The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology

Size: px
Start display at page:

Download "The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology"

Transcription

1 The Sparsity Gap Joel A. Tropp Computing & Mathematical Sciences California Institute of Technology Research supported in part by ONR 1

2 Introduction The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 2

3 Systems of Linear Equations We consider linear systems of the form m Φ }{{} N x = b Assume that Φ has dimensions m N with N > m Φ has full row rank The columns of Φ have unit l 2 norm The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 3

4 The Trichotomy Theorem Theorem 1. For a linear system Φx = b, exactly one of the following situations occurs. 1. No solution exists. 2. The equation has a unique solution. 3. The solutions form a linear subspace of positive dimension. The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 4

5 Regularization via Sparsity A principled approach to underdetermined systems: min x 0 subject to Φx = b (P0) where x 0 = # supp(x) = #{j : x j 0} When x 0 s, then x is called s-sparse If Φx = b and x is s-sparse, then x is an s-sparse representation of b Since Φ has full row-rank, every b has an m-sparse representation Question: What can we say about sparser representations? The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 5

6 Geometry The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 6

7 Key Insight Sparse representations are well behaved when the matrix Φ is sufficiently nice (Column submatrices should not be singular and individual columns should not look like sparse signals) The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 7

8 Quantifying Niceness I We call Φ a tight frame when ΦΦ = N m I Equivalently, the rows of Φ form an orthonormal family (up to scaling) Observe that N/m is the redundancy of the frame Tight frames have minimal spectral norm among conformal matrices The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 8

9 Quantifying Niceness II The coherence of Φ is the quantity µ = max j k ϕ j, ϕ k Measures the angle between columns When N 2m, the coherence satisfies µ 1 m Incoherent matrices appear often in signal processing applications References: [Welch 1974, Mallat Zhang 1993, Donoho Huo 2001, Gribonval Nielsen 2003, Strohmer Heath 2003] The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 9

10 Example: Identity + Fourier 1 Impulses Complex Exponentials A very incoherent tight frame The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 10

11 Uniqueness The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 11

12 Uncertainty implies Uniqueness Theorem 2. Suppose that a vector b has two representations: Φx = b = Φy. Then x 0 + y 0 > µ 1. Corollary 3. Suppose that b = Φx where x 0 < 1 2 µ 1. Then x is the unique solution to (P0). Very strict requirement since µ 1 m References: [Donoho Stark 1989, Donoho Huo 2001, Gribonval Nielsen 2003, Donoho Elad 2003] The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 12

13 The Square-Root Threshold Sparse representations are not necessarily unique past the m threshold Example: The Dirac Comb Consider the Identity + Fourier matrix with m = p 2 There is a vector b that can be written as either p spikes or p sines By the Poisson summation formula, b(t) = p 1 j=0 δ pj (t) = 1 p 1 m j=0 e 2πipjt/m for t = 0, 1,..., m References: [Donoho Stark 1989] The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 13

14 Enter Probability Insight: The bad vectors are atypical The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 14

15 An Uncertainty Principle for Generic Signals Theorem 4. [T 2010] Suppose that b = Φx where the nonzero components of x have a continuous distribution. With probability one, the vector b has no representation b = Φy where supp(x) supp(y) = unless x 0 + y 0 > µ 1 x 1/2 0. Corollary 5. When µ m 1/2, condition becomes [ ] m y 0 > x 0 1 x 0 Even with refinements, this approach does not yield uniqueness! Problem: Some supports could be bad References: [The Sparsity Gap] The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 15

16 Enter More Probability Insight: The bad supports are atypical The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 16

17 A Simple Model for Random Sparse Vectors Model (M0) for b = Φx The matrix Φ The support of x The nonzero entries of x is a unit-norm tight frame of size m N with coherence µ c/ log N. has cardinality s cm/ log N and is uniformly random. have a continuous distribution. The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 17

18 Random Submatrices & Sparse Representation Theorem 6. [T 2006, 2008] Assume all parameters satisfy Model (M0). Draw a uniformly random set S of s columns from Φ, and define the random column submatrix A = Φ S. Then Prob { A A I < 1 } % and Prob { max n/ S A ϕ n 2 < 1 } %. References: [Random Subdictionaries, Random Submatrices] The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 18

19 The Sparsity Gap Theorem 7. [T 2008, 2010] Let b = Φx be a vector drawn from Model (M0). With probability at least 99.44%, the following statements hold. 1. The vector x is the unique solution to (P0). 2. Furthermore, there is no disjoint representation b = Φy where supp(x) supp(y) = unless ( y 0 > x m ). N References: [Candès Romberg 2006, Random Subdictionaries, Random Submatrices, The Sparsity Gap] The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 19

20 To learn more... Web: Relevant papers: Conditioning of random subdictionaries, ACHA, 2008 Norms of random submatrices, CRAS, 2008 Spikes and sines, JFAA, 2008 The sparsity gap, Proc. CISS, 2010 The Sparsity Gap (Casazza Birthday Conference, College Park, 20 May 2010) 20

Uncertainty principles and sparse approximation

Uncertainty principles and sparse approximation Uncertainty principles and sparse approximation In this lecture, we will consider the special case where the dictionary Ψ is composed of a pair of orthobases. We will see that our ability to find a sparse

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information

Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information 1 Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information Emmanuel Candès, California Institute of Technology International Conference on Computational Harmonic

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Signal Recovery, Uncertainty Relations, and Minkowski Dimension

Signal Recovery, Uncertainty Relations, and Minkowski Dimension Signal Recovery, Uncertainty Relations, and Minkowski Dimension Helmut Bőlcskei ETH Zurich December 2013 Joint work with C. Aubel, P. Kuppinger, G. Pope, E. Riegler, D. Stotz, and C. Studer Aim of this

More information

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1239 Preconditioning for Underdetermined Linear Systems with Sparse Solutions Evaggelia Tsiligianni, StudentMember,IEEE, Lisimachos P. Kondi,

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Inverse problems, Dictionary based Signal Models and Compressed Sensing

Inverse problems, Dictionary based Signal Models and Compressed Sensing Inverse problems, Dictionary based Signal Models and Compressed Sensing Rémi Gribonval METISS project-team (audio signal processing, speech recognition, source separation) INRIA, Rennes, France Ecole d

More information

Uniqueness and Uncertainty

Uniqueness and Uncertainty Chapter 2 Uniqueness and Uncertainty We return to the basic problem (P 0 ), which is at the core of our discussion, (P 0 ) : min x x 0 subject to b = Ax. While we shall refer hereafter to this problem

More information

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

Column Subset Selection

Column Subset Selection Column Subset Selection Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Thanks to B. Recht (Caltech, IST) Research supported in part by NSF,

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

ON THE LINEAR INDEPENDENCE OF SPIKES AND SINES

ON THE LINEAR INDEPENDENCE OF SPIKES AND SINES ON THE LINEAR INDEPENDENCE OF SPIKES AND SINES JOEL A. TROPP Abstract. The purpose of this work is to survey what is known about the linear independence of spikes and sines. The paper provides new results

More information

Error Correction via Linear Programming

Error Correction via Linear Programming Error Correction via Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles,

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER On the Performance of Sparse Recovery

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER On the Performance of Sparse Recovery IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER 2011 7255 On the Performance of Sparse Recovery Via `p-minimization (0 p 1) Meng Wang, Student Member, IEEE, Weiyu Xu, and Ao Tang, Senior

More information

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 12, DECEMBER 2008 2009 Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation Yuanqing Li, Member, IEEE, Andrzej Cichocki,

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

On Optimal Frame Conditioners

On Optimal Frame Conditioners On Optimal Frame Conditioners Chae A. Clark Department of Mathematics University of Maryland, College Park Email: cclark18@math.umd.edu Kasso A. Okoudjou Department of Mathematics University of Maryland,

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Using Friendly Tail Bounds for Sums of Random Matrices

Using Friendly Tail Bounds for Sums of Random Matrices Using Friendly Tail Bounds for Sums of Random Matrices Joel A. Tropp Computing + Mathematical Sciences California Institute of Technology jtropp@cms.caltech.edu Research supported in part by NSF, DARPA,

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Yin Zhang Technical Report TR05-06 Department of Computational and Applied Mathematics Rice University,

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES A NEW FRAMEWORK FOR DESIGNING INCOERENT SPARSIFYING DICTIONARIES Gang Li, Zhihui Zhu, 2 uang Bai, 3 and Aihua Yu 3 School of Automation & EE, Zhejiang Univ. of Sci. & Tech., angzhou, Zhejiang, P.R. China

More information

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS YIN ZHANG Abstract. Compressive sensing (CS) is an emerging methodology in computational signal processing that has

More information

Frame Coherence and Sparse Signal Processing

Frame Coherence and Sparse Signal Processing Frame Coherence and Sparse Signal Processing Dustin G ixon Waheed U Bajwa Robert Calderbank Program in Applied and Computational athematics Princeton University Princeton ew Jersey 08544 Department of

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems

RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems 1 RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems Yun-Bin Zhao IEEE member Abstract Recently, the worse-case analysis, probabilistic analysis and empirical

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Uniqueness Conditions for A Class of l 0 -Minimization Problems

Uniqueness Conditions for A Class of l 0 -Minimization Problems Uniqueness Conditions for A Class of l 0 -Minimization Problems Chunlei Xu and Yun-Bin Zhao October, 03, Revised January 04 Abstract. We consider a class of l 0 -minimization problems, which is to search

More information

Highly sparse representations from dictionaries are unique and independent of the sparseness measure. R. Gribonval and M. Nielsen

Highly sparse representations from dictionaries are unique and independent of the sparseness measure. R. Gribonval and M. Nielsen AALBORG UNIVERSITY Highly sparse representations from dictionaries are unique and independent of the sparseness measure by R. Gribonval and M. Nielsen October 2003 R-2003-16 Department of Mathematical

More information

Conditions for Robust Principal Component Analysis

Conditions for Robust Principal Component Analysis Rose-Hulman Undergraduate Mathematics Journal Volume 12 Issue 2 Article 9 Conditions for Robust Principal Component Analysis Michael Hornstein Stanford University, mdhornstein@gmail.com Follow this and

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Compressed Sensing and Redundant Dictionaries

Compressed Sensing and Redundant Dictionaries Compressed Sensing and Redundant Dictionaries Holger Rauhut, Karin Schnass and Pierre Vandergheynst December 2, 2006 Abstract This article extends the concept of compressed sensing to signals that are

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Winfried Just Department of Mathematics, Ohio University February 28, 218 Review: The linear span Definition Let { v 1, v 2,..., v n }

More information

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements Stable Signal Recovery from Incomplete and Inaccurate Measurements EMMANUEL J. CANDÈS California Institute of Technology JUSTIN K. ROMBERG California Institute of Technology AND TERENCE TAO University

More information

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases 2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 9, SEPTEMBER 2002 A Generalized Uncertainty Principle Sparse Representation in Pairs of Bases Michael Elad Alfred M Bruckstein Abstract An elementary

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

MATCHING PURSUIT WITH STOCHASTIC SELECTION

MATCHING PURSUIT WITH STOCHASTIC SELECTION 2th European Signal Processing Conference (EUSIPCO 22) Bucharest, Romania, August 27-3, 22 MATCHING PURSUIT WITH STOCHASTIC SELECTION Thomas Peel, Valentin Emiya, Liva Ralaivola Aix-Marseille Université

More information

SPARSE NEAR-EQUIANGULAR TIGHT FRAMES WITH APPLICATIONS IN FULL DUPLEX WIRELESS COMMUNICATION

SPARSE NEAR-EQUIANGULAR TIGHT FRAMES WITH APPLICATIONS IN FULL DUPLEX WIRELESS COMMUNICATION SPARSE NEAR-EQUIANGULAR TIGHT FRAMES WITH APPLICATIONS IN FULL DUPLEX WIRELESS COMMUNICATION A. Thompson Mathematical Institute University of Oxford Oxford, United Kingdom R. Calderbank Department of ECE

More information

Abstract This paper is about the efficient solution of large-scale compressed sensing problems.

Abstract This paper is about the efficient solution of large-scale compressed sensing problems. Noname manuscript No. (will be inserted by the editor) Optimization for Compressed Sensing: New Insights and Alternatives Robert Vanderbei and Han Liu and Lie Wang Received: date / Accepted: date Abstract

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Design of Projection Matrix for Compressive Sensing by Nonsmooth Optimization

Design of Projection Matrix for Compressive Sensing by Nonsmooth Optimization Design of Proection Matrix for Compressive Sensing by Nonsmooth Optimization W.-S. Lu T. Hinamoto Dept. of Electrical & Computer Engineering Graduate School of Engineering University of Victoria Hiroshima

More information

Beyond incoherence and beyond sparsity: compressed sensing in the real world

Beyond incoherence and beyond sparsity: compressed sensing in the real world Beyond incoherence and beyond sparsity: compressed sensing in the real world Clarice Poon 1st November 2013 University of Cambridge, UK Applied Functional and Harmonic Analysis Group Head of Group Anders

More information

We will now focus on underdetermined systems of equations: data acquisition system

We will now focus on underdetermined systems of equations: data acquisition system l 1 minimization We will now focus on underdetermined systems of equations: # samples = resolution/ bandwidth data acquisition system unknown signal/image Suppose we observe y = Φx 0, and given y we attempt

More information

A simple test to check the optimality of sparse signal approximations

A simple test to check the optimality of sparse signal approximations A simple test to check the optimality of sparse signal approximations Rémi Gribonval, Rosa Maria Figueras I Ventura, Pierre Vergheynst To cite this version: Rémi Gribonval, Rosa Maria Figueras I Ventura,

More information

Necessary and sufficient conditions of solution uniqueness in l 1 minimization

Necessary and sufficient conditions of solution uniqueness in l 1 minimization 1 Necessary and sufficient conditions of solution uniqueness in l 1 minimization Hui Zhang, Wotao Yin, and Lizhi Cheng arxiv:1209.0652v2 [cs.it] 18 Sep 2012 Abstract This paper shows that the solutions

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

The Kadison-Singer Problem and the Uncertainty Principle Eric Weber joint with Pete Casazza

The Kadison-Singer Problem and the Uncertainty Principle Eric Weber joint with Pete Casazza The Kadison-Singer Problem and the Uncertainty Principle Eric Weber joint with Pete Casazza Illinois-Missouri Applied Harmonic Analysis Seminar, April 28, 2007. Abstract: We endeavor to tell a story which

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Sparsity and Incoherence in Compressive Sampling

Sparsity and Incoherence in Compressive Sampling Sparsity and Incoherence in Compressive Sampling Emmanuel Candès and Justin Romberg Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Electrical and Computer Engineering, Georgia Tech,

More information

An algebraic perspective on integer sparse recovery

An algebraic perspective on integer sparse recovery An algebraic perspective on integer sparse recovery Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell and Benny Sudakov) Combinatorics Seminar USC October 31, 2018 From Wikipedia:

More information

Randomness-in-Structured Ensembles for Compressed Sensing of Images

Randomness-in-Structured Ensembles for Compressed Sensing of Images Randomness-in-Structured Ensembles for Compressed Sensing of Images Abdolreza Abdolhosseini Moghadam Dep. of Electrical and Computer Engineering Michigan State University Email: abdolhos@msu.edu Hayder

More information

WIRELESS sensor networks (WSNs) have attracted

WIRELESS sensor networks (WSNs) have attracted On the Benefit of using ight Frames for Robust Data ransmission and Compressive Data Gathering in Wireless Sensor Networks Wei Chen, Miguel R. D. Rodrigues and Ian J. Wassell Computer Laboratory, University

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Boaz Nadler The Weizmann Institute of Science Israel Joint works with Inbal Horev, Ronen Basri, Meirav Galun and Ery Arias-Castro

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 2, FEBRUARY

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 2, FEBRUARY IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 54, NO 2, FEBRUARY 2006 423 Underdetermined Blind Source Separation Based on Sparse Representation Yuanqing Li, Shun-Ichi Amari, Fellow, IEEE, Andrzej Cichocki,

More information

On Sparse Solutions of Underdetermined Linear Systems

On Sparse Solutions of Underdetermined Linear Systems On Sparse Solutions of Underdetermined Linear Systems Ming-Jun Lai Department of Mathematics the University of Georgia Athens, GA 30602 January 17, 2009 Abstract We first explain the research problem of

More information

LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING. Saiprasad Ravishankar and Yoram Bresler

LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING. Saiprasad Ravishankar and Yoram Bresler LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization

Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization Noname manuscript No. (will be inserted by the editor) Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization Hui Zhang Wotao Yin Lizhi Cheng Received: / Accepted: Abstract This

More information

Compressed Sensing and Redundant Dictionaries

Compressed Sensing and Redundant Dictionaries Compressed Sensing and Redundant Dictionaries Holger Rauhut, Karin Schnass and Pierre Vandergheynst Abstract This article extends the concept of compressed sensing to signals that are not sparse in an

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

THE KADISON-SINGER PROBLEM AND THE UNCERTAINTY PRINCIPLE

THE KADISON-SINGER PROBLEM AND THE UNCERTAINTY PRINCIPLE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 THE KADISON-SINGER PROBLEM AND THE UNCERTAINTY PRINCIPLE PETER G. CASAZZA AND ERIC WEBER Abstract.

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

Finite Frames for Sparse Signal Processing

Finite Frames for Sparse Signal Processing Finite Frames for Sparse Signal Processing Waheed U. Bajwa and Ali Pezeshki Abstract Over the last decade, considerable progress has been made towards developing new signal processing methods to manage

More information

On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery

On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery Jeffrey D. Blanchard a,1,, Caleb Leedy a,2, Yimin Wu a,2 a Department of Mathematics and Statistics, Grinnell College, Grinnell, IA

More information

Sparse representations and approximation theory

Sparse representations and approximation theory Journal of Approximation Theory 63 (20) 388 42 wwwelseviercom/locate/jat Sparse representations and approximation theory Allan Pinkus Department of Mathematics, Technion, 32000 Haifa, Israel Received 28

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Lingchen Kong and Naihua Xiu Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People s Republic of China E-mail:

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

EUSIPCO

EUSIPCO EUSIPCO 013 1569746769 SUBSET PURSUIT FOR ANALYSIS DICTIONARY LEARNING Ye Zhang 1,, Haolong Wang 1, Tenglong Yu 1, Wenwu Wang 1 Department of Electronic and Information Engineering, Nanchang University,

More information

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Emmanuel J. Candès and Justin Romberg Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 ovember 2004; Revised

More information

IN a series of recent papers [1] [4], the morphological component

IN a series of recent papers [1] [4], the morphological component IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 11, NOVEMBER 2007 2675 Morphological Component Analysis: An Adaptive Thresholding Strategy Jérôme Bobin, Jean-Luc Starck, Jalal M. Fadili, Yassir Moudden,

More information

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images!

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images! Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images! Alfredo Nava-Tudela John J. Benedetto, advisor 1 Happy birthday Lucía! 2 Outline - Problem: Find sparse solutions

More information

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE METHODS AND APPLICATIONS OF ANALYSIS. c 2011 International Press Vol. 18, No. 1, pp. 105 110, March 2011 007 EXACT SUPPORT RECOVERY FOR LINEAR INVERSE PROBLEMS WITH SPARSITY CONSTRAINTS DENNIS TREDE Abstract.

More information

Inverse Eigenvalue Problems in Wireless Communications

Inverse Eigenvalue Problems in Wireless Communications Inverse Eigenvalue Problems in Wireless Communications Inderjit S. Dhillon Robert W. Heath Jr. Mátyás Sustik Joel A. Tropp The University of Texas at Austin Thomas Strohmer The University of California

More information

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions Emmanuel J. Candès and Justin Romberg Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 June 3, 2005 Abstract

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

6 Compressed Sensing and Sparse Recovery

6 Compressed Sensing and Sparse Recovery 6 Compressed Sensing and Sparse Recovery Most of us have noticed how saving an image in JPEG dramatically reduces the space it occupies in our hard drives as oppose to file types that save the pixel value

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions Linear Systems Carlo Tomasi June, 08 Section characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix

More information

Morphological Diversity and Source Separation

Morphological Diversity and Source Separation Morphological Diversity and Source Separation J. Bobin, Y. Moudden, J.-L. Starck, and M. Elad Abstract This paper describes a new method for blind source separation, adapted to the case of sources having

More information