classical states of light: generation and applications

Size: px
Start display at page:

Download "classical states of light: generation and applications"

Transcription

1 Hybrid entanglement between quantum and classical states of light: generation and applications 12 December, APCWQIS 2014, Tainan, Taiwan Hyunseok Jeong Center for Macroscopic Quantum Control Department of Physics and Astronomy Seoul National University The Brussels Journal (29 October 2007)

2 SNU Quantum Group

3 SNU Quantum Group HJ (Group leader) Seung-Woo Lee Chae-Yeun Park Jinwoo Park (PhD) (Research Faculty) (PhD) Hoyong Kim (PhD) Youngrong Lim (PhD) Minsu Kang (PhD) Seung Lee Bae (PhD) Seung Ho Yang (PhD) Hyukjoon Kwon (PhD)

4 Collaborators Florence Group Alessandro Zavatta Luca S. Costanzo Samuele Grandi Marco Bellini SNU Group Hyunseok Jeong Minsu Kang Seung-Woo Lee Uni of QLD Timothy C. Ralph

5 Collaborators Florence Group Alessandro Zavatta Luca S. Costanzo Samuele Grandi Marco Bellini Myungshik Kim (Imperial) Jinhyoung Lee (HYU) SNU Group Hyunseok Jeong Minsu Kang Seung-Woo Lee Chang-Woo Lee (now at KIAS) Hyukjoon Kwon Hoyong Kim Jonas S. Neergaard-Nielsen (now at TUD) Yujiro Eto Masahide Sasaki (NICT) Uni of QLD Timothy C. Ralph

6 Contents Hybrid entanglement as a Schrödinger cat state All-optical quantum information processing using hybrid entanglement Generation scheme and experimental results entangling quantum and classical states

7 E. Schrödinger, Naturwissenschaftern. 23 (1935) Alive 1 2 e g Dead The Brussels Journal (29 October 2007) 1 1 ( e g ) Alive 2 2 e Alive g Dead Entanglement between quantum and classical systems

8 n 2 Ch Coherent state: tt /2 e n Classical n0 n! Coherent states are most classical among all pure states - semi-classical descriptions available - most robust against decoherence ( pointer states ) The two coherent states > and - > are classically (or macroscopically) distinguishable for >>1, i.e., they can be well discriminated by a homodyne measurement (HD) with limited efficiency. (For 70% of HD efficiency: D99.7% for =1.6 and D>99.9% for =2.0.) Single photon: 1 Non-classical Discrete light quantum containing the minimum quantized amount of energy available at a given frequency. Negative values in well-known quasi-probability distributions such as the Wigner function.

9 1 2 H V 1 2 e Alive g Dead

10 What is the correct measure of Schrödinger s-cattiness? Ideally, one would like a quantitative measure which corresponds to our intuitive sense; I shall attempt one below, but would emphasize that the choice between this and a number of similar and perhaps equally plausible definitions is, with one important exception (see below), very much a matter of personal taste, and that I very much doubt that 50 years from now anything of importance will be seen to have hung on it. (A. J. Leggett, J. Phys.: Condens. Matter 14 (2002) R415 R451)

11 References taken from H. Jeong, M. Kang and H. Kwon, Characterizations and quantifications of macroscopic quantumness and its implementations using optical fields (Review article) Special Issue on Macroscopic Quantumness, Optics Communications 337, (2015)

12 C.-W. Lee and H. Jeong, Phys. Rev. Ltt106 Lett. 106, (2011) It can be applied to any harmonic oscillator systems such as light fields. Independent of the decomposition of the component states. For an arbitrary state, t it simultaneously l quantifies (1) how far-separate the component states of the superposition are and (2) the degree of genuine quantum coherence between the component states against their classical mixture.

13 Schrödinger cat states of light: i cat N e >>1 Xˆ Pˆ aˆ aˆ i( aˆ aˆ ) Wigner function A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007) Evidence of fquantum interference

14 I Wigner function

15 Wigner function I

16 1 2 H V 2 I - maximum value 1 n 0 0 n H N V N

17 Micro-macro entanglement or macro-macro entanglement as analogies of Schrödinger s thought experiment

18 N. Bruno et al., Nature Physics 9, 545 (2013); A. I. Lvovsky et al. Nature Physics 9, 541 (2013) D ( ) = D ( ) = D ( ) D ( ) D ( ) D ( )

19 N. Bruno et al., Nature Physics 9, 545 (2013); A. I. Lvovsky et al. Nature Physics 9, 541 (2013) D ( ) = D1 ( ) D D( ) 0 1 ( ) 0 1 H. Jeong, M. Kang and H. Kwon, Optics Communications 337, (2015) (2014)

20 1 2 H V H K d H J "Vi l ti f H. Kwon and H. Jeong, "Violation of the Bell-Clauser-Horne-Shimony-Holt inequality using imperfect photodetectors with optical hybrid states," Phys. Rev. A 88, (2013).

21 Contents Hybrid entanglement as a Schrödinger cat state All-optical quantum information processing using hybrid entanglement Generation scheme and experimental results

22 Schemes for all-optical quantum computation Single photon qubits H 0, V 1 L L qubit ah bv Coherent state qubits 0, 1 L qubit a b L CSQC ploqc The best compromise for medium scale quantum computing (100s of logical l operations) appear to be the CSQC scheme and the Parity State scheme. T. C. Ralph and G. J. Pryde, Progress in Optics, Ed. E.Wolf, 54, 209 (2009)

23 Teleportation and quantum gates using coherent state qubits (Jeong et al., PRA 2001, Jeong and Kim, PRA 2002, Ralph et al., Proc. SPIE 2002, Ralph et al., PRA 2003) Nearly deterministic Bell measurement Alice Bob U cat B: Bell measurement Input state cat From Jeong et al., PRA 64, (2001) N ( ) B00 N ( ) From Ralph et al., PRA 68, (2003) Single qubit rotation (Z-rotation) cannot be realized deterministically. Sensitive to photon losses Optimized value ~1.6 [Lund et al. PRL 2008]

24 S.-W. Lee and H. Jeong, "Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits," Phys. Rev. A 87, (2013). a H b V Single-photon mode Coherent-state mode

25 Abi Arbitrary Z rotations Single-qubit rotation a H bv a H be i i V Pauli X (bit flip) Photon-qubit flip -phase shifter H V a H bv a V b H

26 S.-W. Lee and H. Jeong, Phys. Rev. A 87, (2013) Failure probability P f e 2 2 / 2 P P f f ~06%for ~0.6% ~ 0.02% for 2 Universal gate operations can be performed using gate teleportation in a nearly deterministic manner.

27 Ralph-Pryde diagram

28 Ralph-Pryde diagram S.-W. Lee and H. Jeong, Phys. Rev. A 87, (2013)

29 1 2 H V

30

31 Cross-Kerr nonlinearity

32 Cross-Kerr nonlinearity Highly nontrivial and demanding

33 Contents Hybrid entanglement as a Schrödinger cat state All-optical quantum information processing using hybrid entanglement Generation scheme and experimental results

34 1 2g F g F 0.998

35 ∠0 p x 0 p x

36 Single photon addition Downconverter Pump stop click [Zavatta et al., Science, 2004 ]

37 Generation of hybrid entanglement r:t Pump stop click silent Pump Downconverter

38 Generation of hybrid entanglement r:t Pump stop click silent Pump Downconverter

39 Generation of hybrid entanglement r:t Pump stop click silent Pump Downconverter

40 Generation of hybrid entanglement r:t Pump stop click silent Pump Downconverter

41 Generation of hybrid entanglement r:t Pump stop click silent Pump Downconverter

42 Generation of hybrid entanglement r:t Pump stop click silent Pump Downconverter

43 Classical information Alice Long distance Noisy environment Schrodinger cat state Bob Reconstructed state Input state J S N d Ni l Y Et C W L H J d J. S. Neergaard-Nielsen, Y. Eto, C.-W. Lee, H. Jeong and M. Sasaki, Nature Photonics (2013)

44 ImprovedFidelity Success Probability bili H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L.S. Costanzo, S. Grandi, T.C. Ralph & M. Bellini, Nature Photonics 8, 564 (2014).

45 Entangling quantum and classical states of light Hyunseok Jeong, Alessandro Zavatta, Minsu Kang, Seung-Woo Lee, Luca S. Costanzo, Samuele Grandi, Timothy C. Ralph & Marco Bellini, Nature Photonics 8, 564 (2014).

46 H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L.S. Costanzo, S. Grandi, T.C. Ralph & M. Bellini, Nature Photonics 8, 564 (2014).

47 State Saetomography ogap yand dentanglement ge e Photon added coherent state Coherent state H. Jeong et al. Nature Photonics 8, 564 (2014) f 1 i F 0.76 NPT 0.45

48 State Saetomography ogap yand dentanglement ge e Photon added coherent state Coherent state H. Jeong et al. Nature Photonics 8, 564 (2014) f f 1 i F 0.76 NPT 0.45 Next challenge

49

50 We have studied hybrid entanglement of light: Interesting an analogy of Schrödinger s cat Useful for optical quantum information processing We ve made it (in a small scale).

51

MACROSCOPIC SUPERPOSITIONS AND QUANTUM INFORMATION PROCESSING

MACROSCOPIC SUPERPOSITIONS AND QUANTUM INFORMATION PROCESSING The 3rd KIAS Workshop on Quantum Information and Thermodynamics MACROSCOPIC SUPERPOSITIONS AND QUANTUM INFORMATION PROCESSING Hyunseok Jeong Department of Physics and Astronomy Seoul National University

More information

Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects

Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects Quantum Inf Process DOI 10.1007/s1118-015-1191-x Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects Hyunseok

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Decoherence of highly mixed macroscopic quantum superpositions

Decoherence of highly mixed macroscopic quantum superpositions Jeong et al. Vol. 25, No. 6/June 28/ J. Opt. Soc. Am. B 125 Decoherence of highly mixed macroscopic quantum superpositions Hyunseok Jeong, 1,2 Jinhyoung Lee, 3 and Hyunchul Nha 4, * 1 Centre for Quantum

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics

A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics Commun. Theor. Phys. 67 (2017) 391 395 Vol. 67, No. 4, April 1, 2017 A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics Ting-Ting Zhang ( 张婷婷 ), 1,2 Jie Wei ( 魏杰 ), 1,2

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

No Fine theorem for macroscopic realism

No Fine theorem for macroscopic realism No Fine theorem for macroscopic realism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany 2nd International Conference on Quantum Foundations Patna, India 17 Oct. 2016

More information

No Fine Theorem for Macrorealism

No Fine Theorem for Macrorealism No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University, Växjö, Sweden 14 June 2016 Acknowledgments

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Characterization of a #-phase shift quantum gate for coherent-state qubits

Characterization of a #-phase shift quantum gate for coherent-state qubits Characterization of a #-phase shift quantum gate for coherent-state qubits Author Blandino, Rémi, Ferreyrol, Franck, Barbieri, Marco, Grangier, Philippe, Tualle-Brouri, Rosa Published 0 Journal Title New

More information

arxiv: v2 [quant-ph] 24 Mar 2017

arxiv: v2 [quant-ph] 24 Mar 2017 Breeding the optical Schrödinger s cat state ariv:69.845v [quant-ph] 4 Mar 7 Demid V. Sychev, Alexander. Ulanov,, Anastasia A. Pushkina,, Matthew W. Richards 4, Ilya A. Fedorov,, and A. I. Lvovsky,,4 Russian

More information

Quantum description of light. Quantum description of light. Content of the Lecture

Quantum description of light. Quantum description of light. Content of the Lecture University aris-saclay - IQUS Optical Quantum Engineering: From fundamentals to applications hilippe Grangier, Institut d Optique, CNRS, Ecole olytechnique. Lecture (7 March, 9:5-0:45) : Qubits, entanglement

More information

Detection of photonic Bell states

Detection of photonic Bell states LECTURE 3 Detection of photonic Bell states d a c Beam-splitter transformation: b ˆB ˆB EXERCISE 10: Derive these three relations V a H a ˆB Detection: or V b H b or Two photons detected in H a, H b, V

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Bell tests in physical systems

Bell tests in physical systems Bell tests in physical systems Seung-Woo Lee St. Hugh s College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of

More information

arxiv: v2 [quant-ph] 26 Dec 2015

arxiv: v2 [quant-ph] 26 Dec 2015 Efficient noiseless linear amplification for light fields with larger amplitudes arxiv:1510.08977v [quant-ph] 6 Dec 015 Jinwoo Park 1, Jaewoo Joo, Alessandro Zavatta 3,4, Marco Bellini 3,4, and Hyunseok

More information

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

More information

Maximal violation of Bell inequalities using continuous-variable measurements

Maximal violation of Bell inequalities using continuous-variable measurements Maximal violation of Bell inequalities using continuous-variable measurements Jérôme Wenger, Mohammad Hafezi, Frédéric Grosshans, Rosa Tualle-Brouri, and Philippe Grangier* Laboratoire Charles Fabry de

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

Photon subtraction from traveling fields - recent experimental demonstrations

Photon subtraction from traveling fields - recent experimental demonstrations Progress in Informatics, No. 8, pp.5 18, (2011) 5 Special issue: Quantum information technology Review Photon subtraction from traveling fields - recent experimental demonstrations Jonas S. NEERGAARD-NIELSEN

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources

Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources a generation rate large enough to allow subsequent operations will open a wealth of possible protocols

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro Outline of the talk! Decoherence

More information

Quantum Nonlocality of N-qubit W States

Quantum Nonlocality of N-qubit W States Quantum onlocality of -qubit W States Chunfeng Wu, Jing-Ling Chen, L. C. Kwek,, 3 and C. H. Oh, Department of Physics, ational University of Singapore, Science Drive 3, Singapore 754 Theoretical Physics

More information

Nonclassicality of a photon-subtracted Gaussian field

Nonclassicality of a photon-subtracted Gaussian field PHYSICAL REVIEW A 7, 043805 005 Nonclassicality of a photon-subtracted Gaussian field M. S. Kim, E. Park, P. L. Knight, and H. Jeong 3 School of Mathematics and Physics, The Queen s University, Belfast,

More information

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium ISSN 2186-6570 Evaluation Method for Inseparability of Two-Mode Squeezed Vacuum States in a Lossy Optical Medium Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

Generating superposition of up-to three photons for continuous variable quantum information processing

Generating superposition of up-to three photons for continuous variable quantum information processing Generating superposition of up-to three photons for continuous variable quantum information processing Mitsuyoshi Yukawa, 1 Kazunori Miyata, 1 Takahiro Mizuta, 1 Hidehiro Yonezawa, 1 Petr Marek, 2 Radim

More information

Quantum Information Processing with Non-classical Light

Quantum Information Processing with Non-classical Light Quantum Information Processing with Non-classical Light A dissertation submitted to Queen s University, Belfast for the degree of Doctor of Philosophy by Hyunseok Jeong, M.S., B.S. School of Mathematics

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

Errata list, Nielsen & Chuang. rrata/errata.html

Errata list, Nielsen & Chuang.  rrata/errata.html Errata list, Nielsen & Chuang http://www.michaelnielsen.org/qcqi/errata/e rrata/errata.html Part II, Nielsen & Chuang Quantum circuits (Ch 4) SK Quantum algorithms (Ch 5 & 6) Göran Johansson Physical realisation

More information

Quantum entanglement and macroscopic quantum superpositions

Quantum entanglement and macroscopic quantum superpositions Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany Quantum entanglement and macroscopic quantum superpositions Johannes Kofler Quantum Information Symposium Institute of Science and

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

arxiv: v2 [quant-ph] 25 Nov 2009

arxiv: v2 [quant-ph] 25 Nov 2009 Time gating of heralded single photons for atomic memories B. Melholt Nielsen, 1 J. S. Neergaard-Nielsen, 1 and E. S. Polzik 1, arxiv:0909.0646v2 [quant-ph] 25 Nov 2009 1 Niels Bohr Institute, Danish National

More information

A coarse-grained Schrödinger cat

A coarse-grained Schrödinger cat A coarse-grained Schrödinger cat Johannes KOFLER and Časlav BRUKNER Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria;

More information

QOT - Quantum Optical Technologies

QOT - Quantum Optical Technologies Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Schrödinger cats and their power for quantum information processing

Schrödinger cats and their power for quantum information processing Schrödinger cats and their power for quantum information processing A. Gilchrist, Kae Nemoto, W.J.Munro T. C. Ralph S. Glancy +, Samuel. L. Braunstein and G. J. Milburn Centre for Quantum Computer Technology,

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Toward the Generation of Bell Certified Randomness Using Photons

Toward the Generation of Bell Certified Randomness Using Photons Toward the Generation of Bell Certified Randomness Using Photons Alessandro Cerè, Siddarth Koduru Josh, Chen Ming Chia, Jean-Daniel Bancal, Lana Sheridan, Valerio Scarani, Christian Kurtsiefer Quantum

More information

Iterative tailoring of optical quantum states with homodyne measurements

Iterative tailoring of optical quantum states with homodyne measurements Iterative tailoring of optical quantum states with homodyne measurements Jean Etesse,, Bhaskar Kanseri and Rosa Tualle-Brouri, Laboratoire Charles Fabry, Institut d Optique, CNRS, Université Paris Sud,

More information

From Cavity QED to Quantum Transport

From Cavity QED to Quantum Transport Dep. of Physics, NTHU Oct. 3 (20) From Cavity QED to Quantum Transport 陳岳男 成功大學物理系 國家理論科學研究中心 ( 南區 ) Unified single-photon and single-electron counting statistics: From cavity QED to electron transport

More information

High-fidelity Z-measurement error encoding of optical qubits

High-fidelity Z-measurement error encoding of optical qubits Griffith Research Online https://research-repository.griffith.edu.au High-fidelity Z-measurement error encoding of optical qubits Author O'Brien, J., Pryde, G., White, A., Ralph, T. Published 2005 Journal

More information

MACROREALISM, NONINVASIVENESS and WEAK MEASUREMENT

MACROREALISM, NONINVASIVENESS and WEAK MEASUREMENT A A MACROREALISM, NONINVASIVENESS and WEAK MEASUREMENT For orientation, original CHSH inequality: AB A B AB A B 2 ~ S (A, B, A, B 1) Satisfied by all objective local theories, df. by conjunction of 1)

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

A simple hidden variable experiment

A simple hidden variable experiment A simple hidden variable experiment Arnold Neumaier Fakultät für Mathematik, Universität Wien Nordbergstr. 15, A-1090 Wien, Austria email: Arnold.Neumaier@univie.ac.at WWW: http://www.mat.univie.ac.at/

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, November 3, 016 Lecture Number 16 Fall 016 Jeffrey H.

More information

arxiv:quant-ph/ v1 1 Jun 2000

arxiv:quant-ph/ v1 1 Jun 2000 Probabilistic teleportation of two-particle entangled state Bao-Sen Shi, Yun-Kun Jiang and Guang-Can Guo Lab. of Quantum Communication and Quantum Computation Department of Physics University of Science

More information

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu SPIE F&N 23 May 2007 Statue

More information

QUANTUM ENTANGLEMENT AND ITS ASPECTS. Dileep Dhakal Masters of Science in Nanomolecular Sciences

QUANTUM ENTANGLEMENT AND ITS ASPECTS. Dileep Dhakal Masters of Science in Nanomolecular Sciences QUANTUM ENTANGLEMENT AND ITS ASPECTS Dileep Dhakal Masters of Science in Nanomolecular Sciences Jacobs University Bremen 26 th Nov 2010 Table of Contents: Quantum Superposition Schrödinger s Cat Pure vs.

More information

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Maximilian Schlosshauer Department of Physics University of Washington Seattle, Washington Very short biography Born in

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Nonlocality of single fermions branches that borrow particles

Nonlocality of single fermions branches that borrow particles 1 Nonlocality of single fermions branches that borrow particles Sofia Wechsler Computers Engineering Center, Nahariya, P.O.B. 2004, 22265, Israel Abstract An experiment performed in 2002 by Sciarrino et

More information

All Optical Quantum Gates

All Optical Quantum Gates All Optical Quantum Gates T.C.Ralph Centre for Quantum Computer Technology Department of Physics University of Queensland ralph@physics.uq.edu.au LOQC People Staff T.C.Ralph A.G.White G.J.Milburn Postdocs

More information

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state XuBo Zou, K. Pahlke and W. Mathis Electromagnetic Theory Group at THT Department

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

Einstein-Podolsky-Rosen paradox and Bell s inequalities

Einstein-Podolsky-Rosen paradox and Bell s inequalities Einstein-Podolsky-Rosen paradox and Bell s inequalities Jan Schütz November 27, 2005 Abstract Considering the Gedankenexperiment of Einstein, Podolsky, and Rosen as example the nonlocal character of quantum

More information

arxiv: v1 [quant-ph] 8 Feb 2016

arxiv: v1 [quant-ph] 8 Feb 2016 An analytical condition for the violation of Mer s inequality by any three qubit state Satyabrata Adhikari 1, and A. S. Majumdar 2, 1 Birla Institute of Technology Mesra, Ranchi-835215, India 2 S. N. Bose

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Laboratory 1: Entanglement & Bell s Inequalities

Laboratory 1: Entanglement & Bell s Inequalities Laboratory 1: Entanglement & Bell s Inequalities Jose Alejandro Graniel Institute of Optics University of Rochester, Rochester, NY 14627, U.S.A Abstract This experiment purpose was to study the violation

More information

Quantum Teleportation. Gur Yaari for HEisenberg's Seminar on Quantum Optics

Quantum Teleportation. Gur Yaari for HEisenberg's Seminar on Quantum Optics Quantum Teleportation Gur Yaari for HEisenberg's Seminar on Quantum Optics Bell States Maximum Entangled Quantum States: The usual form of the CHSH inequality is: E(a, b) E(a, b ) + E(a, b) + E(a

More information

Spatio-Temporal Quantum Steering

Spatio-Temporal Quantum Steering The 8 th IWSSQC Dec. 14 (2016) Spatio-Temporal Quantum Steering Y. N. Chen*, C. M. Li, N. Lambert, Y. Ota, S. L. Chen, G. Y. Chen, and F. Nori, Phys. Rev. A 89, 032112 (2014) S. L. Chen, N. Lambert, C.

More information

Quantum information processing. Two become one

Quantum information processing. Two become one Quantum information processing Two become one Scientists experimentally demonstrate a scheme for quantum joining, which allow the number of qubits encoded per photon to be varied while keeping the overall

More information

CS120, Quantum Cryptography, Fall 2016

CS120, Quantum Cryptography, Fall 2016 CS10, Quantum Cryptography, Fall 016 Homework # due: 10:9AM, October 18th, 016 Ground rules: Your homework should be submitted to the marked bins that will be by Annenberg 41. Please format your solutions

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Quantum Information Transfer and Processing Miloslav Dušek

Quantum Information Transfer and Processing Miloslav Dušek Quantum Information Transfer and Processing Miloslav Dušek Department of Optics, Faculty of Science Palacký University, Olomouc Quantum theory Quantum theory At the beginning of 20 th century about the

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Collapse versus correlations, EPR, Bell Inequalities, Cloning

Collapse versus correlations, EPR, Bell Inequalities, Cloning Collapse versus correlations, EPR, Bell Inequalities, Cloning The Quantum Eraser, continued Equivalence of the collapse picture and just blithely/blindly calculating correlations EPR & Bell No cloning

More information

How to use the simulator

How to use the simulator How to use the simulator Overview The application allows for the exploration of four quantum circuits in all. Each simulator grants the user a large amount of freedom in experments they wish to conduct.

More information

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni Exploring finite-dimensional Hilbert spaces by Quantum Optics PhD Candidate: PhD Supervisor: Prof. Paolo Mataloni Outline t Introduction to Quantum Optics t Entanglement and Hyperentanglement t Some Experiments

More information

FUNDAMENTAL QUANTUM OPTICS EXPERIMENTS IN SPACE AND LAB. Luca Calderaro Admission to III year 22 September 2017

FUNDAMENTAL QUANTUM OPTICS EXPERIMENTS IN SPACE AND LAB. Luca Calderaro Admission to III year 22 September 2017 FUNDAMENTAL QUANTUM OPTICS EXPERIMENTS IN SPACE AND LAB Luca Calderaro Admission to III year 22 September 2017 II year experiments Extension of the Wheeler s delayed choice experiment in space Direct Measurements

More information

quantum error-rejection

quantum error-rejection Lecture Note 7 Decoherence-free sub-space space and quantum error-rejection rejection.06.006 open system dynamics ψ = α 0 + α 0 Decoherence System Environment 0 E 0 U ( t) ( t) 0 E ( t) E U E ( t) U()

More information

ISSN Review. Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications

ISSN Review. Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications Entropy 0, 5, 776-80; doi:0.90/e505776 OPEN ACCESS entropy ISSN 099-400 www.mdpi.com/journal/entropy Review Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications Yu-Bo

More information

228 My God - He Plays Dice! Schrödinger s Cat. Chapter 28. This chapter on the web informationphilosopher.com/problems/scrodingerscat

228 My God - He Plays Dice! Schrödinger s Cat. Chapter 28. This chapter on the web informationphilosopher.com/problems/scrodingerscat 228 My God - He Plays Dice! Schrödinger s Cat This chapter on the web informationphilosopher.com/problems/scrodingerscat Schrödinger s Cat Schrödinger s Cat Erwin Schrödinger s goal for his infamous cat-killing

More information

Single-photon quantum error rejection and correction with linear optics

Single-photon quantum error rejection and correction with linear optics Single-photon quantum error rejection and correction with linear optics Demetrios Kalamidas Institute for ltrafast Spectroscopy and Lasers, City College of the City niversity of New York, 138 Street &

More information

Lecture 6 Sept. 14, 2015

Lecture 6 Sept. 14, 2015 PHYS 7895: Quantum Information Theory Fall 205 Prof. Mark M. Wilde Lecture 6 Sept., 205 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

More information

Broadband energy entangled photons and their potential for space applications. André Stefanov University of Bern, Switzerland

Broadband energy entangled photons and their potential for space applications. André Stefanov University of Bern, Switzerland Broadband energy entangled photons and their potential for space applications André Stefanov University of Bern, Switzerland Quantum Technology in Space, Malta, 29.03.2016 SPDC for quantum communication

More information

Experiments testing macroscopic quantum superpositions must be slow

Experiments testing macroscopic quantum superpositions must be slow Experiments testing macroscopic quantum superpositions must be slow spatial (Scientic Reports (2016) - arxiv:1509.02408) Andrea Mari, Giacomo De Palma, Vittorio Giovannetti NEST - Scuola Normale Superiore

More information

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Einstein-Podolsky-Rosen entanglement t of massive mirrors Einstein-Podolsky-Rosen entanglement t of massive mirrors Roman Schnabel Albert-Einstein-Institut t i tit t (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Outline Squeezed and two-mode

More information

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Teleportation-based approaches to universal quantum computation with single-qubit measurements Teleportation-based approaches to universal quantum computation with single-qubit measurements Andrew Childs MIT Center for Theoretical Physics joint work with Debbie Leung and Michael Nielsen Resource

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

arxiv: v1 [quant-ph] 25 Apr 2017

arxiv: v1 [quant-ph] 25 Apr 2017 Deterministic creation of a four-qubit W state using one- and two-qubit gates Firat Diker 1 and Can Yesilyurt 2 1 Faculty of Engineering and Natural Sciences, arxiv:170.0820v1 [quant-ph] 25 Apr 2017 Sabanci

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

The Structure of a World Described by Quantum Mechanics

The Structure of a World Described by Quantum Mechanics S1 The Structure of a World Described by Quantum Mechanics A. J. Leggett Dept. of Physics University of Illinois at Urbana-Champaign support: John D. and Catherine T. Macarthur Foundation John Templeton

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Two-mode excited entangled coherent states and their entanglement properties

Two-mode excited entangled coherent states and their entanglement properties Vol 18 No 4, April 2009 c 2009 Chin. Phys. Soc. 1674-1056/2009/18(04)/1328-05 Chinese Physics B and IOP Publishing Ltd Two-mode excited entangled coherent states and their entanglement properties Zhou

More information