part I. Experimental Error 1 Types of Experimental Error. There are always blunders, mistakes, and screwups; such as: using the wrong material or concentration, transposing digits in recording scale readings,

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. #07 Jordan Canonical Form Cayley Hamilton Theorem (Refer Slide Time:

More information

PRINCIPAL COMPONENT ANALYSIS

PRINCIPAL COMPONENT ANALYSIS PRINCIPAL COMPONENT ANALYSIS 1 INTRODUCTION One of the main problems inherent in statistics with more than two variables is the issue of visualising or interpreting data. Fortunately, quite often the problem

More information

Numerical Methods II

Numerical Methods II Numerical Methods II Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 13 p. 1 Quasi-Monte Carlo As in lecture 6, quasi-monte Carlo methods offer much greater

More information

THE PRINCIPLES AND PRACTICE OF STATISTICS IN BIOLOGICAL RESEARCH. Robert R. SOKAL and F. James ROHLF. State University of New York at Stony Brook

THE PRINCIPLES AND PRACTICE OF STATISTICS IN BIOLOGICAL RESEARCH. Robert R. SOKAL and F. James ROHLF. State University of New York at Stony Brook BIOMETRY THE PRINCIPLES AND PRACTICE OF STATISTICS IN BIOLOGICAL RESEARCH THIRD E D I T I O N Robert R. SOKAL and F. James ROHLF State University of New York at Stony Brook W. H. FREEMAN AND COMPANY New

More information

Linear Models in Statistics

Linear Models in Statistics Linear Models in Statistics ALVIN C. RENCHER Department of Statistics Brigham Young University Provo, Utah A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig Genetic Networks Korbinian Strimmer IMISE, Universität Leipzig Seminar: Statistical Analysis of RNA-Seq Data 19 June 2012 Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 1 Paper G. I. Allen and Z. Liu.

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Quantitative Understanding in Biology Principal Components Analysis

Quantitative Understanding in Biology Principal Components Analysis Quantitative Understanding in Biology Principal Components Analysis Introduction Throughout this course we have seen examples of complex mathematical phenomena being represented as linear combinations

More information

Power Analysis. Thursday, February 23, :56 PM. 6 - Testing Complex Hypotheses and Simulation Page 1

Power Analysis. Thursday, February 23, :56 PM. 6 - Testing Complex Hypotheses and Simulation Page 1 6 - Testing Complex Hypotheses and Simulation Page 1 Power Analysis Thursday, February 23, 2012 6:56 PM Review from last week: Power and Size The sizeof a test: the probability that a test yields a false

More information

Introduction to Statistics and Data Analysis

Introduction to Statistics and Data Analysis Introduction to Statistics and Data Analysis RSI 2005 Staff July 15, 2005 Variation and Statistics Good experimental technique often requires repeated measurements of the same quantity These repeatedly

More information

Lecture 3 Dynamics 29

Lecture 3 Dynamics 29 Lecture 3 Dynamics 29 30 LECTURE 3. DYNAMICS 3.1 Introduction Having described the states and the observables of a quantum system, we shall now introduce the rules that determine their time evolution.

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard c Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 Outline 1 Lecture 9: Model Parametrization 2

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statistical Mechanics Notes for Lecture 15 Consider Hamilton s equations in the form I. CLASSICAL LINEAR RESPONSE THEORY q i = H p i ṗ i = H q i We noted early in the course that an ensemble

More information

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17 Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 17 Outline Filters and Rotations Generating co-varying random fields Translating co-varying fields into

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Unconstrained Ordination

Unconstrained Ordination Unconstrained Ordination Sites Species A Species B Species C Species D Species E 1 0 (1) 5 (1) 1 (1) 10 (4) 10 (4) 2 2 (3) 8 (3) 4 (3) 12 (6) 20 (6) 3 8 (6) 20 (6) 10 (6) 1 (2) 3 (2) 4 4 (5) 11 (5) 8 (5)

More information

Bootstrapping, Randomization, 2B-PLS

Bootstrapping, Randomization, 2B-PLS Bootstrapping, Randomization, 2B-PLS Statistics, Tests, and Bootstrapping Statistic a measure that summarizes some feature of a set of data (e.g., mean, standard deviation, skew, coefficient of variation,

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

LECTURE 4 PRINCIPAL COMPONENTS ANALYSIS / EXPLORATORY FACTOR ANALYSIS

LECTURE 4 PRINCIPAL COMPONENTS ANALYSIS / EXPLORATORY FACTOR ANALYSIS LECTURE 4 PRINCIPAL COMPONENTS ANALYSIS / EXPLORATORY FACTOR ANALYSIS NOTES FROM PRE- LECTURE RECORDING ON PCA PCA and EFA have similar goals. They are substantially different in important ways. The goal

More information

Deviations from the exponential decay law in strong decays

Deviations from the exponential decay law in strong decays Deviations from the exponential decay law in strong decays Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany in collaboration with Francesco Giacosa (based on arxiv: 1005.4817) Excited

More information

Linear regression and correlation

Linear regression and correlation Faculty of Health Sciences Linear regression and correlation Statistics for experimental medical researchers 2018 Julie Forman, Christian Pipper & Claus Ekstrøm Department of Biostatistics, University

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

LATTICE 4 BEGINNERS. Guillermo Breto Rangel May 14th, Monday, May 14, 12

LATTICE 4 BEGINNERS. Guillermo Breto Rangel May 14th, Monday, May 14, 12 LATTICE 4 BEGINNERS Guillermo Breto Rangel May 14th, 2012 1 QCD GENERAL 2 QCD GENERAL 3 QCD vs QED QCD versus QED Quantum Electrodynamics (QED): The interaction is due to the exchange of photons. Every

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Excited states and tp propagator for fermions

Excited states and tp propagator for fermions Excited states and tp propagator for fermions So far sp propagator gave access to E 0 Ground-state energy and all expectation values of 1-body operators E +1 Energies in +1 relative to ground state n E0

More information

18.06 Problem Set 8 Solution Due Wednesday, 22 April 2009 at 4 pm in Total: 160 points.

18.06 Problem Set 8 Solution Due Wednesday, 22 April 2009 at 4 pm in Total: 160 points. 86 Problem Set 8 Solution Due Wednesday, April 9 at 4 pm in -6 Total: 6 points Problem : If A is real-symmetric, it has real eigenvalues What can you say about the eigenvalues if A is real and anti-symmetric

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Fitting Linear Statistical Models to Data by Least Squares II: Weighted

Fitting Linear Statistical Models to Data by Least Squares II: Weighted Fitting Linear Statistical Models to Data by Least Squares II: Weighted Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 21, 2014 version

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

A Lattice Study of the Glueball Spectrum

A Lattice Study of the Glueball Spectrum Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 288 292 c International Academic Publishers Vol. 35, No. 3, March 15, 2001 A Lattice Study of the Glueball Spectrum LIU Chuan Department of Physics,

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VII (26.11.07) Contents: Maximum Likelihood (II) Exercise: Quality of Estimators Assume hight of students is Gaussian distributed. You measure the size of N students.

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 8. Robust Portfolio Optimization Steve Yang Stevens Institute of Technology 10/17/2013 Outline 1 Robust Mean-Variance Formulations 2 Uncertain in Expected Return

More information

Counting Statistics and Error Propagation!

Counting Statistics and Error Propagation! Counting Statistics and Error Propagation Nuclear Medicine Physics Lectures 10/4/11 Lawrence MacDonald, PhD macdon@uw.edu Imaging Research Laboratory, Radiology Dept. 1 Statistics Type of analysis which

More information

Linear Algebra II Lecture 22

Linear Algebra II Lecture 22 Linear Algebra II Lecture 22 Xi Chen University of Alberta March 4, 24 Outline Characteristic Polynomial, Eigenvalue, Eigenvector and Eigenvalue, Eigenvector and Let T : V V be a linear endomorphism. We

More information

Sigmaplot di Systat Software

Sigmaplot di Systat Software Sigmaplot di Systat Software SigmaPlot Has Extensive Statistical Analysis Features SigmaPlot is now bundled with SigmaStat as an easy-to-use package for complete graphing and data analysis. The statistical

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information