V&V of Complex Systems

Size: px
Start display at page:

Download "V&V of Complex Systems"

Transcription

1 V&V of Complex Systems Bill Lanz and Hussein Youssef S5 Symposium- Beavercreek, OH June 14-16,

2 Introduction Current methods of V&V, which certify that the software is fit for use, require a significant amount of touch labor. Future complex software developments face cost hurdles so high that it may not be deployable. We will take the current V&V technology beyond formal methods (the current state of the art) We propose reducing the V&V problem to an optimization problem solvable by readily available processing methods. This effort examines an advanced method of V&V utilizing a heuristic approach to automatically determine system invariants as introduced by Hoare [Hoare, 1969]. We will illustrate our approach using optimization algorithms to automatically determine system invariants and hence system satisfiability. Violation of the satisfiability can be isolated as bugs or errors in the code. Solving the satisfiability problem is NP-Hard during back propagation, but we will show some possible methods of overcoming the time constraints. 2

3 Modern Systems are Highly Complex 787 Example nd Qtr Mar-10 Conceptual Des 1st Flight Schd 1st Flight Static Test Ultimate load Marketing Begins 1st Order/Program Launch 1st Deliveries Scheduled Months Delay Date Schedule Delays - Cause 1st Flight Deliveries 9/5/07 Software/Fasteners 3 10/10/07 Fasteners/Suppliers 3 6 1/16/08 Traveled Work 3 4/9/08 Other Delays from 1/16/ /4/08 Bad Fastener Installation/Strike 3 8/27/09 Reinforce Side-Body /27/10 Trent 1000 Engine Blowout 6 Roughly 65% of vehicle made outside Boeing 787 is about 8% overweight at last count, with a 10-15% range reduction 3

4 Modern Systems are Highly Complex A380 Example Ult Ld st Order/Program Launch 1st Flight 1st Delivery 1st Planned Delivery ( ) Months Delay Date Schedule Delays - Cause 1st Flight Deliveries 6/1/05 Wiring, Change Control, CATIA 4/5 6 2/14/06 Wing fails destructive 145% 6/13/06 Production Ramp-up Issues 6 10/3/06 Misrouted wire harnesses 12 Initial Op Wt Empty target Mid-program update Op Wt Empty actual

5 Modern Systems are Highly Complex Other Examples F-35 Current Program Next Generation Air Transportation Management System (NextGen) Future Program 2001 National Institute of Standard and Technology (NIST) study found that the cost of software errors to the U.S. economy is ~ approximately $60B/year1 1 RTI, The Economic Impacts of Inadequate Infrastructure for Software Testing, Planning Report 02-3, National Institute of Standard and Technology, May

6 V&V Labor Hours V&V Software Costs vs. Goals Software Costs Reflect the Complexities of Host Systems Cost Research and Cost Models indicate that Validation & Verification experience superlinear cost trends A linear V&V cost target offers large savings in time and money 100,000,000 90,000,000 80,000,000 70,000,000 60,000,000 Validation and Verification Costs V&V Manhours (for Military Ground Test) (1) = 0.049(SLOCs) Note: R 2 = ,000,000 40,000,000 All Software Hours (including V & V) (2) = 514(SLOCS/1000) ,000,000 20,000,000 10,000,000 Linear V&V Cost Target 0 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 Source lines of Code (SLOCs) References: 1) Gayek, et.al., Software Cost and Productivity Model, Journal of Parametrics, Summer 2006, pages 36-71, Figure A-5 2) Boehm, Barry, Revised Intermediate COCOMO (Constructive Cost Model), or REVIC, cost for embedded software (as described in 6

7 SLOC Growth Approaching Affordability Limits Nov 30, 2010, David Redman, Donald Ward, John Chilenski and Greg Pollari, Virtual Integration for Improved System Design, Proceedings of The First Analytic Virtual Integration of Cyber-Physical Systems Workshop in conjunction with RTSS

8 The Cost of V&V (Conventional Methods) Fisher describes a conventional Validation and Verification (V&V) methodology to show that a software development is (1) building the right software for the need and (2) building the software right. This top-down process is proven throughout the industry and supported by CMMI, IEEE-1012, ISO/IEC-25020, and other software quality standards. Conventional Methods represent Corporate Processes based on Industry Standards State of the Art at the Complex System Level 8

9 DO-178B Software Development Process Example Combined Flight and Mission Software Refine System or High Level Requirements CR SRS Requirements Derived Requirements Technical Reviews Baseline SPEs Task Assignments / Schedules Sub-Teams Individual Engineers CR Simulink Model Serena Dimensions SPEs CRs CM Software Development Team CR Model/Design SPEs VMS OFP Hand Code Real-Time Workshop Process Artifacts SPEs Autocode Merge AutoMet SDSRs Independent V&V Team Simulation Actuators, Aero, Air Data, CLAW, Sensors, Propulsion DO-178B Artifacts Plans Unit Test Static Analysis Reports SPE Reports Unit Test Results PSAC Requirements Coding Standards Source Code (Baselines) Algorithm Design Cycle Merges Model Standards/SDD Code Generation Tools Flight Control Utilities Construction Tools Code Design Phase CR 6-DOF Simulation SPEs CR Embedded Code OFP Target SPEs SIM Model Based Design Linear Model and Analysis Non-Linear Analysis Data Review Operational Flight Program Check Cases/Timing FCIL, PIL, AIL, HWIL Static Analysis Polyspace + LDRA CR SIL SPEs Flight Test SCRs Mission Control Laws Executive VMC Hardware OFP SGI OFP release to Flight Test 9

10 The Cost of V&V (Formal Methods) Formal methods involve a method of developing specifications, implementation, and verification of software utilizing a formal methodology. There are several formal method toolkits (Esterel, B-Method, Z) available and are often supplemented by an Automated Theorem Prover (ATP) that effectively proves the correctness of the theorem. Formal Methods have proven to be very successful at the component level and are the current state of the art 10

11 DARPA TTO Office Initiative On Complexity 11

12 New Directions Empirical Methods Conventional and formal methods have shown to be effective and are proven approaches to developing complex systems. Both approaches use top-down deductive methods that unfortunately have not significantly reduced the amount of touch labor needed to perform to demanding schedules and lower cost. Empirical methods may be used assuming a satisfactory representation of the entire system is modeled, and appropriate computing resources are available to (1) analyze the model to discover invariants and (2) discover anomalies automatically. The fundamental problem for this approach is to empirically discover all the likely invariants of large complex software design and discover deviations from the invariants. The deviations may be described as bugs or software defects. But how hard is this problem to solve in a general manner? 12

13 Natural Law Invariants Schmidt s Research Empirically extracting natural law invariants (Hamiltonians, Lagrangians) has been performed (Schmidt, 2009), but can this method be scaled for software with possibly tens of thousands of invariants? Michael Schmidt and Hod Lipson, Published 3 April 2009, Science 324, 81 (2009) DOI: /Science

14 Extraction of Software Invariants and Isolation of Invariant Violations is Computationally Expensive Garey and Johnson in Computers and Intractability have compiled the best resource available on the topic of polynomial and exponential time complexity problems. Basically, polynomial time problems denoted as P can be solved in reasonable time higher-performance computing resources generally solve this class of problems faster. Exponential time problems belong in a different class (denoted as Non- Deterministic Polynomial Time Complete or NP-Complete) because they cannot be solved in polynomial time and, for that matter, any computing resource in a practical time. For example, a P time-complexity function n 3 where n=60 may be solved in 216 msec. The exponential time complexity function 3 n would take 1.3 x centuries. (M.R. Garey, 1979, p. 7) Some tools have been developed to detect likely invariants in software (Daikon (Ernst, 2007) and DIDUCE (Hangel, May 2002)) that work in P time for limited problem sets. Limitations occur due to the size of the problem space (with v variables thus take O(v n ) time and space). 14

15 Invariants and Satisfiability Formulation For the purpose of a software model, the software invariants may be reduced to a combination of Boolean expressions S 1, S 2, S 3 S n of the form S i = S i (x 1, x 2, x 3 x n ) such that the combination of S 1 + S 2 + S S n = TRUE FALSE. Results are TRUE only if no anomalies are present, FALSE otherwise. This type of problem falls into a class of NP-Hard Logic problems called SAT (Satisfiability) (M.R. Garey, 1979, p. 259). Although this is in the class of NP-Complete and likely intractable (assuming the worst case), there may be a P time and space solution reasonably close using Quantum Annealing methods. It is important to note that a practical quantum computer can converge on a solution in 2 n/2 steps at best no quantum computer can solve an NP- Complete problem. This means that we can only hope for a quadratic speedup, for an exact solution to a problem (C. Bennett, 1996). Quadratic speedup isn t too bad, and this approach to Validation and Verification is searching for likely invariants. 15

16 Determining Invariants To illustrate the possibility of using Quantum Annealing methods (using Quantum hardware), we produced a set of simple requirements with a well-defined set of invariants, in the form of written requirements and implemented in C++ code. These requirements must be re-mapped into equivalent Boolean expressions though this is rather painstaking to do manually, future MBD tools can perform this reduction in an automated fashion. Note that invariants can be captured in any form (requirements, software code, or drawings) that are capable of remapping into this form. Back Propagation Model illustrates the much more difficult problem of determining, for a given output state, what are the available input states that determine it? 16

17 Demonstrated Example Considering S 1 (x 1, x 2 ) =O 1 as matching the logic of a simple AND gate, then the reverse model must match the behavior of the AND gate. Without prior knowledge of this behavior, how can the back propagation determine the truth table S 1? This can be accomplished for this simple example through the use of an algorithm used in constraint mathematics called the penalty method, which allows solving for the constraints (invariants) through unconstrained convergence. Invariants are isolated by detecting the minima using an objective function (H and (x1, x2;z). Solving for all possible values yields the truth table. Other related methods Quadratic Unconstrained Binary Optimization (QUBO), Quadratically Signed Weight Enumerators (QWGT) Objective Function 17

18 Simulated Annealing The penalty method illustrates what needs to be achieved to determine global minima. Simulated annealing exploits a link between statistical mechanics (thermodynamic behavior of large numbers of particles such as metallic crystals) and combinatorial optimization This is similar to the annealing process in metallurgy, and the property that physical systems tend to seek a low energy state through a heating and cooling process that causes crystals to escape local minima to seek lower energy. Despite the intensive amount of interest in simulated annealing within industry and academia, and the most powerful supercomputer resources, simulated annealing cannot determine the invariants of a moderate-sized software project approaching P time. Solving satisfiability through Quantum Annealing physics outperforms solving the problem by software means or using supercomputers. 18

19 Adiabatic Quantum Computers Adiabatic Quantum Computers (AQC) can be used to solve NP-Hard problems faster than classical computers when solving Adiabatic Quantum Optimization (AQO) problems (based on projected data) 19

20 Key Technology Adiabatic Quantum Computers Based on Ising Spin Model key is to determine the ground state (lowest energy) of an Ising Spin system Encode a Hamiltonian for each satisfiability (S) condition by building the physical system that yields ground state (E<0) when S=true (system is bug free) and E>0 when S=False (there are bugs in the system) Getting to the ground state is NP hard which gives the answer with 100% certainty The closer we get to the ground state the more certain we are of bug-free behavior The fewer levels of the ground state can be a measure for the probability of errors and perhaps quantifiable relationship between the amount of testing time and the probability of remaining bugs. Ising Model Bias Coupling Energy Objective Function Quadratic Terms Variables Tunable parameters Software (Classical Machine) Hardware (Quantum Machine) Reference: Nature, May 2011, Quantum annealing with manufactured spins, M.W. Johnson et al, doi: /nature

21 Adiabatic Quantum Computers An Emerging Technology AQC have moved from Basic Research to Applied Research very recently (February 2011) Simulated Annealing problem is a SAT problem all problems reduce to a Boolean algebra problems and automated tools do not exist yet. Modeling the problem is still painstaking Qubits must increase to solve practical problems current state of the art is 128 qubits 21

22 Conclusion A rapid, heuristic method for performing Validation and Verification of software using quantum simulated annealing can outperform classical computing methods. Experimental evidence has shown that the AQC is suitable to solve the quadratic unconstrained binary optimization (QUBO) problems to determine likely software invariants Deviations from the software invariants (lowest energy state) may be flagged as errors in the software or software requirements. Deducing invariance is a heuristic process. Quantum outperforms classical computing. Hardware implementation outperforms software. Quantum hardware for SAT exists today pioneering efforts are underway 22

23

A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems

A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems Achieving Quality and Cost Control in the Development of Enormous Systems Safe and Secure Systems and Software

More information

Quantum Computing Approach to V&V of Complex Systems Overview

Quantum Computing Approach to V&V of Complex Systems Overview Quantum Computing Approach to V&V of Complex Systems Overview Summary of Quantum Enabled V&V Technology June, 04 Todd Belote Chris Elliott Flight Controls / VMS Integration Discussion Layout I. Quantum

More information

Quantum Annealing and the Satisfiability Problem

Quantum Annealing and the Satisfiability Problem arxiv:1612.7258v1 [quant-ph] 21 Dec 216 Quantum Annealing and the Satisfiability Problem 1. Introduction Kristen L PUDENZ 1, Gregory S TALLANT, Todd R BELOTE, and Steven H ADACHI Lockheed Martin, United

More information

Chris Elliott Flight Controls / Quantum Computing. Copyright 2015, Lockheed Martin Corporation. All rights reserved.

Chris Elliott Flight Controls / Quantum Computing. Copyright 2015, Lockheed Martin Corporation. All rights reserved. On Example Models and Challenges Ahead for the Evaluation of Complex Cyber-Physical Systems with State of the Art Formal Methods V&V Research in Quantum Enabled V&V Technology June 9-11, 2015 Chris Elliott

More information

Formal Verification Methods 1: Propositional Logic

Formal Verification Methods 1: Propositional Logic Formal Verification Methods 1: Propositional Logic John Harrison Intel Corporation Course overview Propositional logic A resurgence of interest Logic and circuits Normal forms The Davis-Putnam procedure

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

Gates for Adiabatic Quantum Computing

Gates for Adiabatic Quantum Computing Gates for Adiabatic Quantum Computing Richard H. Warren Abstract. The goal of this paper is to introduce building blocks for adiabatic quantum algorithms. Adiabatic quantum computing uses the principle

More information

Confirmation of Exponential Speed-up Using MemComputing to Solve Hard Optimization Problems

Confirmation of Exponential Speed-up Using MemComputing to Solve Hard Optimization Problems Confirmation of Exponential Speed-up Using MemComputing to Solve Hard Optimization Problems MemComputing, Inc. Table of contents 1 Executive Summary 2 Introduction 3 MemComputing Advantage - Self-Organizing

More information

CMOS Ising Computer to Help Optimize Social Infrastructure Systems

CMOS Ising Computer to Help Optimize Social Infrastructure Systems FEATURED ARTICLES Taking on Future Social Issues through Open Innovation Information Science for Greater Industrial Efficiency CMOS Ising Computer to Help Optimize Social Infrastructure Systems As the

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Requirements Validation. Content. What the standards say (*) ?? Validation, Verification, Accreditation!! Correctness and completeness

Requirements Validation. Content. What the standards say (*) ?? Validation, Verification, Accreditation!! Correctness and completeness Requirements Validation Requirements Management Requirements Validation?? Validation, Verification, Accreditation!! Check if evrything is OK With respect to what? Mesurement associated with requirements

More information

Turbulence Simulations

Turbulence Simulations Innovatives Supercomputing in Deutschland Innovative HPC in Germany Vol. 14 No. 2 Autumn 2016 Turbulence Simulations The world s largest terrestrial & astrophysical applications Vice World Champion HLRS

More information

P, NP, NP-Complete. Ruth Anderson

P, NP, NP-Complete. Ruth Anderson P, NP, NP-Complete Ruth Anderson A Few Problems: Euler Circuits Hamiltonian Circuits Intractability: P and NP NP-Complete What now? Today s Agenda 2 Try it! Which of these can you draw (trace all edges)

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft)

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Quantum annealing (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Troels Rønnow (ETH) Sergei Isakov (ETH Google) Lei Wang (ETH) Sergio Boixo (USC Google) Daniel Lidar (USC) Zhihui Wang (USC)

More information

Binary Decision Diagrams and Symbolic Model Checking

Binary Decision Diagrams and Symbolic Model Checking Binary Decision Diagrams and Symbolic Model Checking Randy Bryant Ed Clarke Ken McMillan Allen Emerson CMU CMU Cadence U Texas http://www.cs.cmu.edu/~bryant Binary Decision Diagrams Restricted Form of

More information

Computers and Intractability. The Bandersnatch problem. The Bandersnatch problem. The Bandersnatch problem. A Guide to the Theory of NP-Completeness

Computers and Intractability. The Bandersnatch problem. The Bandersnatch problem. The Bandersnatch problem. A Guide to the Theory of NP-Completeness Computers and Intractability A Guide to the Theory of NP-Completeness The Bible of complexity theory Background: Find a good method for determining whether or not any given set of specifications for a

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Computers and Intractability

Computers and Intractability Computers and Intractability A Guide to the Theory of NP-Completeness The Bible of complexity theory M. R. Garey and D. S. Johnson W. H. Freeman and Company, 1979 The Bandersnatch problem Background: Find

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

Computational Complexity

Computational Complexity Computational Complexity Algorithm performance and difficulty of problems So far we have seen problems admitting fast algorithms flow problems, shortest path, spanning tree... and other problems for which

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harry Lewis November 19, 2013 Reading: Sipser 7.4, 7.5. For culture : Computers and Intractability: A Guide to the Theory

More information

LOCKHEED MARTIN SITE UPDATE

LOCKHEED MARTIN SITE UPDATE LOCKHEED MARTIN SITE UPDATE 25 SEPTEMBER 2018 Julia Kwok Software Engineer Quantum Applications THE USC-LM QUANTUM COMPUTING CENTER Dr. Edward H. Ned Allen Chief Scientist and LM Senior Fellow Lockheed

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However,

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

arxiv: v1 [quant-ph] 16 Aug 2017

arxiv: v1 [quant-ph] 16 Aug 2017 Noname manuscript No. (will be inserted by the editor) Combinatorial Optimization on Gate Model Quantum Computers: A Survey Ehsan Zahedinejad Arman Zaribafiyan arxiv:1708.05294v1 [quant-ph] 16 Aug 2017

More information

CS 700: Quantitative Methods & Experimental Design in Computer Science

CS 700: Quantitative Methods & Experimental Design in Computer Science CS 700: Quantitative Methods & Experimental Design in Computer Science Sanjeev Setia Dept of Computer Science George Mason University Logistics Grade: 35% project, 25% Homework assignments 20% midterm,

More information

Minor-Embedding in Adiabatic Quantum Optimization

Minor-Embedding in Adiabatic Quantum Optimization Minor-Embedding in Adiabatic Quantum Optimization Vicky Choi Department of Computer Science Virginia Tech Nov, 009 Outline Adiabatic Quantum Algorithm -SAT QUBO Minor-embedding Parameter Setting Problem

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 16: Adiabatic Quantum Optimization Intro http://www.scottaaronson.com/blog/?p=1400 Testing a quantum

More information

Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability

Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability Department of Physics UC Davis April 27, 2009 Outline Historical Prospective Old School New School Non-Physics 1 Historical Prospective

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Computational Complexity CLRS 34.1-34.4 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 50 Polynomial

More information

Cyber-Physical V&V Challenges for the Evaluation of State of the Art Model Checkers

Cyber-Physical V&V Challenges for the Evaluation of State of the Art Model Checkers Cyber-Physical V&V Challenges for the Evaluation of State of the Art Model Checkers Research in Quantum Enabled V&V Technology July 12-14, 2016 Chris Elliott Flight Controls / Quantum Computing Overview

More information

Topic Dependencies for Electronic Books

Topic Dependencies for Electronic Books Topic Dependencies for Electronic Books Graham Cormode July 10, 2002 Abstract Electronics books consist of a number of topics, and information about dependencies between topics. We examine some theoretical

More information

Formal Verification of Mathematical Algorithms

Formal Verification of Mathematical Algorithms Formal Verification of Mathematical Algorithms 1 Formal Verification of Mathematical Algorithms John Harrison Intel Corporation The cost of bugs Formal verification Levels of verification HOL Light Formalizing

More information

Evaluation and Validation

Evaluation and Validation Evaluation and Validation Jian-Jia Chen (Slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2016 年 01 月 05 日 These slides use Microsoft clip arts. Microsoft copyright

More information

SAT Solvers: Theory and Practice

SAT Solvers: Theory and Practice Summer School on Verification Technology, Systems & Applications, September 17, 2008 p. 1/98 SAT Solvers: Theory and Practice Clark Barrett barrett@cs.nyu.edu New York University Summer School on Verification

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1 using Predicate Abstraction and Iterative Refinement: Part 1 15-414 Bug Catching: Automated Program Verification and Testing Sagar Chaki November 28, 2011 Outline Overview of Model Checking Creating Models

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Lecture 2: Metrics to Evaluate Systems

Lecture 2: Metrics to Evaluate Systems Lecture 2: Metrics to Evaluate Systems Topics: Metrics: power, reliability, cost, benchmark suites, performance equation, summarizing performance with AM, GM, HM Sign up for the class mailing list! Video

More information

CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden March 9, 2017 1 Preamble Our first lecture on smoothed analysis sought a better theoretical

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Software Verification

Software Verification Software Verification Grégoire Sutre LaBRI, University of Bordeaux, CNRS, France Summer School on Verification Technology, Systems & Applications September 2008 Grégoire Sutre Software Verification VTSA

More information

arxiv: v2 [quant-ph] 2 Oct 2014

arxiv: v2 [quant-ph] 2 Oct 2014 A Quantum Annealing Approach for Fault Detection and Diagnosis of Graph-Based Systems Alejandro Perdomo-Ortiz,, 2, a) Joseph Fluegemann,, 3 Sriram Narasimhan, 2 Rupak Biswas, and Vadim N. Smelyanskiy )

More information

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35.

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35. NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Quantum Computing Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Physics and Computation A key question: what is computation....fundamentally? What makes it

More information

Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer

Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer Multiple Query Optimization on the D-Wave X Adiabatic Quantum Computer Immanuel Trummer and Christoph Koch {firstname}.{lastname}@epfl.ch École Polytechnique Fédérale de Lausanne ABSTRACT The D-Wave adiabatic

More information

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization Department of Computer Science Series of Publications C Report C-2004-2 The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization Taneli Mielikäinen Esko Ukkonen University

More information

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i )

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i ) Symmetric Networks Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). How can we model an associative memory? Let M = {v 1,..., v m } be a

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden November 5, 2014 1 Preamble Previous lectures on smoothed analysis sought a better

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

The P versus NP Problem. Ker-I Ko. Stony Brook, New York

The P versus NP Problem. Ker-I Ko. Stony Brook, New York The P versus NP Problem Ker-I Ko Stony Brook, New York ? P = NP One of the seven Millenium Problems The youngest one A folklore question? Has hundreds of equivalent forms Informal Definitions P : Computational

More information

DETECTING THE FAULT FROM SPECTROGRAMS BY USING GENETIC ALGORITHM TECHNIQUES

DETECTING THE FAULT FROM SPECTROGRAMS BY USING GENETIC ALGORITHM TECHNIQUES DETECTING THE FAULT FROM SPECTROGRAMS BY USING GENETIC ALGORITHM TECHNIQUES Amin A. E. 1, El-Geheni A. S. 2, and El-Hawary I. A **. El-Beali R. A. 3 1 Mansoura University, Textile Department 2 Prof. Dr.

More information

Computational Complexity

Computational Complexity p. 1/24 Computational Complexity The most sharp distinction in the theory of computation is between computable and noncomputable functions; that is, between possible and impossible. From the example of

More information

ON THE COMPLEXITY OF SCHEDULING UNIVERSITY COURSES. A Thesis. Presented to. the Faculty of California Polytechnic State University, San Luis Obispo

ON THE COMPLEXITY OF SCHEDULING UNIVERSITY COURSES. A Thesis. Presented to. the Faculty of California Polytechnic State University, San Luis Obispo ON THE COMPLEXITY OF SCHEDULING UNIVERSITY COURSES A Thesis Presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree

More information

A NEW MODELING AND SOLUTION APPROACH FOR THE NUMBER PARTITIONING PROBLEM

A NEW MODELING AND SOLUTION APPROACH FOR THE NUMBER PARTITIONING PROBLEM A NEW MODELING AND SOLUTION APPROACH FOR THE NUMBER PARTITIONING PROBLEM BAHRAM ALIDAEE, FRED GLOVER, GARY A. KOCHENBERGER, AND CESAR REGO Received 24 November 2003 and in revised form 9 May 2004 The number

More information

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018 The Future of Advanced (Secure) Computing Quantum Computing This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering and the Office of the Director

More information

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden of /4 4 Embedded Systems Design: Optimization Challenges Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden Outline! Embedded systems " Example area: automotive electronics " Embedded systems

More information

Generating Hard but Solvable SAT Formulas

Generating Hard but Solvable SAT Formulas Generating Hard but Solvable SAT Formulas T-79.7003 Research Course in Theoretical Computer Science André Schumacher October 18, 2007 1 Introduction The 3-SAT problem is one of the well-known NP-hard problems

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

Computational Complexity Theory. The World of P and NP. Jin-Yi Cai Computer Sciences Dept University of Wisconsin, Madison

Computational Complexity Theory. The World of P and NP. Jin-Yi Cai Computer Sciences Dept University of Wisconsin, Madison Computational Complexity Theory The World of P and NP Jin-Yi Cai Computer Sciences Dept University of Wisconsin, Madison Sept 11, 2012 Supported by NSF CCF-0914969. 1 2 Entscheidungsproblem The rigorous

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science E1. Complexity Theory: Motivation and Introduction Malte Helmert University of Basel May 18, 2016 Overview: Course contents of this course: logic How can knowledge be represented?

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

Is It As Easy To Discover As To Verify?

Is It As Easy To Discover As To Verify? Is It As Easy To Discover As To Verify? Sam Buss Department of Mathematics U.C. San Diego UCSD Math Circle May 22, 2004 A discovered identity The Bailey-Borwein-Plouffe formula for π (1997): π = n=0 (

More information

Who Has Heard of This Problem? Courtesy: Jeremy Kun

Who Has Heard of This Problem? Courtesy: Jeremy Kun P vs. NP 02-201 Who Has Heard of This Problem? Courtesy: Jeremy Kun Runtime Analysis Last time, we saw that there is no solution to the Halting Problem. Halting Problem: Determine if a program will halt.

More information

Introduction to Adiabatic Quantum Computation

Introduction to Adiabatic Quantum Computation Introduction to Adiabatic Quantum Computation Vicky Choi Department of Computer Science Virginia Tech April 6, 2 Outline Motivation: Maximum Independent Set(MIS) Problem vs Ising Problem 2 Basics: Quantum

More information

Theory of Computer Science. Theory of Computer Science. E1.1 Motivation. E1.2 How to Measure Runtime? E1.3 Decision Problems. E1.

Theory of Computer Science. Theory of Computer Science. E1.1 Motivation. E1.2 How to Measure Runtime? E1.3 Decision Problems. E1. Theory of Computer Science May 18, 2016 E1. Complexity Theory: Motivation and Introduction Theory of Computer Science E1. Complexity Theory: Motivation and Introduction Malte Helmert University of Basel

More information

Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017

Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017 Canary Foundation at Stanford D-Wave Systems Murray Thom February 27 th, 2017 Introduction to Quantum Computing Copyright D-Wave Systems Inc. 3 Richard Feynman 1960 1970 1980 1990 2000 2010 2020 Copyright

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

SAT-Solvers: propositional logic in action

SAT-Solvers: propositional logic in action SAT-Solvers: propositional logic in action Russell Impagliazzo, with assistence from Cameron Held October 22, 2013 1 Personal Information A reminder that my office is 4248 CSE, my office hours for CSE

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information

New Quantum Algorithm Solving the NP Complete Problem

New Quantum Algorithm Solving the NP Complete Problem ISSN 070-0466, p-adic Numbers, Ultrametric Analysis and Applications, 01, Vol. 4, No., pp. 161 165. c Pleiades Publishing, Ltd., 01. SHORT COMMUNICATIONS New Quantum Algorithm Solving the NP Complete Problem

More information

7.8: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

7.8: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine. Overview 7.8: Intractability What is an algorithm? Turing machine. Which problems can be solved on a computer? Computability. Which ALGORITHMS will be useful in practice? Analysis of algorithms. Which

More information

Cutting Plane Training of Structural SVM

Cutting Plane Training of Structural SVM Cutting Plane Training of Structural SVM Seth Neel University of Pennsylvania sethneel@wharton.upenn.edu September 28, 2017 Seth Neel (Penn) Short title September 28, 2017 1 / 33 Overview Structural SVMs

More information

Notes for Lecture 21

Notes for Lecture 21 U.C. Berkeley CS170: Intro to CS Theory Handout N21 Professor Luca Trevisan November 20, 2001 Notes for Lecture 21 1 Tractable and Intractable Problems So far, almost all of the problems that we have studied

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Solving Stochastic Planning Problems With Large State and Action Spaces

Solving Stochastic Planning Problems With Large State and Action Spaces Solving Stochastic Planning Problems With Large State and Action Spaces Thomas Dean, Robert Givan, and Kee-Eung Kim Thomas Dean and Kee-Eung Kim Robert Givan Department of Computer Science Department of

More information

arxiv: v1 [quant-ph] 19 Jan 2019

arxiv: v1 [quant-ph] 19 Jan 2019 Floating-Point Calculations on a Quantum Annealer: Division and Matrix Inversion Michael L Rogers and Robert L Singleton Jr Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA LA-UR-19-20366

More information

Interactive Theorem Proving in Industry

Interactive Theorem Proving in Industry 1 Interactive Theorem Proving in Industry John Harrison Intel Corporation 16 April 2012 2 Milner on automation and interaction I wrote an automatic theorem prover in Swansea for myself and became shattered

More information

2. Accelerated Computations

2. Accelerated Computations 2. Accelerated Computations 2.1. Bent Function Enumeration by a Circular Pipeline Implemented on an FPGA Stuart W. Schneider Jon T. Butler 2.1.1. Background A naive approach to encoding a plaintext message

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

arxiv: v1 [quant-ph] 17 Apr 2017

arxiv: v1 [quant-ph] 17 Apr 2017 A NASA Perspective on Quantum Computing: Opportunities and Challenges arxiv:1704.04836v1 [quant-ph] 17 Apr 2017 Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandrà, Bryan O Gorman,

More information

Warm-Up Problem. Is the following true or false? 1/35

Warm-Up Problem. Is the following true or false? 1/35 Warm-Up Problem Is the following true or false? 1/35 Propositional Logic: Resolution Carmen Bruni Lecture 6 Based on work by J Buss, A Gao, L Kari, A Lubiw, B Bonakdarpour, D Maftuleac, C Roberts, R Trefler,

More information

6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM

6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM 6. Application to the Traveling Salesman Problem 92 6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM The properties that have the most significant influence on the maps constructed by Kohonen s algorithm

More information

10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine. Overview 10.3: Intractability What is an algorithm? Turing machine. What problems can be solved on a computer? Computability. What ALGORITHMS will be useful in practice? Analysis of algorithms. Which PROBLEMS

More information

AFRL-RI-RS-TR

AFRL-RI-RS-TR AFRL-RI-RS-TR-2014-193 A QUANTUM COMPUTING APPROACH TO MODEL CHECKING FOR ADVANCED MANUFACTURING PROBLEMS UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES INSTITUTE JULY 2014 FINAL TECHNICAL REPORT

More information

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World School of Informatics, University of Edinburgh 26/01/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Outline Knowledge-based

More information

Simulated Annealing for Constrained Global Optimization

Simulated Annealing for Constrained Global Optimization Monte Carlo Methods for Computation and Optimization Final Presentation Simulated Annealing for Constrained Global Optimization H. Edwin Romeijn & Robert L.Smith (1994) Presented by Ariel Schwartz Objective

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

In complexity theory, algorithms and problems are classified by the growth order of computation time as a function of instance size.

In complexity theory, algorithms and problems are classified by the growth order of computation time as a function of instance size. 10 2.2. CLASSES OF COMPUTATIONAL COMPLEXITY An optimization problem is defined as a class of similar problems with different input parameters. Each individual case with fixed parameter values is called

More information

A Thermodynamic Turing Machine: Artificial Molecular Computing Using Classical Reversible Logic Switching Networks [1]

A Thermodynamic Turing Machine: Artificial Molecular Computing Using Classical Reversible Logic Switching Networks [1] 1 arxiv:0904.3273v2 [cs.cc] 14 May 2009 A Thermodynamic Turing Machine: Artificial Molecular Computing Using Classical Reversible Logic Switching Networks [1] Abstract A Thermodynamic Turing Machine (TTM)

More information