Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information

Size: px
Start display at page:

Download "Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information"

Transcription

1 1 Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information Emmanuel Candès, California Institute of Technology International Conference on Computational Harmonic Analysis Nashville, Tennessee, May 2004 Collaborators: Justin Romberg (Caltech), Terence Tao (UCLA)

2 2 Incomplete Fourier Information Observe Fourier samples ˆf(ω) on a domain Ω. 22 radial lines, 8% coverage

3 Classical Reconstruction Backprojection: essentially reconstruct g with ˆf(ω) ĝ ω Ω (ω) = 0 ω Ω 3 Original Phantom (Logan Shepp) Naive Reconstruction original g

4 4 Interpolation? 25 A Row of the Fourier Matrix original g

5 Total Variation Reconstruction 5 Reconstruct g with min g g T V s.t. ĝ(ω) = ˆf(ω), ω Ω Original Phantom (Logan Shepp) Reconstruction: min BV + nonnegativity constraint original g = original perfect reconstruction!

6 6 Sparse Spike Train Sparse sequence of N T spikes Observe N Ω Fourier coefficients

7 Interpolation? 7

8 l 1 Reconstruction 8 Reconstruct by solving min g t g s.t. ĝ(ω) = ˆf(ω), ω Ω For N T N Ω /2, we recover f perfectly. t original recovered from 30 Fourier samples

9 Extension to TV 9 g T V = i g t+1 g t = l 1 -norm of finite differences Given frequency observations on Ω, using min g T V s.t. ĝ(ω) = ˆf(ω), ω Ω we can perfectly reconstruct signals with a small number of jumps.

10 Reconstructed perfectly from 30 Fourier samples 10

11 11 Model Problem Signal made out of T spikes Observed at only Ω frequency locations Extensions Piecewise constant signal Spikes in higher-dimensions; 2D, 3D, etc. Piecewise constant images Many others

12 12 Sharp Uncertainty Principles Signal is sparse in time, only T spikes Solve combinatorial optimization problem (P 0 ) min g g l0 := #{t, g(t) 0}, ĝ Ω = ˆf Ω Theorem 1 N (sample size) is prime (i) Assume that T Ω /2, then (P 0 ) reconstructs exactly. (ii) Assume that T > Ω /2, then (P 0 ) fails at exactly reconstructing f; f 1, f 2 with f 1 l0 + f 2 l0 = Ω + 1 and ˆf 1 (ω) = ˆf 2 (ω), ω Ω

13 13 l 1 Relaxation? Solve convex optimization problem (LP for real-valued signals) (P 1 ) min g g l1 := t g(t), ĝ Ω = ˆf Ω Example: Dirac s comb N equispaced spikes (N perfect square). Invariant through Fourier transform ˆf = f Can find Ω = N N with ˆf(ω) = 0, ω Ω. Can t reconstruct More dramatic examples exist But all these examples are very special

14 14 Dirac s Comb f(t) N f(ω) N t ω f ˆf

15 15 Main Result Theorem 2 Suppose T α(m) Ω log N Then min-l 1 reconstructs exactly with prob. greater than 1 O(N M ). (n.b. one can choose α(m) [29.6(M + 1)] 1. Extensions T, number of jump discontinuities (TV reconstruction) T, number of 2D, 3D spikes. T, number of 2D jump discontinuities (2D TV reconstruction)

16 16 Heuristics: Robust Uncertainty Principles f unique minimizer of (P 1 ) iff f(t) + h(t) > t t f(t), h, ĥ Ω = 0 Triangle inequality f(t) + h(t) = Sufficient condition T f(t) + h(t) + T c h t T f(t) h(t) + T c h t h(t) h(t) T c T h(t) 1 2 h l 1 T Conclusion: f unique minimizer if for all h, s.t. ĥ Ω = 0, it is impossible to concentrate h on T

17 17 Connections Donoho & Stark (88) Donoho & Huo (01) Gribonval & Nielsen (03) Tropp (03) and (04) Donoho & Elad (03) Santosa & Symes (86) Dobson & Santosa (96) Bressler (98?) Vetterli et. al. (03) Gilbert et al. (04)

18 18 Dual Viewpoint Convex problem has a dual Dual polynomial P (t) = ω Ω ˆP (ω)e iωt P (t) = sgn(f)(t), t T P (t) < 1, t T c ˆP supported on set Ω of visible frequencies Theorem 3 (i) If F T Ω and there exits a dual polynomial, then the (P 1 ) minimizer (P 1 ) is unique and is equal to f. (ii) Conversely, if f is the unique minimizer of (P 1 ), then there exists a dual polynomial.

19 19 Dual Polynomial P(t) ^ P(ω) t ω Space Frequency

20 20 Construction of the Dual Polynomial P (t) = ω Ω ˆP (ω)e iωt P interpolates sgn(f) on T P has minimum energy

21 Auxilary matrices: 1 Ω H = I F 1 P Ω FR T Hf(t) := ω Ω t E:t t e iω(t t ) f(t ), 21 Restriction: R T is the restriction map, R T f := f T R T is the obvious embedding obtained by extending by zero outside of T Identity: R T R T = I T. P := (R T 1 Ω H)(I T 1 Ω R T H) 1 R T sgn(f). Frequency support. P has Fourier transform supported in Ω Spatial interpolation. P obeys R T P = (R T R T 1 Ω R T H)(R T R T 1 Ω R T H) 1 R T sgn(f) = R T sgn(f), and so P agrees with sgn(f) on T.

22 22 Hard Things P := (R T 1 Ω H)(I T 1 Ω R T H) 1 R T sgn(f). (I T 1 Ω R T H) invertible P (t) < 1, t / T Interpretation I T 1 Ω R T H = [F T Ω ] F T Ω i.e. invertibility means that F T Ω = R Ω FR T is of full rank.

23 23 Invertibility (I T 1 Ω R T H) = I T 1 Ω H 0, H 0 (t, t ) = 0 t = t ω Ω eiω(t t ). t t Fact: H 0 (t, t ) Ω H 0 2 Tr(H 0 H 0) = t,t H 0 (t, t ) 2 T 2 Ω Want H 0 Ω, and therefore T 2 Ω = O( Ω 2 ) T = O( Ω )

24 24 Key Estimates Want to show largest eigenvalue of H 0 (self-adjoint) is less than Ω. Take large powers of random matrices Tr(H 2n 0 ) = λ2n λ2n T Key estimate: develop bounds on E[Tr(H 2n 0 )] γ2n n n T n+1 Ω n. Key intermediate result: with large-probability A lot of combinatorics! H 0 γ log T T Ω

25 Numerical Results 25 Signal length N = 1024 Randomly place N t spikes, observe N w random frequencies Measure % recovered perfectly red = always recovered, blue = never recovered N w N t /N w

26 26 Other Phantoms, I Original Phantom Classical Reconstruction original g = classical reconstruction

27 27 Original Phantom Total Variation Reconstruction original g = TV reconstruction = Exact!

28 28 Other Phantoms, II Original Phantom Classical Reconstruction original g = classical reconstruction

29 29 Original Phantom Total Variation Reconstruction original g = TV reconstruction = Exact!

30 30 Scanlines 2 A Scanline of the Original Phantom 2 Classical (Black) and TV (Red) Reconstructions original g = classical reconstruction

31 31 Robust Uncertainty Principles T = supp(f) Ω = supp( ˆf) Discrete uncertainty principle (Donoho & Stark 88) T + Ω 2 N Robust uncertainty principle (C. & Romberg 04): for nearly all T, Ω T + Ω β N/ log N

32 32 Summary Exact reconstruction Tied to new uncertainty principles Stability Robustness Optimality Many extensions: e.g. arbitrary synthesis/measurement pairs Contact:

33 33 Extentions Two bases Φ and Ψ f has a sparse decomposition in Φ, f = t α tφ t N T terms in the expansion Only able to observe measurements f, ψ ω on small (random) set Ω. N Ω measurements Incoherence: M = N sup t,ω φ t, ψ ω. Then perfect reconstruction occurs provided N T N Ω M 2 log N Tight Twist: both T AND Ω need to be randomized.

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

Uncertainty principles and sparse approximation

Uncertainty principles and sparse approximation Uncertainty principles and sparse approximation In this lecture, we will consider the special case where the dictionary Ψ is composed of a pair of orthobases. We will see that our ability to find a sparse

More information

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 Emmanuel Candés (Caltech), Terence Tao (UCLA) 1 Uncertainty principles A basic principle

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology

The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology The Sparsity Gap Joel A. Tropp Computing & Mathematical Sciences California Institute of Technology jtropp@acm.caltech.edu Research supported in part by ONR 1 Introduction The Sparsity Gap (Casazza Birthday

More information

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Emmanuel J. Candès and Justin Romberg Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 ovember 2004; Revised

More information

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Emmanuel J. Candès and Justin Romberg Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 June 3, 2005 Abstract

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Error Correction via Linear Programming

Error Correction via Linear Programming Error Correction via Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles,

More information

A Survey of Compressive Sensing and Applications

A Survey of Compressive Sensing and Applications A Survey of Compressive Sensing and Applications Justin Romberg Georgia Tech, School of ECE ENS Winter School January 10, 2012 Lyon, France Signal processing trends DSP: sample first, ask questions later

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Multiscale Geometric Analysis: Thoughts and Applications (a summary)

Multiscale Geometric Analysis: Thoughts and Applications (a summary) Multiscale Geometric Analysis: Thoughts and Applications (a summary) Anestis Antoniadis, University Joseph Fourier Assimage 2005,Chamrousse, February 2005 Classical Multiscale Analysis Wavelets: Enormous

More information

1 Singular Value Decomposition

1 Singular Value Decomposition 1 Singular Value Decomposition Factorisation of rectangular matrix (generalisation of eigenvalue concept / spectral theorem): For every matrix A C m n there exists a factorisation A = UΣV U C m m, V C

More information

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements Stable Signal Recovery from Incomplete and Inaccurate Measurements EMMANUEL J. CANDÈS California Institute of Technology JUSTIN K. ROMBERG California Institute of Technology AND TERENCE TAO University

More information

Package R1magic. August 29, 2016

Package R1magic. August 29, 2016 Type Package Package R1magic August 29, 2016 Title Compressive Sampling: Sparse Signal Recovery Utilities Version 0.3.2 Date 2015-04-19 Maintainer Depends stats, utils Utilities

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

Support Detection in Super-resolution

Support Detection in Super-resolution Support Detection in Super-resolution Carlos Fernandez-Granda (Stanford University) 7/2/2013 SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 1 / 25 Acknowledgements This work was

More information

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Introduction to Sparsity Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Outline Understanding Sparsity Total variation Compressed sensing(definition) Exact recovery with sparse prior(l 0 ) l 1 relaxation

More information

Randomness-in-Structured Ensembles for Compressed Sensing of Images

Randomness-in-Structured Ensembles for Compressed Sensing of Images Randomness-in-Structured Ensembles for Compressed Sensing of Images Abdolreza Abdolhosseini Moghadam Dep. of Electrical and Computer Engineering Michigan State University Email: abdolhos@msu.edu Hayder

More information

Package R1magic. April 9, 2013

Package R1magic. April 9, 2013 Package R1magic April 9, 2013 Type Package Title Compressive Sampling: Sparse signal recovery utilities Version 0.2 Date 2013-04-09 Author Maintainer Depends stats, utils Provides

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics,

More information

Practical Signal Recovery from Random Projections

Practical Signal Recovery from Random Projections Practical Signal Recovery from Random Projections Emmanuel Candès and Justin Romberg Abstract Can we recover a signal f R N from a small number of linear measurements? A series of recent papers developed

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Lingchen Kong and Naihua Xiu Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People s Republic of China E-mail:

More information

Lecture 6 January 21, 2016

Lecture 6 January 21, 2016 MATH 6/CME 37: Applied Fourier Analysis and Winter 06 Elements of Modern Signal Processing Lecture 6 January, 06 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates Outline Agenda: Fourier

More information

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Yin Zhang Technical Report TR05-06 Department of Computational and Applied Mathematics Rice University,

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Lecture 3. Random Fourier measurements

Lecture 3. Random Fourier measurements Lecture 3. Random Fourier measurements 1 Sampling from Fourier matrices 2 Law of Large Numbers and its operator-valued versions 3 Frames. Rudelson s Selection Theorem Sampling from Fourier matrices Our

More information

arxiv:math/ v3 [math.ca] 4 Apr 2006

arxiv:math/ v3 [math.ca] 4 Apr 2006 ear Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? arxiv:math/0410542v3 [math.ca] 4 Apr 2006 Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech,

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Optimization-based sparse recovery: Compressed sensing vs. super-resolution

Optimization-based sparse recovery: Compressed sensing vs. super-resolution Optimization-based sparse recovery: Compressed sensing vs. super-resolution Carlos Fernandez-Granda, Google Computational Photography and Intelligent Cameras, IPAM 2/5/2014 This work was supported by a

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Sparsity and Incoherence in Compressive Sampling

Sparsity and Incoherence in Compressive Sampling Sparsity and Incoherence in Compressive Sampling Emmanuel Candès and Justin Romberg Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Electrical and Computer Engineering, Georgia Tech,

More information

Xu Guanlei Dalian Navy Academy

Xu Guanlei Dalian Navy Academy Xu Guanlei Dalian Navy Academy xgl_86@163.com Werner Heisenberg x p 2 So, it is called as Heisenberg's uncertainty principle 2 2 t u 1/4 2 2 ( ) 2 u u u F u du where t 2 2 2 t t f ( t) dt What will happen

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

Noncommutative Uncertainty Principle

Noncommutative Uncertainty Principle Noncommutative Uncertainty Principle Zhengwei Liu (joint with Chunlan Jiang and Jinsong Wu) Vanderbilt University The 12th East Coast Operator Algebras Symposium, Oct 12, 2014 Z. Liu (Vanderbilt) Noncommutative

More information

A New Estimate of Restricted Isometry Constants for Sparse Solutions

A New Estimate of Restricted Isometry Constants for Sparse Solutions A New Estimate of Restricted Isometry Constants for Sparse Solutions Ming-Jun Lai and Louis Y. Liu January 12, 211 Abstract We show that as long as the restricted isometry constant δ 2k < 1/2, there exist

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

The Dantzig Selector

The Dantzig Selector The Dantzig Selector Emmanuel Candès California Institute of Technology Statistics Colloquium, Stanford University, November 2006 Collaborator: Terence Tao (UCLA) Statistical linear model y = Xβ + z y

More information

Mathematics Subject Classification (2000). Primary 00A69, 41-02, 68P30; Secondary 62C65.

Mathematics Subject Classification (2000). Primary 00A69, 41-02, 68P30; Secondary 62C65. Compressive sampling Emmanuel J. Candès Abstract. Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Data Sparse Matrix Computation - Lecture 20

Data Sparse Matrix Computation - Lecture 20 Data Sparse Matrix Computation - Lecture 20 Yao Cheng, Dongping Qi, Tianyi Shi November 9, 207 Contents Introduction 2 Theorems on Sparsity 2. Example: A = [Φ Ψ]......................... 2.2 General Matrix

More information

Going off the grid. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison

Going off the grid. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Going off the grid Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Badri Bhaskar Parikshit Shah Gonnguo Tang We live in a continuous world... But we work

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Lecture 1 January 5, 2016

Lecture 1 January 5, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture January 5, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long; Edited by E. Candes & E. Bates Outline

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Abstract This paper is about the efficient solution of large-scale compressed sensing problems.

Abstract This paper is about the efficient solution of large-scale compressed sensing problems. Noname manuscript No. (will be inserted by the editor) Optimization for Compressed Sensing: New Insights and Alternatives Robert Vanderbei and Han Liu and Lie Wang Received: date / Accepted: date Abstract

More information

Highly sparse representations from dictionaries are unique and independent of the sparseness measure. R. Gribonval and M. Nielsen

Highly sparse representations from dictionaries are unique and independent of the sparseness measure. R. Gribonval and M. Nielsen AALBORG UNIVERSITY Highly sparse representations from dictionaries are unique and independent of the sparseness measure by R. Gribonval and M. Nielsen October 2003 R-2003-16 Department of Mathematical

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Frequency-Domain Design and Implementation of Overcomplete Rational-Dilation Wavelet Transforms

Frequency-Domain Design and Implementation of Overcomplete Rational-Dilation Wavelet Transforms Frequency-Domain Design and Implementation of Overcomplete Rational-Dilation Wavelet Transforms Ivan Selesnick and Ilker Bayram Polytechnic Institute of New York University Brooklyn, New York 1 Rational-Dilation

More information

Observability of a Linear System Under Sparsity Constraints

Observability of a Linear System Under Sparsity Constraints 2372 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 58, NO 9, SEPTEMBER 2013 Observability of a Linear System Under Sparsity Constraints Wei Dai and Serdar Yüksel Abstract Consider an -dimensional linear

More information

Signal Recovery, Uncertainty Relations, and Minkowski Dimension

Signal Recovery, Uncertainty Relations, and Minkowski Dimension Signal Recovery, Uncertainty Relations, and Minkowski Dimension Helmut Bőlcskei ETH Zurich December 2013 Joint work with C. Aubel, P. Kuppinger, G. Pope, E. Riegler, D. Stotz, and C. Studer Aim of this

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases 2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 9, SEPTEMBER 2002 A Generalized Uncertainty Principle Sparse Representation in Pairs of Bases Michael Elad Alfred M Bruckstein Abstract An elementary

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information

Uniqueness Conditions for A Class of l 0 -Minimization Problems

Uniqueness Conditions for A Class of l 0 -Minimization Problems Uniqueness Conditions for A Class of l 0 -Minimization Problems Chunlei Xu and Yun-Bin Zhao October, 03, Revised January 04 Abstract. We consider a class of l 0 -minimization problems, which is to search

More information

Image Processing by the Curvelet Transform

Image Processing by the Curvelet Transform Image Processing by the Curvelet Transform Jean Luc Starck Dapnia/SEDI SAP, CEA Saclay, France. jstarck@cea.fr http://jstarck.free.fr Collaborators: D.L. Donoho, Department of Statistics, Stanford E. Candès,

More information

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula Larry Goldstein, University of Southern California Nourdin GIoVAnNi Peccati Luxembourg University University British

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France.

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France. Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Overview of the course Introduction sparsity & data compression inverse problems

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg MGA Tutorial, September 08, 2004 Construction of Wavelets Jan-Olov Strömberg Department of Mathematics Royal Institute of Technology (KTH) Stockholm, Sweden Department of Numerical Analysis and Computer

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS YIN ZHANG Abstract. Compressive sensing (CS) is an emerging methodology in computational signal processing that has

More information

Recovery of Compactly Supported Functions from Spectrogram Measurements via Lifting

Recovery of Compactly Supported Functions from Spectrogram Measurements via Lifting Recovery of Compactly Supported Functions from Spectrogram Measurements via Lifting Mark Iwen markiwen@math.msu.edu 2017 Friday, July 7 th, 2017 Joint work with... Sami Merhi (Michigan State University)

More information

IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM

IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM Anne Gelb, Rodrigo B. Platte, Rosie Renaut Development and Analysis of Non-Classical Numerical Approximation

More information

Rui ZHANG Song LI. Department of Mathematics, Zhejiang University, Hangzhou , P. R. China

Rui ZHANG Song LI. Department of Mathematics, Zhejiang University, Hangzhou , P. R. China Acta Mathematica Sinica, English Series May, 015, Vol. 31, No. 5, pp. 755 766 Published online: April 15, 015 DOI: 10.1007/s10114-015-434-4 Http://www.ActaMath.com Acta Mathematica Sinica, English Series

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Uniqueness and Uncertainty

Uniqueness and Uncertainty Chapter 2 Uniqueness and Uncertainty We return to the basic problem (P 0 ), which is at the core of our discussion, (P 0 ) : min x x 0 subject to b = Ax. While we shall refer hereafter to this problem

More information

Spin Glass Approach to Restricted Isometry Constant

Spin Glass Approach to Restricted Isometry Constant Spin Glass Approach to Restricted Isometry Constant Ayaka Sakata 1,Yoshiyuki Kabashima 2 1 Institute of Statistical Mathematics 2 Tokyo Institute of Technology 1/29 Outline Background: Compressed sensing

More information

Physics 215 Quantum Mechanics 1 Assignment 1

Physics 215 Quantum Mechanics 1 Assignment 1 Physics 5 Quantum Mechanics Assignment Logan A. Morrison January 9, 06 Problem Prove via the dual correspondence definition that the hermitian conjugate of α β is β α. By definition, the hermitian conjugate

More information

Agenda. Applications of semidefinite programming. 1 Control and system theory. 2 Combinatorial and nonconvex optimization

Agenda. Applications of semidefinite programming. 1 Control and system theory. 2 Combinatorial and nonconvex optimization Agenda Applications of semidefinite programming 1 Control and system theory 2 Combinatorial and nonconvex optimization 3 Spectral estimation & super-resolution Control and system theory SDP in wide use

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Mathematical Foundations of Signal Processing

Mathematical Foundations of Signal Processing Mathematical Foundations of Signal Processing Module 4: Continuous-Time Systems and Signals Benjamín Béjar Haro Mihailo Kolundžija Reza Parhizkar Adam Scholefield October 24, 2016 Continuous Time Signals

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information